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Abstract

In this paper we explore the possibility of examining an

iris image and identifying the sensor that was used to ac-

quire it. This is accomplished based on a classical pixel

non-uniformity (PNU) noise analysis of the iris sensor. For

each iris sensor, a noise reference pattern is generated

and subsequently correlated with noise residuals extracted

from iris images. We conduct experiments using data from

seven iris databases, viz., West Virginia University (WVU)

non-ideal, WVU off-angle, Iris Challenge Evaluation (ICE)

1.0, CASIAv2-Device1, CASIAv2-Device2, CASIAv3 inter-

val, and CASIAv3 lamp. Results indicate that iris sensor

identification using PNU noise is very encouraging, with

rank-1 identification rates ranging from 86%-99% for unit

level testing (distinguishing sensors from the same vendor)

and 81%-96% for the combination of brand (distinguish-

ing sensors from different vendors) and unit level testing.

Our analysis also suggests that in many cases, sensor iden-

tification can be performed even with a limited number of

training images. We also observe that JPEG compression

degrades identification performance, specifically at the sen-

sor unit level.

1. Introduction

Biometric systems, which utilize the physical or behav-

ioral characteristics of an individual for person recognition,

have proliferated over the past decade. Advances in data ac-

quisition technology and the need to authenticate or detect

individuals in diverse applications, ranging from laptop ac-

cess control to national security, have spurred the growth

of the technology [11]. Notwithstanding the many ben-

efits of this technology, maintaining the security and in-

tegrity of biometric data poses significant challenges. For

instance, the efficacy of a biometric system can be compro-

mised through malicious attacks such as fabrication or alter-

ation of biometric data, which could occur at many points

within the system [17]. Similarly, raw biometric images,

such as faces, fingerprints or irises, could be created or al-

tered and then re-introduced into the system. This problem

is exacerbated by the fact that there is often no obvious cue,

visual or otherwise, that an image has been fabricated or

altered. In order to detect and mitigate vulnerabilities re-

lated to data fabrication or alteration, digital hardware fin-

gerprinting schemes may be applicable.

Digital hardware fingerprinting is the process of identi-

fying the source hardware used to capture an image1 regard-

less of the image content. In the field of digital forensics,

digital hardware fingerprinting provides the ability to iden-

tify or validate the source hardware that captured an image -

a process often referred to as source identification. This can

be done, for example, by gleaning distinguishing charac-

teristics in images due to sensor imperfections [14, 6]. All

sensors are subject to small manufacturing imperfections,

resulting from inconsistencies during the production pro-

cess. Such sensor imperfections manifest as noise in the en-

suing image - albeit often undetectable to human observers

- and can then be detected and characterized by computer

vision or image schemes for the purpose of source identifi-

cation.

Prior work has focused mainly on measuring imperfec-

tions from optical technology such as digital cameras to

capture images. Geradts et al. [10] proposed a technique

based on sensor imperfections which exploited the presence

of defective or dead pixels. Mehdi et al. [15] proposes a su-

pervised learning approach that utilizes 34 image features

derived from the spatial and wavelet domains including av-

erage pixel values, RGB pair correlations, and neighbor dis-

tribution center of mass. Bayram et al. [4] proposed a tech-

nique that measures interpolation artifacts introduced by the

color filter array (CFA). Lukas et al. [14] measured pixel

non-uniformity (PNU) noise, which is defined as “noise"

resulting from pixels that have different sensitivity to light,

often caused by imperfections in the manufacturing process.

Bartlow et al. [3, 2] conducted experiments to show that

such PNU noise can be extracted from fingerprint sensors

and can be used to differentiate between different sensor

technologies, brands, models, and/or units.

In this paper, our focus is on “fingerprinting" iris bio-

metric sensors. Unlike traditional digital cameras which

1Here, we restrict our discussion primarily to visual data.



capture imagery in the visible spectrum of light, the iris

sensors studied in this paper capture imagery in the near

infrared spectrum of light. Given this difference it is un-

certain whether the aforementioned hardware fingerprinting

techniques are viable in the infrared spectrum. Another dif-

ference is related to the number of iris sensors that are cur-

rently available, which pales in comparison to sensors uti-

lized in traditional image forensics such as digital cameras.

Nevertheless, we study the feasibility of performing source

identification utilizing PNU noise across different iris bio-

metric sensors. The contribution of the work is three-fold:

(1) To the best of our knowledge, it is one of the first work

to demonstrate the capability to automatically identify the

hardware source used to collect biometric iris images. To do

so, we adopt the technique presented in [14]; (2) We study

the impact of varying the number of images used to derive

reference templates for sensors; (3) We establish the impact

of JPEG compression on the PNU identification technique.

The remainder of the paper is organized as follows: Sec-

tion 2 outlines the design of the experiment including a de-

scription of the datasets and testing methodology. Section

3 defines the algorithm applied for digital hardware finger-

printing. Section 4 presents the results of the identification

experiment and analyzes the robustness of the approach to

JPEG compression. Section 5 provides a discussion includ-

ing considerations of interest, while Section 6 summarizes

the contribution of the work.

2. Experimental Design

In this work we assembled a dataset composed

of image subsets from seven publicly available iris

databases. Specifically, we utilized subsets of im-

agery from ICE1.0, WVU Non-Ideal, WVU Off-Angle,

CASIAv2-Device1, CASIAv2-Device2, CASIAv3-Lamp,

and CASIAv3-Interval. Sample images and noise residu-

als (explained in the next section) can be found in Table 2.

The following provides a description of each database.

1. ICE1.0 - This dataset was collected and utilized for

the Iris Challenge Evaluation conducted by NIST [16].

Each image was collected with an LG IrisAccess EOU

2200 having a native resolution of 480x640. A total

of 2953 images were collected from 244 classes. It is

also important to note that this data was intentionally

collected with a broad range of quality in mind.

2. WVU Non-Ideal - Collected with a hand held OKI

Irispass-h device at a native resolution of 480x640 [7].

Like ICE1.0, this dataset was intentionally collected

with a range of quality variations (defocus, motion,

non-uniform illumination, and occlusion). We utilized

a subset of this database comprising 2424 images from

354 classes.

3. WVU Off-Angle - An EverFocus CCD camera with a

native resolution of 480x640 was utilized for collec-

tion [7]. This data is composed of 146 iris classes with

each class represented by 4 images captured at a yaw

angle of 0◦ (2 samples), 15◦, and 30◦ degrees.

4. CASIAv2-Device1 - This subset is composed of 1200
images, collected from 60 classes. Images were cap-

tured with a hand held OKI Irispass-h device which

has a native resolution of 480x640 [5].

5. CASIAv2-Device2 - This subset is composed of 1200
images, collected from 60 classes. Images were cap-

tured with a proprietary device developed by CASIA

having a native resolution of 480x640 [5].

6. CASIAv3-Lamp - Collected at the with a hand held

OKI Irispass-h device [5] at a native resolution of

480x640. This data is composed of 16212 images, col-

lected from 819 classes.

7. CASIAv3-Interval - Collected with a proprietary de-

vice developed by CASIA which has a native resolu-

tion of 280x320. Composed of 2639 images, collected

from 395 classes [5].

From each iris database, we selected 200 images for our

experiments. Selection was done such that a single image

was chosen from each class, up to a maximum of 200 im-

ages. When the total number of classes was less than 200
for the dataset, multiple images were sequentially selected

from each class. For instance, three images per class were

selected from the WVU Off-angle dataset until the maxi-

mum of 200 was reached. The success of the source iden-

tification technique was tested while varying the number of

images used to generate reference patterns. A breakdown

of the train and test scenarios is provided in Table 1. It is

Train/Test Scenarios

Train 4 8 16 32 64

Test 196 192 184 168 136

Table 1. Train and test scenarios for all sensors.

also important to note that we employed a 10-fold cross-

validation framework for all seven sensors/datasets when

testing the technique. Therefore, the total number of tests

for each sensor ranges from 1960 (196 * 10) to 1360 (136 *

10).

3. Technical Approach

Recall that brand level sensor identification attempts

to differentiate sensors manufactured by different vendors

while unit level identification attempts to differentiate be-

tween sensors of the same model manufactured by the same



Dataset Abbreviation Sensor Model Manufacturer Image Noise Width Height Format

ICE1.0 ICE-LG IrisAccess EOU 2200 LG 640 480 TIFF

WVU Non-Ideal WVU-OKI Irispass-h OKI 640 480 BMP

WVU Off-Angle WVU-EverFocus Monochrome CCD EverFocus 640 480 BMP

CASIAv2-Device1 CASIAv2-OKI Irispass-h OKI 640 480 BMP

CASIAv2-Device2 CASIAv2p n/a CASIA 640 480 BMP

CASIAv3-Lamp CASIAv3-OKI Irispass-h OKI 640 480 JPEG

CASIAv3-Interval CASIAv3p n/a CASIA 320 280 JPEG

Table 2. Illustration of sample images and corresponding noise residuals from each database.

vendor. As a means to identify iris sensors at the brand

level, we first adopt the approach proposed by Lukas et

al. in [14]. This approach is based on estimating pixel

non-uniformity (PNU), a portion of the photo-response non-

uniformity (PRNU) inherent to every image captured by the

sensors. The remainder of this section is divided into two

parts: a description of the general framework for identify-

ing hardware sources through PNU noise and a description

of the wavelet-based denoising algorithm [12].

3.1. Sensor Identification

The process of sensor identification consists of two inte-

gral steps: (1) Generating a noise reference pattern for each

sensor; (2) Correlating noise residuals generated from test

images to the aforementioned reference pattern(s).

1. Generate reference pattern. For each iris sensor, a ref-

erence pattern is calculated by taking an average of the

noise residual estimates across multiple training im-

ages. This is mathematically described as follows:

ℵk = p(k) − F (p(k)), (1)

<i =

N∑

k=1

ℵk

N
. (2)

Here, N represents the number of training images used

to generate the reference pattern, <i (see Figure 1 for

examples). Noise residual, ℵk, is generated from train-

ing image p(k) while F represents a denoising filter. It

should be noted that while F can represent any denois-

ing filter, Lukas et al. found that a wavelet-based ap-

proach yielded the best results which is described later

in this section.

2. Correlate test residuals to reference pattern(s). For

each input test image, the noise residual, ℵk, is ex-

(a) (b)

Figure 1. Illustration of reference templates generated from 5
training samples: (a) ICE-LG and (b) WVU-OKI. Visually, struc-

tural differences can be perceived between both templates; tem-

plate differences are important when classifying noise residuals.

In general, ideal reference templates for classification will yield

low intra-class and high inter-class variation.

tracted and subsequently correlated with each refer-

ence pattern <i. Pearson’s product-moment correla-

tion coefficient is adopted for this purpose:

ρi(ℵ(k),<i) =
(ℵ(k) − ¯ℵ(k))(<i − <̄i)

‖ℵ(k) − ¯ℵ(k)‖‖<i − <̄i‖
. (3)

Note that ¯ℵ(k) and <̄i represent the sample means of

the noise residual and reference pattern, respectively.

3.2. Wavelet Based Denoising Algorithm

The wavelet based denoising algorithm, F , can be summa-

rized in four steps:

1. Wavelet Decomposition. The original noisy image

is decomposed into four levels utilizing wavelets,

specifically, 8-tap Daubechies Quadratic Mirror Filters

(QMF). The vertical, horizontal, and diagonal coeffi-

cients are denoted as v(i, j), h(i, j), and d(i, j) respec-

tively. Here (i, j) represents the coefficients for each

pixel in each of the three sub-bands.



2. Local MAP variance estimation. In each sub-band,
estimate the local variance of the noise-free image
for each wavelet coefficient using MAP estimation
for four sizes of a W × W neighborhood N , where
W ∈ {3, 5, 7, 9}:

σ̂
2
W (i, j) = max



0,
1

W 2

∑

(i,j)∈N

h
2(i, j)− σ

2
0



. (4)

Calculate the minimum of the four local variances:

σ̂
2(i, j) = min

[

σ
2
3(i, j), σ

2
5(i, j), σ

2
7(i, j), σ

2
9(i, j)

]

. (5)

3. Wiener Filtering. The denoised wavelet coefficients

are subsequently obtained after Wiener filtering.

hden(i, j) = h(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

(6)

4. Repeat. Steps 1-3 are repeated for each decomposi-

tion level and color channel. In [14], the authors used

σ2
0 = 5 in their experiments as do we in this work. Due

to the imaging characteristics of near infrared iris sen-

sors (typically monochrome CCD), the resulting im-

agery is single channel or grayscale; therefore, it is

not necessary to perform Step 4 across multiple color

channels.

4. Experimental Results

In this section, we present results of sensor identification

at the unit level and the brand level. In either case, we wish

to determine the sensor that was used to capture the iris im-

age. Therefore, a test noise residual is compared against the

reference patterns of each sensor in the dataset under con-

sideration. Results are illustrated in the form of match/non-

match histograms, confusion matrices for specific train and

test scenarios, and Cumulative Match Characteristic (CMC)

curves.

4.1. Unit Level Sensor Identification

The first set of experiments was performed with WVU-

OKI, CASIAv2-OKI, and CASIAv3-OKI in the context of

unit level identification, since all images were captured with

an OKI sensor of the same brand and model. Figure 2 illus-

trates the difference in correlation between match and non-

match comparisons of test noise residuals for the OKI sen-

sor from CASIAv3. Clearly, there is some overlap between

the distributions. Specifically, 15 test residuals were mis-

classified as the CASIAv2-OKI device. Perfect separation

was achieved when classifying residuals from the other two

OKI devices, which is documented in Table 3. In Figure 3

we plot a CMC curve, which indicates overall accuracy, for

all three OKI devices as a function of train/test sizes. When
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Figure 2. Example match and non-match distributions pertaining

to 32 training images for CASIAv3-OKI.

training on only 4 images per sensor, the rank one identi-

fication rate is around 86%. This is very encouraging con-

sidering the small amount of data utilized for training. This

rate increases up to 99.75% when the train size increases to

64 images per sensor. Here the number of test residuals mis-
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Figure 3. Unit Level Sensor identification as a function of training

set size.

classified for the CASIAv3-OKI device reduces to seven.

4.2. Unit and Brand Level Sensor Identification

The following set of experiments explore performance

when attempting sensor identification as a combination of

the unit and brand levels for all sensors in this study.

The ICE-LG, WVU-OKI, CASIAv2-OKI, and CASIAv2p
sensors provided the best performance as perfect separa-

tion was achieved (see Table 3) when utilizing 32 train-

ing images per reference pattern. An example is pro-

vided in Figure 4 which illustrates the separation of match

and non-match distributions for the ICE-LG sensor. On



X
X

X
X
X
X

X
X
X
X

Actual

Classified
ICE-LG WVU-OKI WVU-EverFocus CASIAv3-OKI CASIAv3p CASIAv2-OKI CASIAv2p

ICE-LG 1680 0 0 0 0 0 0

WVU-OKI 0 1680 0 0 0 0 0

WVU-EverFocus 9 0 1661 0 0 10 0

CASIAv3-OKI 0 0 0 1665 0 15 0

CASIAv3p 103 155 47 210 1009 82 74

CASIAv2-OKI 0 0 0 0 0 1680 0

CASIAv2p 0 0 0 0 0 0 1680

Table 3. Confusion matrix when training on 32 images per sensor.

X
X

X
X
X
X

X
X
X
X

Actual

Classified
ICE-LG WVU-OKI WVU-EverFocus CASIAv3-OKI CASIAv3p CASIAv2-OKI CASIAv2p

ICE-LG 1680 0 0 0 0 0 0

WVU-OKI 0 1387 0 293 0 0 0

WVU-EverFocus 15 9 1605 23 19 0 9

CASIAv3-OKI 0 0 0 1664 0 16 0

CASIAv3p 102 147 44 234 985 87 81

CASIAv2-OKI 0 0 0 1090 0 590 0

CASIAv2p 0 0 0 0 0 0 1680

Table 4. Confusion matrix when training on 32 images per sensor with JPEG compression (Quality=75).
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Figure 4. ICE1.0 example match and non-match distributions with

32 training images per sensor.

the other hand, perfect separation was not attainable for

the WVU-EverFocus, CASIAv3-OKI, and CASIAv3p test

residuals. Specifically, few errors in classification were

observed for the WVU-EverFocus and CASIAv3-OKI test

residuals while CASIAv3p proved the most challenging (see

Table 3). Here, misclassification of test residuals is spread

almost uniformly across the remaining six sensors. This is

also observed when utilizing the largest number of training

images to generate a reference pattern. There are a num-

ber of plausible explanations for this, not the least of which

is JPEG compression (the images were released in JPEG

format; further discussion on this issue may be found in

section 5). Overall accuracy in terms of CMC performance

across all sensors and train/test scenarios is shown in Fig-

ure 5. Here, the rank one identification accuracy approaches

4 5 R 6 3 7 S8 18 58 68 78 8T 1T 5T 6T 7T 84 1 1
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Figure 5. Cumulative match characteristic curve as a function of

train/test scenarios when considering all seven sensors.

81% when generating a reference pattern using four train-

ing image samples. This number increases to 96% when

considering 64 training image samples.

4.3. Impact of JPEG Compression

The last set of experiments analyzes the impact JPEG

compression has on the proposed sensor identification tech-

nique with respect to CMC performance. More specifically,



this experiment analyzes performance when reference pat-

terns are generated from iris images prior to compression

while test residuals are generated from images compressed

at JPEG quality levels of 75, 50, and 35. The only exception

is for CASIAv3-OKI and CASIAv3p as the original image

data was released in JPEG format. It is also important to

note that the ISO/IEC 19794-6 Iris Image Data Standard

[1] recommends a JPEG compression ratio of no more than

6 : 1. This ratio is approximately equal to JPEG quality

levels between 90 − 95, but is outside the ranges tested in

a � � b c � � � " �� �c �� �# �� � �
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Figure 6. Rank-1 and Rank-2 Identification performance for all

seven sensors as a function of JPEG quality level. In this illustra-

tion reference patterns were generated from 32 training images.

this paper. However, Daugman [8] has observed that iris

recognition accuracy actually improves at JPEG quality 70.

Therefore, the aforementioned JPEG quality levels (specif-

ically 75), are reasonable in the current context.

Figure 6 illustrates the impact JPEG compression has on

rank-1 and rank-2 identification performance when consid-

ering 32 train image samples to generate reference patterns.

Most notably, accuracy degrades as the JPEG quality level

decreases. This is further noted in the confusion matrix (for

JPEG quality level 75) provided in Table 4. Interestingly,

ICE-LG and CASIAv2p test residuals remain unaffected by

JPEG compression. On the other hand, heavy degradation

was noted during classification of the OKI test residuals,

specifically, the WVU-OKI and CASIAv2-OKI residuals.

5. Discussion

When evaluating the experimental results, readers need

to be aware of the underpinnings of this study. One con-

sideration of interest relates to the number of iris sensors

tested in this study. Unit level testing was limited to three

sensors while brand and unit combination testing consisted

of seven sensors. If it were possible, increasing the number

of iris sensors in either case, in the order of 100’s or even

1000’s, may result in degraded identification performance.

However, currently, iris sensors are not as prolific as other

types of digital cameras and are much more expensive. Fur-

thermore, publicly available iris image data sets, pertaining

to a large number of iris sensors, do not exist.

Another point of concern is related to correlating resid-

uals of different sizes, as not all iris sensors share the same

native resolution. The larger residual is cropped to the

smaller for compatibility with the selected method of corre-

lation. Although not tested in this paper, normalized cross

correlation may provide a better solution to this problem as

in [9, 13]. Alternatively, resizing the image prior to noise

extraction may be possible. However, it is unclear if such

image operations may introduce new artifacts or even de-

stroy the inherent noise pattern.

As discussed earlier, the PNU noise is a consequence of

each pixel in the imaging array having a different sensitivity

to visible light. Our results seem to indicate that PNU noise

will also accumulate when the light spectrum shifts to near

infrared (e.g., iris, particularly at 750nm-850nm).

The last point of interest is related to the classifica-

tion performance of CASIAv3p residuals. While JPEG

compression may be one of the contributing factors to the

observed performance, we believe photometric properties

such as image saturation may also be one of the underlying

causes. In [14], the authors argue that PNU noise cannot

accumulate when pixels are completely saturated (pixel in-

tensity = 255) or under saturated (pixel intensity = 0). Af-

ter visual evaluation of images captured by the CASIAv3p
device, over-saturation is apparent, varying spatially from

image to image (possibly a result of the near infrared ring

of LEDs). Naturally, training on more image samples for

this specific device may help accommodate spatial variabil-

ity for over/under saturated pixels.

6. Summary

This paper investigated the feasibility of sensor identi-

fication from iris images. We established the prospect of

performing sensor identification based on estimating PNU

noise inherent in images through a wavelet based denoising

algorithm proposed in [12]. We observed that sensor identi-

fication for iris sensors can be successfully performed with

as little as 4 images per sensor. Our experiments also in-

dicate that JPEG compression had minor impact on brand

level testing while strong degradations in performance were

observed at the unit level. Future work would involve uti-

lizing iris images pertaining to a larger number of sensors.
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