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Abstract—We describe a system for searching your personal
photos using an extremely wide range of text queries, includ-
ing dates and holidays (Halloween), named and categorical
places (Empire State Building or park ), events and occasions
(Radiohead concert or wedding), activities (skiing), object
categories (whales), attributes (outdoors), and object instances
(Mona Lisa), and any combination of these – all with no
manual labeling required. We accomplish this by correlating
information in your photos – the timestamps, GPS locations,
and image pixels – to information on the Internet. This
includes matching dates to holidays listed on Wikipedia, GPS
coordinates to places listed on Wikimapia, places and dates
to find named events using Google, and visual categories and
object instances using classifiers either pre-trained on ImageNet
or trained on-the-fly using results from Google Image Search.
We tie all of these disparate sources of information together
in a unified way, allowing for fast and accurate searches
using whatever information you remember about a photo. We
quantitatively evaluate several aspects of our system and show
excellent performance in all respects. Please watch a video
demonstrating our system in action on a large range of queries
at http://youtu.be/Se3bemzhAiY

Keywords-photo organization; image search; content-based
image retrieval; gps; visual classifiers; natural language search;
layered graph inference; events

I. INTRODUCTION

We’ve all had the frustrating experience of trying –
unsuccessfully – to find photos of a particular event or
experience. With typical personal photo collections num-
bering in the tens of thousands, it’s like finding a needle
in a haystack. Current tools like Facebook, Picasa, and
iPhoto only provide rudimentary search capabilities, and that
only after a tedious manual labeling process. In contrast,
you can type in just about anything you want on Google
Image Search (for instance), and it will retrieve relevant
photos. Why should searching your personal photos be any
different? The challenge is the lack of descriptive text for
indexing; people generally label very few of their photos.

The key insight in this paper is that a surprisingly broad
range of personal photo search queries are enabled by
correlating information in your photos to information
on the Internet. For starters, we can find your photos
from Christmas (Fig. 1a) by using lists of holidays and
dates, or of Hawaii by analyzing GPS (aka geotags) and
matching to online mapping databases. We introduce an

extremely powerful version of location search that enables
queries ranging from exact place names (FAO Schwartz,
Grand Canyon [Fig. 1b]) to rough recollections (park, skiing
[Fig. 1c]). These capabilities alone are very powerful and go
beyond what’s possible in leading photo tools like Facebook.

More interestingly, there’s a broad class of important
queries that are not expressed in terms of time or location,
but which can be answered using photo time and location
information, in conjunction with online data sources. For
example, suppose you want to find the photos you took of
the Radiohead concert (Fig. 1d). This query doesn’t specify
a location or a date; so to answer it, we find all your photos
that are taken near performance venues (e.g., stadiums,
concert halls, arenas, major parks), search Google for events
that occurred at those places on the dates when you took
your photos (using a query like, “Key Arena, Seattle, April
9, 2012”), parse the results page (on which many mentions
of “Radiohead” occur), and associate the resulting text to
the corresponding photos in your collection. This enables
searching for a wide range of events you’ve seen, like Knicks
game, Cirque du Soleil, and Obama’s inauguration. All of
this is transparent to the user; they simply issue the query
Knicks game and we figure out how to answer it.

An even broader range of queries is enabled by analyzing
the pixels in photos and correlating them to other photos
on the Internet. For example, when you type in Mona
Lisa (Fig. 1f), we do a Google Image search for “Mona
Lisa,” download the resulting images, match them to your
photos using interest points, and return the results – all in
a few seconds. Whereas this is an example of a specific
instance, we also support category-level queries using both
pretrained and on-the-fly trained classifiers. For example, to
find your wedding photos, we do a Google Image search for
“wedding,” download the results, train a visual classifier, and
run the classifier on your photos – again, in just seconds. In
summary, we support an extremely wide range of queries:
• dates and holidays: August 2012, Thanksgiving
• named places: Grand Canyon, Sea World, FAO Schwartz
• categorical places: zoo, hotel, beach
• activities: skiing, cricket, paintball
• named events: Radiohead concert, Knicks game
• events by type: wedding, birthday, graduation
• categories of things: whales, green dress, convertible
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"Christmas"

Match dates to holidays
using Wikipedia

"Grand Canyon"

Match GPS to places
using Wikimapia

"skiing"

Lookup categories of
places on Wikimapia

"Radiohead"

Lookup places and dates
for events on Google

"wedding"

Visually classify object categories
using images from ImageNet

and Google Image Search

"Mona Lisa"

Find object instances by
matching visual features using

data from Google Image Search

(a) (b) (c) (d) (e) (f)

Figure 1: Our system allows users to search their personal photos using queries like (a) “Christmas” or other holidays, (b)
“Grand Canyon” or other places, (c) “skiing” or other activities, (d) “Radiohead” or other events, (e) “wedding” or other
visual categories, (f) “Mona Lisa” or other object instances, and arbitrary combinations of these – all with no manual
labeling. We associate images with labels by correlating information in your photos to information online using a variety of
techniques, ranging from computer vision, to GPS and map databases, to on-the-fly internet search and machine learning.

• attributes: portrait, black-and-white, blurry
• instances: Mona Lisa, Eiffel Tower, Mickey Mouse

Furthermore, these types of queries can be combined, e.g.,
wedding in New York, to provide even richer queries and
more specific results. The use of complementary types of
data also greatly improves both the robustness and flexibility
of our system; the former because uncertain estimates of
one modality can be compensated for by others, and the
latter because there are often many possible ways to arrive
at the same image, allowing the user to search by whatever
pieces of information she remembers about the image.
Fundamentally, the use of Internet data enables an enormous
shift in user experience, where the user chooses the search
terms rather than these being limited to a predefined set of
options (as is the norm for virtually all prior work in CBIR
and object recognition), or requiring manual labeling. More
specifically, ours is the first published work to include the
following new capabilities, without requiring any labeling:
• Named event personal photo search (e.g., Knicks game).
• Visual category search for a wide range of user-defined
queries, by extending the on-the-fly-training work of [1]
(proposed previously for faces only) to general queries.
• Object instance search in its full generality, i.e., matching
your photos to arbitrary named objects on the Internet.
• Far more extensive location-based query support (includ-
ing named and categorical places at all levels of granularity)
than any other work, by leveraging Wikimapia.

We represent all information in our system as a hierar-
chical knowledge graph, which provides a unified represen-
tation of all data and lets us efficiently perform inference
operations via propagations through the graph, including
search, auto-complete, and query-dependent description of
matched images. Finally, we quantitatively evaluate the key
aspects of our system by testing search performance on
manually labeled images. Specifically, we test our cover-
age of places (both named and categorical), our ability to
find named events, and our computer vision-based visual
category classifiers. For a qualitative look at many more
examples of search results, please see our supplementary

video: http://youtu.be/Se3bemzhAiY

II. RELATED WORK

Our work is inspired by Google Image Search and other
Internet search engines aimed at producing relevant content
for any user-specified query. We seek to provide similar
functionality in the domain of personal photos. But while
Internet image search engines exploit co-occurances of im-
ages and text on web pages, most personal photo collections
have scarce textual information to use as a ranking signal;
hence the latter domain is much more challenging.

In contrast, consumer photo organization tools like Picasa
and Facebook provide only rudimentary search capabilities,
almost completely based on manual labeling. Since most
users label few if any of their photos, search is largely
ineffective. In their latest release, iPhoto introduced the
ability to search for place names by “matching terms such
as Seattle or Milan, to a mapping database.”1 While no
other technical details have been published, the feature
seems to provide similar capabilities to our system with
regard to matching place names, but not place categories. In
June 2013, Google enabled a new auto-labeling feature that
leverages deep learning to classify users’ photos using 2, 000
pre-trained visual classifiers (again, few technical details are
provided).2 However, none of these systems support searches
for named events (e.g., Burning Man), on-the-fly training of
arbitrary visual classifiers (e.g., green dress), or matching
object instances (e.g., The Last Supper). While researchers
have explored the use of manual tags, we focus here on
purely automated approaches.

In the research community, there is a large body of
work on content-based image retrieval (CBIR). See Datta
et al. [2] for a survey of this field. While much of this
literature involves novel browsing interfaces or visual search
techniques (e.g., query-by-example, similar images), we
focus specifically on related work aimed at text-based search
in particular, which requires indexing based on semantic

1quoted from http://support.apple.com/kb/PH2381
2http://goo.gl/xtV5mc
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Date: March 17, 2008

User Image

Holiday:
Saint Patrick's day

Save holiday tags Query: "Saint Patrick's Day"Find holidays on                    around date

(a) Indexing holidays using Wikipedia

GPS: 40°45' 48.7" N
     73°58' 22.2" W

User Image Find places on                  around GPS

Place: FAO Schwarz
City: New York City
State: New York
Country: USA
Category: store/shop
Category: toy shop

Save place & category tags Query: "FAO Schwarz" or "Toy shop"

(b) Indexing place names and categories using Wikimapia

GPS: 42°21' 57.9" N
     71°03' 42.9" W

User Image Issue place and date query on 
         "TD Garden" "May 13, 2010" 

Place: TD Garden
Category: stadium
Category: sport venue

Tokenize results, remove query terms,
& aggregate n-grams to get event tags

Query: "boston celtics"
or "cleveland cavaliers"

Date: May 13, 2010

(c) Indexing events using Google

Query: "whale"

+

-

Train visual classifiers for many categories using

"wedding""whale"

+

-

Query: "wedding"

...

(d) Indexing visual categories using classifiers trained on ImageNet

+

-

Classify user images
& return top matches

Issue query "green dress" on
and train a visual classifier on-the-fly

(e) On-the-fly visual classification using Google Images

Match SIFT to
User Images

Issue user query "liegende painting" on

(f) On-the-fly visual SIFT matching using Google Images

Figure 2: Our system associates images with labels by matching different types of image data to various online sources,
either in an initial indexing step (a-d), or on-the-fly when the user issues a query (e-f). (a) We match the datestamps stored in
photos to a list of holidays from Wikipedia, allowing for queries like “Saint Patrick’s Day”. (b) We lookup GPS coordinates
from photo metadata on Wikimapia to get place names and categories, allowing for searches like “FAO Schwarz” or “toy
shop”. (c) We issue searches on Google for pairs of {date, place name} to find what event took place there. We parse the
results and accumulate n-grams to get event tags, like “boston celtics”. (d) We pretrain thousands of binary visual classifiers
using categories from ImageNet, such as “wedding” or “whale”. (e) For things not covered in ImageNet, we issue queries
on Google Images and train a binary visual classifier on-the-fly, such as “green dress”. (f) For finding object instances,
we can also match SIFT descriptors on-the-fly from Google Image search results, such as for a photo of the “Liegende”
painting. Despite several sources of noise in the data and matching processes, we are able to return accurate results.
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content, and discuss the most relevant techniques. Naaman
[3] first proposed using a database of named geographic
locations to automatically label geo-tagged photos, although
their capabilities were limited to cities, states, and parks, and
they did not support search. More recent work has looked at
combining personal tags with community tags, using GPS-
tagged photos on flickr to find nearby tags [4], [5]. Many
authors have used date and time information to organize
photo collections and group them into events, e.g., [6]. Image
content has also been used to improve event clustering [7].
There is also work specific to finding faces in photos [8]. For
assigning labels to images based on visual content, existing
work assumes a labeled dataset is accessible beforehand to
learn image annotation models using sophisticated optimiza-
tion methods [9], [10]. In contrast, we use standard off-
the-shelf vision algorithms applied to results from Google
Images, allowing for more generality.

We are also inspired by, and strongly leverage, the re-
cent progress in the computer vision community on object
recognition. Modern techniques, mostly based on low-level
features and discriminative classifiers [11], [12], [13], [14],
perform increasingly well on computer vision bechmarks
such as the Pascal Challenge [15] and ImageNet [16].
They have not been evaluated, however, in the context of
unconstrained image search, where the user can type in
any query term, although some have tried learning object
classifiers for relatively “clean” images using Google Image
search – but at far slower speeds [17]. Others have looked
at using text from the web to learn better classifiers [18].
We present the first system that uses visual classifiers for
unconstrained personal photo search, and show it to be
remarkably effective, especially when combined with time
and place cues.

Our technique of training classifiers on-the-fly adapts the
recent work of Parkhi et al. [1] to the domain of personal
photo collections. They also train classifiers based on Google
Image Search results, but focus specifically on video footage,
and finding celebrity faces. Others have also started exploit-
ing Google Images for training classifiers directly, e.g. [19].

III. DATA SOURCES

Our personal photo search system takes text queries as
input and returns a ranked list of matching images; this
requires associating text labels with images. In most existing
systems, users must assign these labels directly to the photos,
a manual and time-consuming process. To avoid this tedium,
we find existing sources of text labels and associate these
to the right photos. One of the keys to enabling the wide
variety of queries we support is that we make much more
extensive use of not just the image pixels, but also the image
timestamps and GPS coordinates. To make these raw sensor
values useful, we connect them to labels through the use of
existing online data sources. Figure 2 visually summarizes
all of our data sources and indexing methods.

A. Holidays

Time is one of the most important qualities about a photo.
When you think of a particular event or memory from your
life, you probably remember when it happened: yesterday,
last year, during Halloween, etc. To match such holidays, we
use the datestamp stored in each of the user’s photos and see
if they occur on or around any of the dates (within ±2 days)
listed in the article, “Public holidays in the United States.”
This allows for searches like Christmas (Fig. 1a) and Saint
Patrick’s Day (Fig. 2a).

B. Places

Another primary way of describing photos is by where
they happened. As with time, we have to work our way up
from the raw sensor data recorded in the image metadata, in
this case the GPS coordinates of a photo (e.g., 51◦ 30′ 2.2′′

N, 0◦ 7′ 28.6′′ W), to a description like, “the Big Ben clock
tower in the Westminster area of London, England.” We
use Wikimapia3, an online crowd-sourced database which
focuses on geographic information and currently contains
data on 20 million places (and growing rapidly). Each place
includes the place name, a text description, and a list of
categories describing its type and activities performed there
(such as park, hotel, or paintball ). We store the list of places
around each photo’s GPS location. This allows the user
to search using queries such as FAO Schwarz or toy shop
(Fig. 2b), Grand Canyon (Fig. 1b), skiing (Fig. 1c), etc.

C. Events

Putting time and place together yields events – the natural
way by which people tend to group many of their photos.
Several of our most cherished memories come from shared
public events like concerts, sports, cultural activities, and
business conferences. There is a record of most such public
events on the Internet, whether in the form of large domain-
specific databases such as last.fm for music and espn.com for
sports, global aggregators of events like ticketmaster.com, or
individual websites for specific events, such as london2012.
com for the 2012 Olympics (held in London). Fortunately,
people don’t have to know what the relevant sites are for a
particular event, because all of these websites – and billions
more – are indexed by search engines such as Google. While
searching for the name of an event will obviously bring up
relevant websites (with information such as the date and
venue of the event), the reverse is also true: searching for
the date and venue on Google returns results containing the
name of the event and often other relevant information. This
additional information includes, for example, the names of
performing artists at concerts, operas, and dances; and the
names of participating teams at sporting events. Figure 2c
shows an example for a basketball game: a search for “TD
Garden” “May 13, 2010” (the name of the venue and the date

3http://wikimapia.org
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(a)

(b)

(c)

Figure 3: Various search results using our system.

of the event) brings up a page of results, many of which
contain the terms Boston Celtics and Cleveland Cavaliers,
the two teams playing that night. Note that we are talking
about text on the Google result page itself – we do not need
to follow any of the result links to their respective webpages.

We exploit this to automatically label events in a user’s
photos. First, from the timestamp stored in each image, we
know the date the photo was taken on. Second, as described
in the previous section, we have already mapped photos’
GPS locations to place names via Wikimapia. Third, we also
know the categories of each place returned from Wikimapia.
We thus select those places that are likely to be venues for
events – stadiums, theatres, parks, etc.– and find all photos
taken at those places. Our system then submits queries on
Google in the form “<venue name>” “<date>”. We parse
the text on the Google result page and accumulate the most
commonly occurring n-grams across all results. We weight
each instance by the length of the n-gram and the rank of
the result it was found in. This gives us a ranked and scored
list of candidate terms for each event, as shown in Fig. 2c
(2nd from right). We associate the top 10 terms from this
list to the image. Examples of events we can index in this
way include sports, festivals such as Burning Man (Fig. 3a),
concerts, parades, and many more.

D. Visual Categories and Object Instances

Many other photos you’d like to be able to find – from
your sister’s wedding, to portraits of your daughter, to the
exotic flowers you saw in Brazil – correspond to visually
distinctive categories. For example, wedding photos tend
to have formal dresses, veils, flowers, and churches. Many

of these characteristics are amenable to classification by
modern computer vision techniques. We follow the standard
supervised learning pipeline: features extracted from labeled
images are used as positive and negative examples to train
binary classifiers. This approach requires a source of labeled
examples: images of the category we wish to learn as
positive training data, and images of other categories as
negative data.

Our first data source is ImageNet [16], which currently
has 14 million images for 21, 841 different categories, the
latter of which are organized into a hierarchy. Some of
these categories are quite useful for our task, such as
wedding or whale (Fig. 2d). Hence, we pre-trained linear
SVM classifiers for nearly a fourth of ImageNet – 4, 766
categories (synsets) – using images of the synset as positive
examples and images of other synsets (excluding ancestors
or descendents) as negatives. Our features are histograms
of color, gradients, and gist [20]. However, ImageNet is
still missing many useful categories, from random omissions
(like fireworks, or graduation ceremony), to instances of
particular classes (e.g., 2007 Toyota Camry or iPhone), and
it also does not cover adjectives or verbs.

Fortunately, there exists a much larger set of images
covering all the types of queries users might want to do
today or in the future: the Internet, as indexed by Google
Image Search. By taking advantage of the rich structure of
HTML webpages, links between pages, and text surrounding
images, Google Image Search can return relevant image
results for an extraordinary range of queries. We can piggy-
back on the work they have done by using their results as
a source of labeled data, albeit a noisy one. When a user
performs a search on our system, we issue the same query
on Google Image Search, immediately. We then download
their top results, and run the entire classifier training and
evaluation pipeline, as described above (with some small
tweaks for speed); the entire process takes under 10 seconds
on a single machine in our prototype system. Note that our
system uses the entire images for training; this means we can
classify scenes and objects which cover most of the image
but can’t detect or localize small objects. Through Google,
we can cover an extremely wide range of queries, including
very specific visual categories like green dress (Fig. 2e),
combinations of places and categories, like wedding in Israel
(Fig. 3c); photos exhibiting attributes like portraits; etc.

Finally, if you’re searching for a specific instance of
an object (e.g., Mona Lisa painting), we don’t even need
to train a classifier; instead, we simply match distinctive
local features from a labeled image (using Google Image
Search results) to those in your images and return the images
which have the most consistent such feature matches [12].
Examples of queries we can support using this technique
(again, in only a few seconds) include Figs. 1f and 2f.
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Figure 4: We represent all information in our system as nodes in a layered graph. Each colored box contains many nodes
– individual bits of information – of a particular type (denoted by the name in the box). Lines between boxes indicate
weighted connections between nodes of the two layers. Images are connected to their sensor values – timestamp and GPS,
and low-level visual features. These are mapped into semantic concepts (i.e., the things that people care about) through
the use of Internet data sources, shown in parentheses. Finally, semantic nodes are exposed to search queries through the
language layer, which contains text tags. By unifying all sources of information in this graph, we can easily incorporate
new types of data to support novel types of queries, and perform fast and accurate search using any combination of terms.

IV. LAYERED KNOWLEDGE GRAPH

The previous section described several methods for ob-
taining labels for images; how should we store all of this
data? A naive implementation might simply store a mapping
from images directly to a list of {label, weight} pairs, and
perhaps a reverse mapping to allow for fast searches. But
this approach has several drawbacks – notably, it would be
difficult to interpret search results due to lack of context for
why a particular result was returned for a given query.

Instead, we store all data – not just labels and weights –
in a hierarchical knowledge graph (see Fig. 4). The graph
consists of nodes, each denoting a single conceptual piece
of knowledge, connected via weighted edges, denoting the
strength of the relation between two concepts. There are
different types of nodes corresponding to different types of
data, and each group of nodes of one type are assigned
to a specific layer in the hierarchy. For example, a place
node stores all the information about a given place from
Wikimapia, which is connected above to language nodes
denoting the place title, category, city, etc., and below to
GPS coordinate nodes that are close to the given place.

In Fig. 4, note that there is an additional layer below the
image layer: groups. These groups are automatically created
from images based on timestamps. By looking at the time
intervals between successive photos, we build up a hierarchy
of image groups (e.g., images taken within minutes of each
other, or within days). Search results show groups instead
than photos, so that rather than wading through a hundred
nearly-identical shots of the party you attended, you see a
small sampling of those images. Groups also function as
a form of smoothing. As recognition is still an extremely
challenging problem, classifiers might correctly label only a
fraction of, say, wedding photos. By returning groups instead

of images, users will be able to see photos of not only the
highest classified (i.e., most prototypical) wedding photos –
like the bride and groom at the altar – but also other, less
wedding-like photos taken around the same time.

A. Search

Search on the graph consists of assigning scores to each
node in the graph, starting at the top (layer 1: language)
and propagating them down to the bottom (layer 5: groups),
and then returning the top-scoring groups in sorted order.
Figure 5 shows an example for the query “wedding in
Israel” on a simplified graph containing two images of
weddings, the first in New Jersey, and the latter at the Hotel
Tal in Israel. The query is tokenized into “wedding” and
“Israel” and then matched via string similarity to all nodes
in the language layer, giving scores between 0 and 1 (most
will be 0). Propagation to the next layer is accomplished
by multiplying scores with the edge weights, summing up
scores at each target node. Formally: we represent the edge
weights between layers i and j as matrix Ei

j . Given scores si
at layer i, we compute the scores at layer j as sj = Ei

jsi. In
practice, Ei

j tends to be sparse, as most nodes only connect
to a few other nodes. This makes propagation fast.

We repeat this process for each layer, until every node
in the graph has an assigned score. We call a complete
assignment of scores a flow, in this case, the search flow,
Fsearch. Scores for each node in this flow are shown in the
3rd column of Fig. 5b. Notice that the final scores for the
two images are 0.8 and 1.3, respectively, which means that
we would display both images in the results, but with I2
first, as it has the higher score (exactly what we want).

Simply showing the resulting image groups without any
context would be confusing to a user, especially if the results
are not obviously correct – she might wonder, “why did I get
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Hotel TalSheraton Hotel

"wedding"

GPS 2

Image 1

Visual Features 2

Wedding Classifier Indoors Classifier

Visual Features 1

Image 2

GPS 1

"Israel""New Jersey" "indoors"

1.01.0 1.0 1.0

0.60.9

1.0 1.0

0.70.8

1.01.0

0.8

(a) Simplified graph with precomputed edge weights

Layer Node Fsearch(↓) FI2
(↑) FdescI2

1 “New Jersey” 0.0 0.0 0.0
1 “wedding” 1.0 0.7 10.7
1 “indoors” 0.0 0.9 0.9
1 “Israel” 1.0 0.6 10.6
2 Sheraton Hotel 0.0 0.0 0.0
2 Wedding Classifier 1.0 0.7 10.7
2 Indoors Classifier 0.0 0.9 0.9
2 Hotel Tal 1.0 0.6 10.6
3 GPS 1 0.0 0.0 0.0
3 Visual Features 1 0.8 0.0 8.0
3 Visual Features 2 0.7 1.0 8.0
3 GPS 2 0.6 1.0 7.0
4 Image 1 0.8 0.0 8.0
4 Image 2 1.3 1.0 14.0

(b) Computed flows for query wedding in Israel

Figure 5: Given the graph in (a), the flows generated by the query wedding in Israel are shown in (b). See text for details.

this result?” Therefore, we label each returned image group
with a short description, akin to the snippets shown in search
engines that highlight elements from the results matching the
user’s query. Concretely, we create these descriptions using
the following template:

what at place, city, country on date, year
The goal is to fill in each bolded component with a label
from our graph. Since our language nodes are already
separated into different types (see Fig. 4), this reduces down
to simply choosing one node within each type of language
node. We want to pick labels that are relevant to the images
in the group, i.e., language nodes connected to the image
nodes via non-zero edges, biasing towards the terms used
in the query, when applicable, so that it is clear why the
images matched. Notice that we already know which labels
these might be – they are the ones with non-zero scores
in the search flow. Formally, we can write this down as
a description flow for Image I: FdescI = FI + λFsearch,
where FI is the image flow, described next, and λ is a
weight determining how much to favor the query terms in
the generated description. FI is the flow created by applying
a score of 1 to the image node and propagating scores up
through the graph until we get to the language nodes. This
flow describes how relevant each label is for the given image.
Generating the description is then simply a matter of picking
the highest scoring node in the description flow for each
component in the template. The final generated description
for Image 2 in Fig. 5 is “wedding at Hotel Tal, Tel Aviv,
Israel on January 3, 2011.” (Note that not all nodes needed
to generate this description are shown in the figure.)

V. QUANTITATIVE EVALUATION

Places: As described in Sec. III-B, we use the on-
line crowd-sourced website Wikimapia for locating places
around the GPS coordinates of photographs. To measure
what kind of coverage it offers, we gathered geotagged
images, manually labeled them, and then compared these
ground truth annotations with search results from our sys-
tem. We used a subset of place categories from the Scene
UNderstanding (SUN) database [21] as search queries to get

geotagged images from flickr. We labeled 1183 images of 32
categories and found 73.0% of all places were successfully
found by our system when searching by name and 28.9%
when searching by category. This task is quite challenging,
as the list of places from flickr is extremely diverse: it spans
dozens of countries and includes several obscure places. As
Wikimapia continues to expand, we expect that recall rates
will also increase.

Events: One of our major novel contributions is a general
method for labeling photos of specific public events using
a combination of place information from Wikimapia and
simple NLP applied to the results of queries on Google (see
Sec. III-C). We evaluate this capability using a methodology
similar to that for our places evaluation described in the
previous section. We search for different event categories on
flickr and manually label the name of the event and/or key
search terms shown in each image (e.g., New York Knicks
and Boston Celtics for a basketball game). We then search
for these tags using our system. We successfully matched
17.3% of all tags, and 30.2% of all labeled images had at
least one tag match. These measures distinguish between the
situation where a venue is not found (in which case no event
tags would be found), and that when the Google results are
insufficient to get all of the right tags. The biggest problem
was generally that the venue of the event was often not
present on Wikimapia. Still, given the large variety of event
types we tested, our performance on matching event tags is
quite reasonable, especially given its generality.

Visual Categories: For evaluating visual classifiers, we
labeled 5 personal photo collections and then queried our
search engine with these labels, measuring performance
using recall @ k – the fraction of the top k returned result
groups that were correct (had a ground-truth annotation for
that query). We feel that this is a fair metric for evaluating a
system like ours, as a user is likely to be reasonably satisfied
if she sees a relevant result on the first “page” of results.
42.4% of queries returned at least one relevant result in the
top 5, and 49.6% in the top 10. This is quite remarkable
because visual recognition is extremely challenging even in
the standard “closed-world” regime (in which every image
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belongs to exactly one of a fixed set of classes), whereas our
system is “open-world,” allowing a nearly infinite number
of possibilities. Also, the best performing published methods
are highly tuned and slow to train. In contrast, we download
images, extract features, train a classifier, and run it on a
user’s collection in under 10 seconds – a very stringent
operating scenario – and so we have favored speed over
accuracy in our implementation.

VI. CONCLUSION

In this paper, we have described a system for searching
personal photo collections in a flexible and intuitive way.
By taking advantage of all types of sensor data associated
with an image – timestamp, GPS coordinates, and visual
features – we gather and generate a large set of semantic
information that describes the image in the ways that people
care about. This includes the time of the photo, specified as
dates, holidays, or times of day; its place, in terms of names,
categories, and common activities; events that this photo is a
part of, such as concerts; visual categories exhibited in this
photo, such as weddings, fireworks, or whales; and object
instances, such as the Mona Lisa. We automatically label
images by leveraging large online data sources, including
Wikipedia for mapping dates to holidays, Wikimapia for
mapping GPS locations to place information, Google for
finding events, and ImageNet and Google Images for training
visual classifiers and doing instance-level matching.

We believe that using the Internet to label personal photos
is transformative: the user now gets to decide how to search,
and doesn’t need to spend time tediously labeling photos.
Additionally, by allowing combinations of multiple query
terms, we make it easy to find photos using whatever aspects
of the photo she remembers. Handling people and faces is
an obvious future work. Finally, we plan on deploying this
system to real users soon, allowing us to better understand
its effectiveness in practice.
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