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Abstract

We propose three regularization techniques to overcome
drawbacks of local winner-take-all methods used in deep
convolutional networks. Channel-Max inherits the max ac-
tivation unit from Maxout networks, but otherwise adopts
complementary subsets of input and filters with different
kernel sizes as better companions to the max function.
To balance the training on different pathways, Channel-
Drop is employed to randomly discard half pathways be-
fore their inputs are convolved respectively. Stochastic
Max-pooling is defined to reduce the overfitting caused by
conventional max-pooling, in which half activations are
randomly dropped in each pooling region during train-
ing and top largest activations are probabilistically aver-
aged during testing. Using Channel-Max, Channel-Drop
and Stochastic Max-pooling, we demonstrate state-of-the-
art performance on four benchmark datasets: CIFAR-10,
CIFAR-100, STL-10 and SVHN.

1. Introduction
Convolutional Neural Network (Convnet) [2, 4, 14] is one
of the most powerful tools in applied machine learning to
solve various problems. In a Convnet model, convolutional
layers are formulated to generate feature maps containing
responses to different kernel filters. Then the resulting ac-
tivations of a convolutional layer are passed to a pooling
layer, in which the information in small local regions are
subsampled to produce a smaller feature map as input to the
next level. There are two conventional choices for the pool-
ing function: average and max. Max-pooling usually works
better than Average-pooling empirically.

The size of deep Convnets makes overfitting a signifi-
cant problem, even with a large number of labeled training
examples. Dropout, proposed by Hinton et al. [10], is an
effective regularization approach to reduce co-adaption of
feature detectors and to improve test performance. During
the training of Dropout, activations in each layer are ran-
domly deleted with a probability (usually 50%) and the er-

max

zi1 zi2 zikzij

x

hi

Wi1,bi1 Wi2,bi2 Wij,bij Wik,bik

(a) (b)
Figure 1. (a): A max activation unit. (b): How to generate a corrupted x
from a color image patch for a maxout unit (Drop Rate = 0.5).

ror is only back-propagated through the remaining activa-
tions.

In a local winner-take-all (LWTA) architecture named
Maxout [7], the max function is used in the hidden unit as a
companion to Dropout. It is verified that a model contains
two or more max activation units is a universal approxima-
tor that can approximate any continuous function arbitrar-
ily well, when inputs to the max function are allowed to
have arbitrarily high cardinality. Due to this nice property,
Maxout outperforms previous methods on various popular
datasets for image classification. A similar method based
on local competition is proposed to reveal that LWTA struc-
tures helps to prevent catastrophic forgetting [21], which is
common to neural networks when training sets change over
time.

According to empirical experiments, when the drop rate
is high, the information loss caused by Dropout in max-
out networks may result in performance degradation; drop
rate should be carefully tuned to achieve the best perfor-
mance. Another set of heuristic experiments in Section 3
illustrates that the difference between input signal channels
is beneficial to the classification task. Recently, An ‘incep-
tion module’ is created in GoogLeNet [23] to achieve the
winning classification results for Large Scale Visual Recog-
nition Challenge 2014 (ILSVRC2014). In this method, fea-
ture maps produced by convolutional filters with different
kernel sizes(e.g. 1× 1, 3× 3 and 5× 5) are combined and
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k = 2 k = 4
Drop Rate = 0 22.29 22.26
Drop Rate = 0.25 21.02 20.13
Drop Rate = 0.5 21.39 21.78

Table 1. Comparison of Average Test Errors (%) on CIFAR-10, between
Maxout networks with different configurations. k indicates the number of
pathways of a maxout hidden unit. We use Net-1 (as introduced in Table 4)
in these experiments. Each experiment is run 10 times and average test
errors are reported.

sent to the next layer. Above work motivates us to intro-
duce better companions to replace the same corrupted in-
put and the same filter size used in a maxout unit. Differ-
ent from previous methods in which certain subgroups of
feature maps [14] or results of different convolutional ker-
nels [23] are simply concatenated, our emphasis is on the
competition of feature maps produced by different subsets
of input and/or filters of different sizes in the LWTA frame-
work.

We also show that Maxout is prone to unbalanced train-
ing, that is, the learned convolutional filters in some path-
ways of a Maxout unit are over-trained and the convolu-
tional filters in the rest pathways are under-trained. Accord-
ing to the analysis in Section 2, this effect is caused by the
winner-take-all mechanism itself. It affects the approxima-
tion ability of the max activation function and causes an
overfitting problem.

Max-pooling is also a LWTA method in nature: in each
local pooling region, it captures the strongest activation
and the network error is only back-propagated through the
strongest activation during the training. That is, only the
pattern corresponding to the strongest activation in a local
region is learned and patterns corresponding to other top
largest activations are neglected. This processing may lead
to overfitting, making Convnets hard to generalize well to
diversified test examples.

To sum up, we propose three effective regularization
techniques (Channel-Max, Channel-Drop and Stochastic
Max-pooling) to overcome above drawbacks of LWTA
methods. We empirically verify that each of them can in-
dividually improve the optimization accuracy of Convnet
models. Moreover, we use the conjunction of these three
techniques to set new state-of-the-art results on various
benchmark datasets, without improving preprocessing and
adopting larger models.

2. Review of Maxout Networks

As shown in Figure 1(a), a max activation function hi in
a hidden layer is formulated as

hi(x) = max
j∈[1,k]

zij , (1)

Figure 3. First 16 sets of feature kernels of four pathways of maxout net-
works (k = 4), learned from the CIFAR-10 dataset. Each column contains
4 kernels of a max hidden unit. Net-1 (Defined in Table 4) is used in this
experiment. Those uniform color patches present under-trained feature
kernels.

where x ∈ Rn and zij is defined as an affine function

zij = xTWij + bij , (2)

in which Wij and bij are learned parameters w.r.t. a feature
detector. In this way, a single hidden unit hi(x) can be in-
terpreted as a convex piecewise linear function consisting of
k locally affine regions on Rn. It is verified in [7] that any
continuous function can be approximated arbitrarily well on
a compact domain C ⊂ Rn by a difference of two max ac-
tivation functions, with sufficiently large k.

In [7], above max activation function is combined with
dropped input to implement maxout networks. As illus-
trated in the example of Figure 1(b), during the training, the
element-wise multiplication is performed between an RGB
patch and a randomly generated dropout mask m to pro-
duce a corrupted input x. For one maxout unit, the error is
only back-propagated through the maximal zij and only the
corresponding Wij and bij are updated. During the testing,
non-corrupted input is used in Equation 2 to calculate zij
and the result of Equation 1 is output to the next layer.

The varying dropout mask often moves the effective in-
puts far enough to escape the local region surrounding the
clean inputs. In this sense, Dropout increases the diversity
of training data. However, the information loss caused by
a higher dropout rate may harm the training process instead
of helping to increase the diversity of training data. For
each classification task, drop rate should be carefully tuned
to achieve the best performance. For example, as shown in
Table 1, Maxout networks with a drop rate of 0.25 achieve
better results on the CIFAR-10 dataset when using Net-1
(which is introduced in Section 4.1).

Ideally, a max activation unit can always make the cor-
rect decision by choosing the largest zij , if parameters of
all pathways are trained properly. However, in practice, we
observe an unbalanced training effect among feature filters
w.r.t. different pathways of a maxout unit, as illustrated in
Figure 3. Since all the weights and biases in a Convnet
model are randomly initialized at the beginning of the train-
ing phase, some feature filters may gain an advantage over
other filters after some epochs of training. The advantage
of stronger feature detectors will continue to be strength-
ened during the training, due to the winner-take-all mech-
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Figure 2. Two different model combinations used in our heuristic experiment.

Model Combination Avg. Test Errors
RGB+RGB 20.35

RGB+R+G+B 19.78
HSV+HSV 24.73

HSV+H+S+V 24.33

Table 2. Comparison of Average Test Errors (%) on CIFAR-10, between
different model combinations. We use Net-1 (as introduced in Table 4) for
these experiments. Each experiment is run 10 times and average test errors
are reported.

anism. This is NOT a good thing: since the under-trained
feature detectors (relating to different pathways) become a
part of the learned piece-wise linear activation function, this
learned function can not approximate the actual activation
function well. As a result of the unbalanced training, max-
out networks easily overfit to the training samples contain-
ing patterns represented by those over-trained feature detec-
tors.

3. Our Approach
3.1. Channel-Max

Heuristic Experiments. We perform a set of heuristic
experiments to compare two model combinations. In the
configuration of Figure 2(a), two Convnet models with the
same RGB input and the network structure (but the different
parameter initializations) are combined; in the configuration
of Figure 2(b), one Convnet model using the RGB channels
as input and three ConvNet models with distinctive channel
(R,G or B) as input are summarized. In the last layer of
each model, the softmax processing is operated to generate
multi-way classification probabilities. Then the max func-
tion is applied on all the output probabilities to obtain the
maximum value and the corresponding class label lmax:

(lmax, cmax) = argmax
l∈L,c∈C

p(l, c), (3)

where L is the set of class labels and C is the set of models
in a model combination. For example, C = {ConvNet −
1 − RGB,ConvNet − 2 − RGB} for the configuration

in Figure 2(a) and C = {ConvNet − R,ConvNet −
G,ConvNet−B,ConvNet−RGB} for the configuration
in Figure 2(b). We also compare two similar combinations
in the HSV color spaces. All experiments are implemented
using Net-1 (defined in Table 4) here, a small Convnet struc-
ture for fast validation of ideas. As shown in Table 2, the
configuration in Figure 2(b) consistently outperforms the
configuration in Figure 2(a) on CIFAR-10. Similar phe-
nomenon is found on different architectures and on several
different datasets. This performance advantage reveals that
the competition among models using different subsets of
signal channels as input (e.g. {R}, {G},{B} and {RGB})
may be more effective. However, it is quite inefficient to
combine different models only in the last layer. Further-
more, compared to the first model, the size of the second
one is doubled, thus networks in Figure 2(b) need doubled
training and testing time. This is avoidable if we employ
the competition between subsets of channels in the local-
winner-take-all framework.

Channel-Max. If we replace randomly-corrupted input
x in Figure 1(a) by a local feature xcj only containing infor-
mation from a subset of channels, the max activation func-
tion just provides a natural selection mechanism for each
hidden unit to exploit channel information, as shown in Fig-
ure 4(a). We refer to this technique as Channel-Max, in
contrast with Maxout. Figure 4(b) gives an example to il-
lustrate how a Channel-Max unit in the first convolutional
layer works on a color image patch. All channel subsets
of an RGB image include {R}, {G}, {B}, {RG}, {RB},
{GB}, {RGB}. For those mono-channel subsets such as
{R}, {G} and {B}, 2D filters will be applied to perform the
convolution; for those multi-channel subsets such as {RG},
{RB}, {GB}, and {RGB}, 3D filters will be utilized in-
stead. To speed up the computation, usually we only adopt
four channel subsets of color images in our experiments:
{R}, {G},{B} and {RGB} (Figure 4(c)). To achieve a
robust processing, we perform a cross-feature map normal-



max

zi1 zi2 zikzij

Wi1, bi1

hi if hi = zi2

Wi2, bi2 Wij, bij Wik, bik

c1
X c2

X cX j cX k

max

zi1 zi2 zi4zi3

Wi1, bi1

hi

Wi2, bi2 Wi3, bi3 Wi4, bi4

Rx

X X

Gx Bx RGBx

i1

i

Rx

i2

Rx
i1

3 3
i1W
�

i2

i3

5 5
i2W
�

i3

i4 i5

i4

3 3
i3W
�

i5

i6

5 5
i4W
�

i6

Gx Gx

i7 i8

i7

3 3
i5W
�

i8

5 5
i6W
� 3 3

i7W
� 5 5

i8W
�

BxBx RGBxRGBx

(a) (b) (c) (d)
Figure 4. (a): A Channel-Max unit, in which each pathway is corresponding to a subset of channels. (b): How to generate an xcj from a color image
patch for a Channel-Max unit. (c): The basic Channel-Max model used in this paper contains four pathways w.r.t. four different channel subsets: R, G, B
and RGB. Channel-Drop randomly discards each pathway with a probability of 0.5. (d): The extended Channel-Max model in which kernel filters of two
different size are utilized.

ization on each zij before inputting it into the max func-
tion. When training with Channel-Max, in each Channel-
Max unit the error is only back-propagated through a path-
way that has produced the maximum value in the last for-
ward propagation step; during the testing phase, for each
Channel-Max unit only the most discriminative feature is
retained for the recognition task.

Extended Channel-Max. Considering different fea-
tures may have different spatial layout, we can further
strengthen the competition in Channel-Max by introducing
filters with various kernel sizes(e.g. 3 × 3 and 5 × 5) to
explore the optimal local structure of features, as illustrated
in Figure 4(d). To make the convolved feature maps (pro-
duced by filters with different kernel size) comparable, the
input layer should be padded with zeros properly so that
those convolved results have the same size.

The idea of connecting units in a convolutional layer
to certain subgroups of feature maps [14] [11] and multi-
resolution filtering [23] dates far back. Different with prior
work that directly concatenates feature maps produced by
different subsets of input and/or filters of different sizes,
our emphasis is on the competition of those features in each
winner-take-all hidden unit. In this way, not only the most
discriminative feature is learned, but also the computational
bottlenecks are removed: results of different feature subsets
and various filters are computed but only a small portion of
them are sent to the next layer. That is, we can dynamically
learn better features without increasing the computational
load of next level.

3.2. Channel-Drop

Channel-Max is still a LWTA method, which causes an
unbalanced training problem, as shown in Figure 5(a). In
order to reduce the unbalanced training effect, we intro-
duce the Channel-Drop technique, in which each pathway
is randomly disconnected with a probability of 0.5 in each
training loop, as shown in Figure 4(c). By preventing (ran-
domly selected) half pathways from updating in each loop,

(a) (b)
Figure 5. First 8 sets of learnt feature kernels on R, G, B and RGB path-
ways of Channel-Max networks without Channel-Drop (a) and those of
Channel-Max networks with Channel-Drop (b). All filters are learned from
CIFAR-10 and Net-1 (Defined in Table 4) is used to implement both mod-
els. Those uniform-gray patches in (a) present under-trained feature ker-
nels, which are rarely found in (b).

Channel-Drop can rebalance the training on different chan-
nel subsets (as illustrated in Figure 5) and alleviate the over-
fitting problem (as illustrated in Figure 7(a)).

Channel-Drop is different from Dropout [10] and Drop-
Connect [24] in both training and testing phases. During the
training, the random discarding in Channel-Drop only hap-
pens on pathways (corresponding to different feature sub-
sets or filter kernels of different size) inside each max hid-
den unit. In Dropout, outputs of hidden units are randomly
set to zero, while in Channel-Drop outputs of all hidden
units are retained. In DropConnect weights on all connec-
tions between two layers are randomly set to zero, while
in Channel-Drop all local weights corresponding to a dis-
connected pathway are temporarily disabled. What’s more,
Channel-Drop is only adopted in the training phase (to bal-

# of PARs # of PARs to be updated
A hidden unit with a 3D RGB filter n+1 n+1
Maxout (k=2) 2n+2 2n+2
Maxout (k=4) 4n+4 4n+4
Channel-Max 2n+4 2n+4
Channel-Max with Channel-Drop 2n+4 n+2

Table 3. Comparison of the total number of parameters and the number
of parameters to be updated between five micro-structures. k = 4 denotes
four pathways under one maxout hidden unit. The input is an RGB image
patch containing n elements in total (each channel contains n/3 pixels).
Four channel subsets(R, G, B and RGB) are used for the Channel-Max
unit.
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Figure 6. (a): Stochastic Max-pooling during the training. (b): We use the
weighted sum of top 3 largest values in each region to compute the pooling
value during the test time.

ance the training); because it is used in the winner-take-all
framework, the weight scaling (used in Dropout and Drop-
Connect) is not required in the testing phase.

Another benefit brought by Channel-Max and Channel-
Drop is decreased number of parameters and training bur-
den. In Table 3.1, we compare the total number of param-
eters and the number of parameters to be updated in each
training loop between five micro-structures: a ConvNet hid-
den unit with a 3D RGB filter, a Maxout unit (k = 2), a
Maxout unit (k = 4), a Channel-Max unit (k = 4, the ba-
sic version as illustrated in Figure 4(c)) and a Channel-Max
unit with Channel-Drop (k = 4, the basic version).

3.3. Stochastic Max-pooling

To relieve the overfitting problem of Max-pooling, we
introduce a technique called Stochastic Max-pooling. As
illustrated in Figure 6, during the training, we stochasti-
cally throw away activations in each pooling region with a
probability pa (in this paper, we set pa = 0.5), then utilize
the max function on remaining elements to get the pool-
ing value s. In this sense, each feature value generated by
Stochastic Max-pooling is a random variable; the probabil-
ity that the ith largest activation ai in a region R is picked
equals pi−1a (1 − pa). During the test time, instead of em-
ploying above sampling method, we use a probabilistic av-
eraging of top h largest activations to compute the pooling
value s of a region R:

s =

h∑
i=1

pi−1a (1− pa)ai. (4)

When h equals the size of the local region, the pooled value

s becomes the expectation over all possibly selected activa-
tions. In practice, we set h = 3 for the best performance:
the model with h = 3 produces better results than h = 1 and
h = 2; when h >= 4, the model performance remains al-
most the same when h increases. Equation 4 can be viewed
as a form of model averaging, in which more patterns from
the top h activations of a local region R are learned.

The training of Stochastic Max-pooling is different from
Dropout with Max-pooling, because the random selection in
our method is done in each local region independently. As
in Figure 6(a), considering two neighboring regions with a
2-pixel stride, in our method one activation with a value of
0.9 in the stride area may be dropped in one region but se-
lected in the neighboring region. While in Dropout with
Max-pooling, the random dropping is done globally in a
feature map.

Our approach is also different from Stochastic Pool-
ing [25], in which a pooled value is sampled from activa-
tions in a region, according to probabilities of those acti-
vations computed by normalizing the values of activations
within the region. In this way, a non-top activation has a
much larger probability to be selected, compared with our
Stochastic Max-Pooling. Comparison between the results
of two methods can be found in Table 6 (Method 10 v.s.
Method 11).

4. Experiments

4.1. Overview

Datasets. We evaluate our framework on four bench-
mark datasets: CIFAR-10 [12], CIFAR-100 [12], STL-
10 [3] and SVHN [18]. For CIFAR-10 and CIFAR-100,
we apply the same global contrast normalization and ZCA
whitening as was used by Goodfellow et al. in the max-
out network [7]. For STL-10, we employ a standard nor-
malization preprocessing procedure [13] in which the per-
pixel mean value is subtracted from each STL-10 image.
For SVHN, we utilize local contrast normalization prepro-
cessing the same way as [25].

Implementation. We construct two Convnet structures
– Net-1 (as in Table 4) and Net-2 (as in Table 5) in this
paper. Net-1 is a smaller model to fast validate experimen-
tal ideas (e.g. experiments listed in Table 9), which may
not produce state-of-the-arts results; Net-2 is used to com-
pare our framework to different methods (listed in Table 6)
on a fair basis and achieve the best performance. In the
experiments of Table 6, we only utilize the basic Channel-
Max model (filter size: 5 × 5) in the first layer of Net-2.
In the experiments of Table 7, 8, 10 and 11, we also em-
ploy the extended Channel-Max in the first layer and the
basic Channel-Max in the third convolutional layer. The
total number of parameters of Net-2 is largely decreased,
compared with Maxout networks used in Section 5.2 to



1 2 3 4 5 6 7
Layer Conv. Pool. Conv. Pool. Conv. Pool. Softmax
Kernel on each channel 5× 5 3× 3 5× 5 3× 3 5× 5 3× 3 –
# of hidden units 32 – 32 – 32 – –

Table 4. Structure of Net 1, for fast validation of experimental ideas.
1 2 3 4 5 6 7 8 9

Layer Conv. Pool. Conv. Conv. Pool. Conv. Pool. Full Conn. Softmax
Kernel on each channel 5× 5 (and 3× 3, in extended Channel-Max) 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 – –
# of hidden units 96 – 192 192 – 192 – 512 –

Table 5. Structure of Net 2, for the fair comparison in Table 6 and the best performance.

5.4 of [7]. We implement all the methods in these tables
on the super fast cuda-convnet code developed by Alex
Krizhevsky [13]. Except those hidden units using the max
activation function (like in Channel-Max and Maxout), all
other hidden units in these methods adopt the rectified linear
function and 3D convolutional filters. We use 3× 3 pooling
with stride 2 for each pooling layers in all three structures.
Each covolutional layer is followed by a processing which
normalizes the convolution outputs at each location over a
subset of neighboring feature maps. Except in the exper-
iments of Table 9, we only employ four subsets of the
RGB color space ({R}, {G},{B} and {RGB}); the HSV
and LAB channels are not used to produce our best re-
sults.

Experiment Protocols. We train our models using
stochastic gradient descent with a batch size of 128 exam-
ples; we set momentum = 0.9 and weight decay = 0.001; we
initialize all the weights from zero-mean Gaussian distribu-
tion with a standard deviation 0.005.

We follow a similar training methodology used in [13].
In the first round of training, we divide the whole training
set into the training subset and the validation subset. We
use the training subset to train the model (with a learning
rate of 0.001 on kernel weights and a learning rate of 0.002
on biases) and monitor the errors on the validation subset.
According to our observation, on CIFAR-10, CIFAR-100
and STL-10, the validation errors stop improving before
the 600th epoch; on SVHN, the validation errors stop de-
creasing before the 100th epoch. Therefore, we perform a
two-stage training in the second round by using the whole
training set. For CIFAR-10, CIFAR-100 and STL-10, in the
first stage, we retrain our models from the scratch with the
whole training set (including the validation subset) for 600
epochs; for SVHN, we retrain our model from the scratch
with the whole training set for 100 epochs. After this, all
learning rates are reduced by a factor of 10 (0.0001 on ker-
nel weights and 0.0002 on biases). For all four datasets, we
use these decayed learning rates to perform 50∼150 more
epochs of training in the second stage and obtain the final
models for testing.

4.2. In-depth Analysis on CIFAR-10

Comparison between different configurations, using
Net-2. As illustrated in Table 6, we make a fair comparison
between different methods by only changing the configu-
ration in the first two layers; the rest layers of all the meth-
ods are the same, in which the rectified linear units with 3D
filters are adopted in convolution; Max-pooling is employed
for sub-sampling and Dropout is utilized for regularization.
In Method 8 to Method 11, only the basic Channel-Max
with 4 GRB subsets is used. In Method 4 to Method 7,
we choose the Maxout structure with k = 4 which con-
tains doubled number of parameters (compared to the basic
Channel-Max) and set the drop rate to be 0.25 for the best
performance. According to Table 6, it can be shown that: 1)
Channel-Max, Channel-Drop and Stochastic Max-pooling
can individually improve the optimization accuracy. This
can be shown by comparing methods in Table 6, such as the
comparison between Method 8 and Method 2/4; the com-
parison between Method 9 and Method 5; the comparison
between Method 9/11 and Method 8; the comparison be-
tween Method 5/6/7 and Method 4. 2) The conjunction of
these three techniques achieves the best result, according to
the result of Method 11.

Comparison to state-of-the-art methods. As shown in
Table 7, by only using our configuration in the first two lay-
ers of Net-2 (with the basic Channel-Max), we obtain a test
error of 9.47%, which has already set the new state-of-the-
art performance on CIFAR-10. With data augmentation,
this model achieves a test error of 7.88%. Based on Net-
2, we also implement a configuration to utilize the extended
Channel-Max in the first layer and the basic Channel-Max
in the third convolutional layer (in this layer, we divide all
feature maps into three sets and also keep a set contain-
ing all feature maps. Then we use them as inputs in four
different pathways). This larger model obtains a test error
of 9.17%; with data augmentation, it achieves a test error
of 7.41%. The latter result outperforms those of all other
methods by a decent margin, except that of [8] achieved by
a much deeper and wider model with (padded) spatially-
sparse inputs.

The regularization effect of Channel-Drop and
Stochastic Max-pooling. As shown in Figure 7, the over-
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Figure 7. The regularization effect of Channel-Drop (a) and Stochastic Max-pooling (b). With these two techniques, training errors remain higher while
test errors continue to decrease.

Method # The first 2-layer configuration Train Error % Test Error %
1 Rectified Conv. + 3D filters+ Max-pooling, without Dropout 0.57 11.06
2 Rectified Conv. + 3D filters + Max-pooling, with Dropout 3.91 11.15
3 Rectified Conv. + 3D filters + Stochastic Max-pooling 0.68 10.65
4 Maxout (k = 4) + Max-pooling 3.32 10.72
5 Maxout (k = 4) + Channel-Drop + Max-pooling 3.68 10.49
6 Maxout (k = 4) + Stochastic Max-pooling 3.57 10.22
7 Maxout (k = 4) + Channel-Drop + Stochastic Max-pooling 3.74 10.01
8 Channel-Max + Max-pooling 0.65 10.75
9 Channel-Max + Channel-Drop + Max-pooling 3.52 10.07
10 Channel-Max + Channel-Drop + Stochastic Pooling [25] 3.65 9.80
11 Channel-Max + Channel-Drop +Stochastic Max-pooling 3.71 9.47

Table 6. Comparison between different configurations, using Net-2.
Method Test Error %
Conv. maxout + Dropout [7] 11.68
NIN + Dropout [16] 10.41
Deeply Supervised Nets [15] 9.78
Channel-Max + Channel-Drop +Stochastic Max-pooling 9.47
Extended Channel-Max + Channel-Drop +Stochastic Max-pooling 9.17
CNN + Spearmint + Data Augmentation [19] 9.50
Conv. maxout + Dropout + Data Augmentation [7] 9.38
DropConnect + 12 networks + Data Augmentation [24] 9.32
NIN + Dropout + Data Augmentation [16] 8.81
Deeply Supervised Nets + Data Augmentation [15] 8.22
Spatially-sparse Convolutional Neural Networks + + Data Augmentation [8] 6.28
Channel-Max + Channel-Drop +Stochastic Max-pooling + Data Augmentation 7.88
Extended Channel-Max + Channel-Drop +Stochastic Max-pooling + Data Augmentation 7.41

Table 7. Comparison to state-of-the-art methods on CIFAR-10.
Method Test Error %
Stochastic Pooling [25] 42.51
Conv. maxout + Dropout [7] 38.57
Tree based priors [20] 36.85
NIN + Dropout [16] 35.68
Deeply Supervised Nets [15] 34.57
Channel-Max + Channel-Drop +Stochastic Max-pooling 34.15
Extended Channel-Max + Channel-Drop +Stochastic Max-pooling 32.97
Spatially-sparse Convolutional Neural Networks + Data Augmentation [8] 24.30
Channel-Max + Channel-Drop +Stochastic Max-pooling + Data Augmentation 30.97
Extended Channel-Max + Channel-Drop +Stochastic Max-pooling + Data Augmentation 28.56

Table 8. Comparison to state-of-the-art methods on CIFAR-100, using Net 2 and the RGB color space.

fitting problem is largely relieved by Channel-Drop and
Stochastic Max-pooling. In this figure, training error curves

w.r.t. Channel-Drop/Stochastic Max-pooling remain higher
while corresponding test errors continue to decrease.



Method Test Error %
Discriminative Sum-Product Networks [5] 37.7
Hierarchical Matching Pursuit [1] 35.5
Representation Learning with Nonnegativity Constraints [9] 32.1
Deep feedforward networks [17] 32.0
Multi-Task Bayesian Optimization [22] 29.9
Channel-Max + Channel-Drop + Stoch. Max-pooling 32.6
Extended Channel-Max + Channel-Drop + Stochastic Max-pooling 28.7

Table 10. Comparison to state-of-the-art methods on STL-10, using Net 2 and the RGB color space.

Method Test Error %
Conv. maxout + Dropout [7] 2.47
NIN + Dropout [16] 2.35
Channel-Max + Channel-Drop +Stochastic Max-pooling 2.31
Multi-digit Number Recognition [6] 2.16
Extended Channel-Max + Channel-Drop +Stochastic Max-pooling 2.01
DropConnect [24] 1.94
Deeply Supervised Nets [15] 1.92

Table 11. Comparison to state-of-the-art methods on SVHN, using Net 2 and the RGB color space.

Method and its first layer configuration RGB LAB HSV
Rectified Conv. + 3D filters 20.73 20.37 23.58
Channel-Max + Channel-Drop 19.04 19.61 20.15
Maxout + non-corrupted inputs (k = 2) 20.27 20.16 23.03
Maxout + non-corrupted inputs (k = 4) 19.52 20.13 22.53

Table 9. Comparison of Test Errors ( %) between different meth-
ods in 3 color spaces, using Net-1. Stochastic Max-pooling is em-
ployed in all the pooling layers of different methods.

Comparison in different color space, using Net-1. We
use the Net-1 structure to fast verify the universal advan-
tage of our framework in three different color spaces: RGB,
HSV and LAB, as illustrated in Table 9. In this experi-
ment, we only change the configuration in the first layer and
keep rest layers of different methods the same; we employ
Stochastic Max-pooling in all the pooling layers of different
methods.

4.3. Experments on CIFAR-100, STL-10 and SVHN

Results on CIFAR-100. To demonstrate the robustness
of our algorithm, we also conduct a comparison on CIFAR-
100 [12]. With the same implementation used for CIFAR-
10, our framework with the basic Channel-Max in the first
layer obtains a test error rate of 34.15%. Our framework
with the extended Channel-Max achieves a test error rate of
32.97%. These two results surpass the current best per-
formance (as shown in Table 8). For the case with data
augmentation, our model with the extended Channel-Max
achieves an error of 28.56%.

Results on STL-10. STL-10 [3] has larger 96×96 pixel

images and less labeled data (5,000 training and 8,000 test)
than CIFAR-10. A very large set of unlabeled examples is
provided in STL-10 to learn image models prior to super-
vised training. In this experiment, we resize all samples
in STL-10 to 32 × 32 image patches to fit the model used
for CIFAR-10 and CIFAR-100. We retrain our model from
scratch, only relying on the labeled samples. With aug-
mented inputs, our extended model obtains a test error of
28.7%, the lowest published result as of writing (Table 10).

Results on Street View House Numbers(SVHN). The
SVHN dataset [18] contains 630,420 32× 32 color images,
divided into training set, testing set and an extra set. In
this experiment, we follow Goodfellow et al. [7] to perform
the data pre-processing. The structure and parameters used
in this experiment are the same to those used for CIFAR-
10. Our best model obtains a test error of 2.01%, which is
comparable to state-of-the-arts results shown in Table 11.

5. Conclusion

We introduce a novel model for image classification
tasks, in which three effective techniques are employed
to regularize deep convolutional networks. In Channel-
Max, we exploit the competition between distinctive fea-
tures to boost the classification results. By Channel-Drop
and Stochastic Max-pooling, the unbalanced training is rec-
tified and the overfitting problem is largely relieved. The
effectiveness and robustness of the proposed framework is
demonstrated by extensive experimentation on four general
purpose image databases.
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