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Abstract

Biometrics has come a long way over the past decade
in terms of technologies and devices that are used to verify
user identities. Three of the more well studied modalities in
this field are the face, iris and fingerprint, with the latter two
reporting very high user identification/verification rates. In
the biometric community there has been little work in study-
ing biomedical signals for user recognition purposes. In
this paper, we propose using electromyograph (EMG) sig-
nals as a person’s biometric signature. The EMG records
the motor unit action potentials (MUAP) during any phys-
ical motion. Our study is done within the context of a per-
son using a keyboard to type a password or any other fixed
phrase. Along with EMG signals, we log key press times for
the user and study the feasibility of using this data too as a
biometric feature. Keypress timings alone if used as a bio-
metric, are very easy to spoof and hence we fuse this modal-
ity with EMG signals. In order to classify these features, we
use subspace modeling as well as Bayesian classifiers. The
experiments have been performed within the context of a
user typing a fixed pass phrase at a workstation. The idea
is to monitor both biometric modalities when this action is
performed and study user verification across data capture
sessions and within capture sessions. Our approach yields
high values of verification rates, which shows the promise of
using these modalities as user specific biometric signatures.

1. Introduction

The field of biomedical signal processing has taken
great strides in the past two decades due to significant ad-
vances in biomedical measuring devices and instrumenta-
tion. Biomedical modalities such as Magnetic Resonance
Imaging (MRI) and Positron Emission Tomography (PET)
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Figure 1. Our proposed experimental setup. We gather both EMG
as well as keystroke dynamic data as the user types a fixed phrase
on a keyboard. Various features are extracted from this data as
detailed in later sections. We report user identification/verification
scores when using either modality as a biometric.

enable physicians to visualize organ structures in three di-
mensions and perform diagnoses based on these images.
Electroencephalography (EEG) signals monitor brain activ-
ity and have provided insights into human cognition and
into neuro-science in general. There has also been a lot of
work in the field of human computer interaction, using these
signals. Another signal of interest is the electrocardiogram
(ECG), which measures the electrical activity of the heart
over a period of time. These signals have been used suc-
cessfully to diagnose irregularities in the functioning of the
heart. The use of biomedical signals for user identification
however is a relatively less explored area. ECG alone has
been explored as a biometric modality [30, 37]. Besides
these, there has been little work in the use of biomedical
signals for biometric based identify verification.

This article details our initial study on the use of the elec-
tromyograph (EMG) as a biometric, along with keystroke
timing dynamics. The former refers to electric impulses
measured from motor neurons, that initiate muscle activity,
while the latter refers to timing information when striking
the keys of a keyboard. Both of these are recorded as a
user types on a keyboard. We also explore the possibility of
fusion of information from both modalities. The data cap-
tured from every user is limited to a fixed text phrase typed
on a keyboard (we operate under the assumption that the
subject has to type in a password before accessing informa-
tion from a workstation - both keystroke timings and EMG
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signals are recorded as he/she types in this password). An
outline of our experimental setup is shown in Figure 1. Typ-
ically, a muscle is composed of several motor units (MUs).
Any EMG measurement performed using surface electrodes
on the skin, as done in our work, picks up the Motor Unit
Action Potentials (MUAPs). These signals are currently
used non-medically for gesture recognition [10] [33] and
general signal classification [2]. They are also used in a
wide range of medical fields of study, including neuromus-
cular diseases, kinesiology, and motor control disorders. In
the next section, we list some of the past literature on the
use of EMG as well as keystroke dynamics for various pur-
poses, following which in section 3 we describe our data
acquisition setup as well as the database used in our study.
Section 4 describes the various features that were extracted
from the EMG measurements as well as from the keystroke
timing measurements. In section 5 we present results for
user identification/verification experiments using both these
feature sets. Finally, in section 6 we provide a summary
and a few concluding remarks including directions for fu-
ture work.

2. Previous Work

As mentioned earlier, the EMG signal is an electrical
representation of neuromuscular activation during the con-
traction/relaxation of muscles. The EMG signals can be cat-
egorized into surface EMG and intramuscle EMG [25]. The
surface myoelectric signal shows effectiveness in control-
ling powered upper limb prostheses. Most commercially
available systems utilize the surface EMG signal. More
recently, studies on using an implantable myoelectric sen-
sor which measures the internal (intramuscular) EMG have
been published. Hargrove et al. in [8] have shown compar-
isons of surface and intramuscular EMG signal based clas-
sification. EMG signal processing and classification tech-
niques have gone through tremendous improvements since
the early 1980s. Saridis and Gootee [34] published one of
the earliest works on EMG pattern analysis and classifica-
tion for a prosthetic arm. Their algorithm was able to de-
compose the composite motion to the 6 primitive motions
i.e. humeral rotation - in and out, elbow flexion and exten-
sion, and wrist pronation and supination. Other early works
on EMG-aided arm prosthesis can be found in [5, 4]. More
recently, Martelloni et al. [28] proposed that different ob-
jects can be identified using the EMG signal recorded from
proximal arm muscles and they showed that the activation
of proximal muscles can be statistically different for dif-
ferent grip types. Huang ef al. [9] introduced the use of
Gaussian Mixture Models (GMMs) for multiple limb mo-
tion classification using continuous myoelectric signals and
show exceptional classification accuracy compared to linear
discriminant analysis, linear perceptron network and multi-
layer perceptron neural network.
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Figure 2. The Cleveland Medical Devices BioRadio used for mea-
suring EMG signals in our experiments.

Along with EMG signals, the keystroke dynamics of
users are also recorded during our data acquisition session
(see section 3). By keystroke dynamics we refer to any
feature related to the keys that a user presses such as key-
down times, keyup times etc. In this work, we concentrate
on classifying EMG and keystroke features for a fixed text,
such as log on passwords, that is typed by a user. Gunetti
and Picardi [7] have the best published results for text-free
keystroke dynamics identification where they combine rel-
ative and absolute timing information on bigram, trigram
and n-gram features. The classifier they adopted is related
to k-nearest neighbors which does not scale well. Messer-
man et al. [29] dealt with the scalability issue but at the cost
of accuracy. Although the authors’ algorithm set an upper
bound on the algorithm complexity, their proposed method
is still computationally expensive. Killourhy et al. [26]
tested static keystroke dynamic authentication on a dataset
of 51 subjects, where each subject repeatedly typed a 10-
character password 400 times. The authors reviewed and
compared fourteen classification techniques on keystroke
dynamics. The work by Zach et al. [42] used data limited to
a 15ms resolution. Since some relevant features have an av-
erage duration shorter than this, the lack of timing precision
can hide some discriminating information. Data collection
with higher resolution is able to achieve a resolution of less
than 0.1ms (see [38] for more details). There has been an in-
creased interest in using additional information along with
keystroke dynamics such as the keystroke sound [32] and
user typing behavior [31].

Our aim, in this paper is to analyze both the EMG mea-
surements as well as the keystroke dynamics of users and
determine features that may be used to differentiate one in-
dividual from another. An advantage of using EMG signal
alone is that, it is next to impossible to spoof one’s EMG
signal recording, unlike other modalities such as face (see
[1, 18, 13, 12]) and iris (see [39]). Keystroke dynamics if
used alone, can be spoofed by using information recorded in
USB/PS2 keyboard buffers. A simple, timed replay of the
keystrokes can be used to gain unauthorized access. In high
security facilities where camera installations are not permit-
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ted, this problem assumes a higher significance. Recording
EMG signals along with the keystroke timings, allows us to
perform a [iveness test on the person entering the password,
in addition to gaining a different biometric modality.

3. Acquisition of EMG Data

In this section, we present a description of how our data
was acquired, as well as of the database built, for use in our
experiments.

3.1. Data Acquisition Sessions

The data was collected from a total of 14 participants.
The acquisition process for a participant consisted of two
sessions, which we will henceforth refer to as session I and
session II. Each session consists of individual trials. During
a trial, the participant types in the phrase “Hello, world.#18”
followed by the ‘return’ key on a standard QWERTY key-
board. For every key press, using a custom built keylogger,
we recorded the key pressed as well as the CPU time instant
for key press and release. In addition, every time the partic-
ipant types in the phrase, electrodes attached to his/her arm
record the EMG signal using a BioRadio (see section 3.2
for a description). In this manner, during session I, 50 such
trials were recorded. Session II was recorded more than 30
minutes after session I and includes 100 such trials from
the same 14 participants. The keystroke features extracted
include the keydown-to-keydown time, keyup-to-keydown
time, and key hold time for each key in the typed phrase.
For each trial, features were extracted and concatenated into
a feature vector

3.2. Recording EMG Activity Using BioRadio

The BioRadio device, shown in Figure 2, manufactured
by Cleveland Medical Devices, Inc. was used to record the
EMG signal during each participant’s trial as mentioned.
BioRadio includes: (1) a wireless radio with USB interface
to record the signal. (2) 17 snap MVAP II electrodes with
17 insulated snap leads. A pair of electrodes measures one
channel of EMG data. 8 such channels (4 channels from
each arm) were recorded by placing the electrodes on vari-
ous portions of the arm. An additional electrode was used to
ground the BioRadio. (3) a digital SHz high pass filter with
60 Hz notch filters on each channel. The filters are imple-
mented on the BioLite software package available with the
BioRadio device. Electrodes were placed on the skin above
the hypothenar eminence, the thenar eminence, the exten-
sor carpi ulnaris and anconeus, and the flexor carpi radialus
and palmaris longus. Figure 3 shows the electrode place-
ments for a participant. Using these, the surface voltages
were recorded in mV at 960 Hz with a maximum voltage of
3V by the BioRadio.

The electrode pair recording the activity of the thenar
eminence was intended to record much of the EMG data

Figure 3. The electrodes from BioRadio attached to both arms of
a participant measure the EMG signal as he/she types the given
phrase during a trial
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Figure 4. (a) Raw EMG data, showing three channels (out of a total
of eight channels). The blue signal is a trial from Session 1, and
red is a trial from Session 2. The Session 2 trial was recorded at
least 30 minutes after Session 1. (b) The same EMG signals in (a)
were partitioned into 100 time bins. The root-mean-square (RMS)
was computed over each bin.

from the first finger (the forefinger), while the pair record-
ing the hypothenar eminence was intended to record primar-
ily from the small finger. The other two pairs were placed
approximately on the anterior and posterior portions of the
forearm. The electrode pair recording the carpi ulnaris and
anconeus was intended to record data from the third finger
(the “ring” finger). The pair recording the flexor carpi radi-
alus and palmaris longus was intended to record the second
(the “middle” finger). We placed electrodes over these re-
gions after a visual inspection of which muscles were most
prominent near the skin while the subject makes typing mo-
tions. In Figure 4 we show three channels of EMG record-
ing for the same user from two different sessions.

3.3. Keystroke Dynamics Measurements

As mentioned earlier, using a custom key logger routine,
we recorded the key up and key down instant CPU times
for every trial. The character length of the phrase typed,
including the ‘return’ is 18. From the recorded timing, we
computed keydown-to-keydown times (time lapse between
key presses of consecutive keys), keyup-to-keydown times
(time lapse between the release of one key and the press of
the next key), and the hold times (time lapse between the
press and release of each key) for all keys. This is illus-
trated in Figure 5. Hence, for each typing, 18 x 3+ 1 = 55
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Figure 5. Example of keystroke dynamics features.

timing features were extracted and concatenated into a fea-
ture vector. These features are used independent of EMG
data to identify participants in our experiments.

4. Methods for EMG/Keystroke Classification

In this section we outline the various features extracted
from the EMG signals for user identification. As mentioned
in 3, all the data was collected in two sessions, with the per-
son typing a fixed phrase on a keyboard. Each EMG trial
within a session is segmented out using the timing informa-
tion recorded by the keylogger. The experiments described
in this paper were meant to: (1) study the variation in the
EMG signal for a given subject, in a given session and ex-
tract features from all trials within a session, for the purpose
of user identification. Higher identification rates in these
experiments will make these features useful in continuous
authentication scenarios. Since there are two recording ses-
sions, two sets of equivalent experiments will be performed
in each case. Any experiment using samples from session
I alone will henceforth be termed E; and those involv-
ing samples solely from session II will be termed E5. (2)
study the user identification rates when samples are com-
pared across capture sessions. In this set of experiments,
we have used data (either all or a subset) from session I as
training samples. User identification was then performed on
samples drawn from session II. These experiments will be
termed as E.

In most of our experiments, we have used all trials from
session I (which has fewer trials per user) as the training
data for our supervised learning classifiers and trials from
session II as the testing data. One of the intrinsic problems
we faced during our experiments was that, trials for a sub-
ject are not of equal length (since the user does not type the
same sequence in the same amount of time each trial). One
way to overcome this issue is to crop every trial to the short-
est trial’s length. However, this method is not favorable,
as it assumes the user has finished most of the keystrokes
within that time. Our solution was to divide the trial into
M non-overlapping bins. We then compute the root-mean-

square (RMS) value for each bin. Hence, for eight channels,
we are left with an 8 M feature for each trial. This method
has multiple advantages: (1) every trial (within a class and
across classes) has the same number of time bins, and (2)
trials are better aligned. Additionally, the RMS value also
serves a denoising purpose. In the following sections, every
trial has been represented in this manner. Figure 4 shows
three channels from the EMG of a user, from two different
sessions, overlayed on each other. As is evident from the
figure, binning the data helps in smoothing out the variation
and make the data from different sessions look more similar
to each other.

4.1. Using the Raw EMG Signal

Our first experiment, used the data samples such as those
shown in Figure 4(b), as features. A distance matrix, which
we call a similarity matrix with one-to-one Euclidean dis-
tance between every pair of samples was generated. Fol-
lowing this, each sample A was classified as belonging to
the class represented by the sample B to which it is closest.
More formally, if S is our similarity matrix, s; ; represents
the Euclidean distance between samples ¢ and j. In order
to classify for instance, the first sample, we find a sample
I'such that ;7 = min{s;1]j =1,2,..., N}. We classify
the first sample as the class to which [ belongs. Following
this approach, the identification rates for the experiments
E,, FE> and Ej5 are reported in Table 1.

4.2. Bayesian Classifiers

As mentioned in section 3 we collected data from each
user over the course of two sessions - 50 trials in session I
and 100 trials in session II. In this section we estimate the
Probability Density Function (PDF) corresponding to each
user (we use the terms ‘user’ and ‘class’ interchangeably
in the following text) using all the samples from session I.
Given these PDFs, for every sample in session II, we can
estimate a likelihood value and can then assign a class label
to it based on the maximum likelihood estimate (MLE). We
adopt two approaches to density estimation in this work -
a non-parameteric approach using the k-Nearest Neighbor
(k-NN) method (see [6]) and a parameteric approach where
we fit a Gaussian distribution to the samples in session 1.

Non-parametric Density Estimation Using k-NN
In our approach, rather than computing the density estimate
for every point in the feature space, we associate a likeli-
hood function with each data sample in session II, based on
its k nearest neighbors form session I. Consider a ‘test’ data
sample x;, from session II. Among its k nearest neighbors
let {k1, ko, ..., kn} be the number of neighbors belonging
to classes A1, Ag, ..., Ay respectively. We define the likeli-
hood of x; belonging to class \; as

Plx=xA=x) =" (1)
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Now, consider the expression for Bayes rule,
Px=xA=X)P(A=X)
P (x=x;)

where P()\|x) is the posterior probability (i.e. of the
class given the observations), P(x|A) is the likelihood (i.e.
of the observations given the class), P(\) is the prior distri-
bution of the class and P(x) is the evidence (i.e. the prob-
ability of the observations). In order to classify a given
test sample x;, we will pick the class A; that maximizes
P(X = \i|x = x;) based on our observations. In our exper-
iments we assume a uniform prior over all classes and hence
this problem degenerates to a maximum likelihood classifier
i.e. we pick the class that maximizes P(x = x;|A = ).
Hence, the class with the maximum likelihood (ML) to
which x belongs is given by

PA=X\x=x;) =

A =  argmin P(x=x;]A=X\)
1€{1,2,....N}

k
=  argmin — 2)
1€{1,2,....N}
Fitting a Gaussian Distribution
If we assume the d dimensional samples, x, from every
class has a Gaussian distribution (shown in eqn. (3)),
1 (x-S (x—p)
2 =
N(X“J’? ) (27‘[‘|2|)d/2 exp ( 2

3)
then from the data in session I, we can estimate the den-
sity function parameters. Formally, for a given sample x;,
P(x = xi|A = ) = N(x = xifte, Be) where N (u, )
denotes a Gaussian distribution with mean p and covariance
3. For each class \;, with K; samples in session I, we can
estimate the parameters as,

1 &
- = . 4
i Kl;xz @)
1 &
= o DG = )G — )" )
=1

The ML estimate of the class label for a given data sample
from session II is given by,

A= argmin N(x = x|, 2) (6)
1€{1,2,....N}

4.3. Linear Subspace Modeling

In addition, we have utilized the following three linear
subspace learning methods: Principal Component Analy-
sis (PCA), Unsupervised Discriminant Projection (UDP)
[41, 16, 22, 20] and Class-Dependent Feature Analysis
(CFA) [40, 19, 14, 15] for modeling the signals in various
linear subspaces and perform matching tasks using the cor-
responding subspace features.

[ Using EMG ]

Raw Signal PCA SOS
Ey 98.67 96.33 | 82.83
Ly 96.94 96.43 | 81.28
E; 40.00 - 32.26

Table 1. Rank 1 ID Rates when performing one-to-one compar-
isons between subject trials using recorded EMG data alone from
14 participants.

5. Experiments and Results

In this section we present the results obtained during our
identification and verification experiments, using the fea-
tures that were described in the previous section. We use
data from two acquisition sessions, as mentioned in the pre-
vious section. We will refer to users as ‘classes’ in the fol-
lowing text (short for ‘user classes’). Session I contains 600
samples in total, of both EMG data and keystroke dynam-
ics data, while session II contains 1175 samples from both
modalities.

5.1. Using Trials from a Single Capture Session

A one-to-one comparison using the euclidean distance
metric was performed. Rank 1 identification rates obtained
are shown in Table 1. As described in section 4, F/; refers to
one-to-one comparisons using only session I data, F; refers
to comparisons using only session II data. E3 refers to the
experiment when samples in session II were compared with
samples in session I and classified accordingly. For PCA
experiment Ej, a subspace was built with samples in ses-
sion II and session I samples were projected onto this space
before one-to-one comparisons; vice versa for PCA experi-
ment Fs. In this table, we also explore the possibility of us-
ing the Second Order Statistics (SOS) of the trials for classi-
fication purposes. Specifically,we use the power spectra of
the signals as features for this purpose. Ideally, we would
expect the power spectra of samples corresponding to a user
within a single session to resemble each other. We see that
this is indeed the case as shown by the results of the F
and E5 experiments. However the identification rate drops
when comparing power spectra across sessions.

From the identification rates obtained, it is evident that
within a given session, the recorded signals are very simi-
lar to each other. The challenge is to identify users across
sessions, which is discussed next. By just comparing the
raw signals themselves, we get an identification rate of 40%
as seen in Table 1. Next, we performed a set of verifica-
tion experiments, in which we set a threshold for the sim-
ilarity scores between samples and found the rate of false
accepts and genuine accepts. The result is visualized using
a set of Receiver Operating Characteristic (ROC) curves. In
Figure 6(a) we show the ROC curves when classifying the
EMG signals using various subspace modeling techniques
presented in the previous section. We built subspace models
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[ Using EMG Signals ]

GAR at 0.1% FAR | GAR at 1.0% FAR | GAR at 10% FAR
PCA 0.113 0.201 0.442
UDP 0.270 0.432 0.668
CFA 0.250 0.417 0.652
kNN 0.973

Table 2. GAR for various FAR in our user verification experiments
that employ subspace modeling. The corresponding ROC curves
are shown in Figure 6(a).

using the signals from session I and ran verification experi-
ments using the signals from session II. The x-axis in these
curves is shown in the log-scale to better depict the variation
in Genuine Accept Rate (GAR) with varying False Accept
Rates (FAR). Relevant values from these curves are given
in Table 2.

5.2. Identifying Users from Trials Across Sessions

In order to classify individuals between sessions, as
discussed in sections 4.2 and 4.2 we estimated the PDFs
for each class using all the samples from session I. Fol-
lowing this, we classified samples from session II using
ML estimates. The identification rate for the kNN based
density estimation is 62.30%, while the identification rate
when a Gaussian distribution is fit on the training samples
is 48.68%, which are higher experiment Fs5 identification
rates than those reported in Table 1. In this work we have
used k£ = 10. The ROC curves for both these experiments
are shown in Figure 6(b) (the x-axis is in the log-scale). As
seen in Figure 6(b), we obtain above 90% verification rates
for low values of false accept rate using both these methods.
We see that the kNN based density estimation reports a bet-
ter MLE based classification accuracy. Intuitively, the dis-
tribution of samples may not be strictly Gaussian and hence
the Gaussian distribution based classifier may be too restric-
tive.

In addition the reader should note that the ROC curves
are reported starting from a false accept rate (FAR) of 10%
for the bayesian classifiers. This is because, these ROCs
are generated by varying a probability threshold value and
not distance metric values as in Figure 6(a) and Figure 6(c).
Due to the limited number of users, 14, available to us for
these set of experiments, the probability of assigning a class
label to a given user cannot be less than ﬁ ~ 7%. Hence,
we cannot perform our verification experiments with thresh-
old probability values lesser than this. With this minimum
threshold, there are a large number of false accepts. How-
ever the genuine accepts are much higher as seen in the cor-
responding curves (even higher than the corresponding val-
ues in the subspace based classifiers; for example compare
the GAR at 10% FAR for the ROCs in Figure 6(a) and in
Figure 6(b)). All Bayesian classifier based results reported
in this work are reported starting from an FAR of 10%.

[ Using Keystroke Dynamics ]

GAR at 0.1% FAR | GAR at 1% FAR | GAR at 10% FAR
PCA 0.213 0.382 0.658
UDP 0.364 0.491 0.683
CFA 0.348 0.444 0.667
kNN 0.994

Table 3. GAR at various FAR for keystroke dynamics recognition
experiments using 3 subspace modeling techniques.

5.3. Identification Using Keystroke Features

We report our classification results that were obtained
using the extracted keystroke features i.e. the keydown-
keydown times, keyup-keydown time and the hold times
(as was mentioned in section 3). Table 3 shows the GAR
at 0.1%. 1% and 10% FAR, using the three subspace mod-
eling techniques. Figure 6(c) shows the ROC curves of the
corresponding experiments. As can be seen, UDP yields
the best results for these features. All the experiments men-
tioned in the table are of type E5 where trials from session
IT were used for testing. The training samples required for
PCA, CFA and UDP were drawn from session I.

5.4. Score Level Fusion

Here we report results on the verification performance
when we performed score level fusion of results obtained
using both modalities i.e. EMG and keystroke dynamics.
The score level fusion was performed by taking the magni-
tude of a score vector whose individual elements were cor-
responding scores from the EMG based classifier and the
keystroke dynamics based classifier, i.e.

SCOT€ fysed = \/ (scoregara)? + (scorekeystroke)? (1)

The general trend observed is an increase in verification
performance as can be seen from the ROC curves. In Fig-
ure 6(d) we compare the result of the E5 set of experiments
for both modalities, when using the raw input signals val-
ues. We see that there is a clear improvement as indicated
by the improved genuine accept rates (see Table 4). A com-
parison of the performance when fusing raw EMG signals
with various keystroke dynamics classification methods is
shown in Figure 6(e). We see that the highest genuine ac-
ceptance rates are obtained when the score level fusion uses
the UDP based classifier. Compared to other subspace mod-
eling techniques such as linear discriminant analysis (LDA),
UDP handles outliers better due to its unsupervised charac-
teristics. In real-world application, instances of the same
subject may not appear to be within a perfect cluster. This
may due to mis-labeling or simply noise embedded in the
system. Such noise will jeopardize supervised methods
such as LDA which entirely reply on the class label/centroid
information.

In Figure 6(f) we compare the performance of the best
subspace based classifiers we have reported in this work so
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[ Performance after Fusion of Scores ]

GAR GAR GAR
at0.1% FAR | at 1% FAR | at 10% FAR

Raw EMG + Raw KeyStroke 0.301 0.463 0.683

Raw EMG + PCA KeyStroke 0.306 0.503 0.701

Raw EMG + UDP KeyStroke 0.390 0.547 0.731

Raw EMG + CFA KeyStroke 0.343 0.510 0.702

UDP EMG + UDP KeyStroke 0.247 0.411 0.661
UDP EMG + CFA KeyStroke 0.321 0.424 0.619
CFA EMG + UDP KeyStroke 0.369 0.569 0.801
CFA EMG + CFA KeyStroke 0.334 0.546 0.788

kNN EMG + kNN KeyStroke - - 0.997
SVM EMG + SVM KeyStroke 0.987

Table 4. GAR at various FAR for the fusion of EMG and
Keystroke.

far. We fused the scores from the UDP and CFA based clas-
sifiers for both the EMG and keystroke dynamics signals.
The fusion of the CFA based EMG classifier and UDP based
keystroke classifier is observed to have an edge over the rest
in terms of verification performance. Relevant genuine ac-
ceptance rates are shown in Table 4.

In Figure 6(g) we compare the performance of the kNN
based classifier, described earlier for the EMG features, on
both the EMG as well as keystroke dynamics feature sets.
In this case the keystroke dynamics based feature dominates
and there is little improvement gained by fusing the results
of the EMG feature set.

5.5. Support Vector Machines Experiments

In addition to the above set of experiments, we trained a
linear Support Vector Machine (SVM) model for both EMG
and keystroke dynamics data in UDP subspace. The train-
ing data consists of the 600 samples (collected in session I)
and our testing data, as before, are the samples from ses-
sion II. The SVM classifier fits a distribution to the sam-
ple distances from the linear hyperplane used by the SVM
model, thus enabling us to compute the probability of class
membership for a given test sample. Thus given an SVM
for class \; and a feature x; we can estimate the maximum
likelihood class label in the same manner as described in
section 4.2. We used the libSVM library [3] in our experi-
ments.

Summarizing this section, we note the following salient
points based on the results reported: (1) Subspace model-
ing techniques show promise in verifying users when the
individual scores from both EMG based and keystroke dy-
namics based classifiers are fused. We see genuine accept
rates of close to 80% using CFA based EMG classification
and UDP based keystroke dynamics classification. The use
of an SVM model trained in UDP space results in an im-
provement in verification performance as shown in Table 4.
(2) In order to achieve a better verification performance, we
adopted Bayesian based approaches. Specifically, a kNN
based probability density estimation was performed for the
various classes present in session 1. Following this, session
II samples were classified using a maximum likelihood ap-

Dimension 2

Session 3

[ 4

Dimension 1

Figure 7. 2-dimensional projection of an 8-dimensional RMS
space. Each circle represents one trial; colors denote different ses-
sions from the same subject.

proach. Due to the limited number of samples and classes,
we were not able to evaluate the effectiveness of this ap-
proach at very low values of FAR and hence report re-
sults from 10% FAR onwards. We see that these values
are higher than the corresponding values for the subspace
modeling based approaches.

6. Conclusions

In this paper, we have explored the possibility of using
both electromyograph (EMG) signals from arm muscles as
well as keystroke dynamics of a person as biometric modali-
ties. The data was captured when a user typed a fixed phrase
on a keyboard. As mentioned earlier, EMG signals are next
to impossible to spoof unlike keystroke dynamics, which
can be recorded and played back by an imposter using a
simple USB/PS2 external buffer. Recording EMG signals
along with keystroke timing dynamics, is a liveness test
on the person entering the password, in addition to gain-
ing a different biometric modality. In this work, keystrokes
serve a dual purpose of segmenting different EMG trials as
well. This paper reports the results from an initial study
on the use of biometric features from both these modali-
ties as well as from a fusion of these. subspace modeling
techniques were used in our verification experiments. From
Table 4, we see that a fusion of results from the CFA based
EMG classifier and UDP based keystroke dynamics clas-
sifier gives high rates of genuine accepts at low values of
false accepts. In order to improve identification and ver-
ification rates when comparing user data captured across
two sessions, we build PDFs for the EMG data using both
non-parameteric (based on kNN) and parameteric (based on
Gaussian distribution) models. Corresponding genuine ac-
cept rates (GAR) are above 90% for very low values of false
accept rates as shown in Figure 6(b).

Analyzing the acquired EMG data, we have found many
areas for improvement in both feature selection and classi-
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curves for keystroke dynamics recognition using various subspace modeling techniques. (d): ROC curves for EMG signal based verification
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based experiments described earlier, using one-to-one comparison of the signals. (e): ROC curves comparing the verification performance
after fusion of scores from the indicated classification experiments. (f): ROC curves comparing the performance when fusing scores from
the UDP and CFA based classifier for both the EMG signals and keystroke dynamics. We observe that the best performance is obtained
when using the CFA classifier with EMG and UDP classifier with keystroke dynamics. (g): ROC curves comparing the performance of
the k-NN based classifier using the EMG signals, using the keystroke dynamics and when scores from these two classifiers are fused. We
see that the keystroke dynamics dominates in this experiment. Fusion results in a slight improvement in performance. (h): ROC curves
comparing the performance of the SVM based classifier in UDP subspace using both EMG signals and keystroke dynamics. The ROC
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plotted using a fusion of the scores from the two classifiers is also shown.

fication. EMG signals contain considerable noise between
trials, ranging from the intensity of a keystroke hit to differ-
ent postures between sessions. Feature selection may be
improved by utilizing methods other than RMS and also
leveraging time-dependencies with dynamic time warping
[27]. To improve parametric density estimation based clas-
sification, one may view the distribution and correlations
between channels. By taking the RMS of each trial, we treat
each trial as an 8 x 1 vector in a high-dimensional space.
We can take a 2D projection of this space and intuit how the
distribution changes between sessions (see Figure 7; three
sessions of a user are shown). Between sessions, the mean
does change significantly, questioning the use of Gaussian
parameters to describe the activity. Future work will need
to account for the factors that lead to these changes be-
tween sessions. For example, posture, fatigue, and moti-
vation may all affect EMG activity. By correctly modeling
such changes, both parametric and non-parametric density
estimation based methods will improve greatly.

We feel that this preliminary work proves the presence
of a biometric modality in these recordings. The aim of our

future work is two fold - to study the feasibility of using
EMG/keystrokes for continuous user authentication during
a typing session and to be able to recognize users across
capture sessions. The results in this paper show that this is
indeed possible, and we hope to study this modality further
and develop it into a stronger biometric such as face, iris,
and gait [17, 36, 35, 23, 24, 21, 11]. In addition, with the
future development of wearable technologies such as smart
wrist band, the continuous monitoring of the EMG signals
along with the keystroke dynamics can be made possible for
non-intrusive and spoof-robust biometric authentication.
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