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Abstract

Flow analysis of crowd and traffic videos is an important
video surveillance task. In this work, we propose an algo-
rithm for long-term flow segmentation and dominant flow
extraction in traffic videos. Each flow segment is a tempo-
ral sequence of image segments indicating the motion of a
vehicle in the camera view. This flow segmentation is done
in the framework of Conditional Random Fields using mo-
tion and color features. We also propose a distance measure
between any two flow segments based on Dynamic Time
Warping and use this distance for clustering the flow seg-
ments into dominant flows. We then model each dominant
flow by generating a representative flow segment, which is
the mean of all the time-warped flow segments belonging to
its cluster. Using these dominant flow models, we perform
path prediction for the vehicles entering the view and detect
anomalous motions. Experimental evaluation on a diverse
set of challenging traffic videos demonstrates the effective-
ness of the proposed method.

1. Introduction
Nowadays, we have millions of cameras, all around the

world, in public places like offices, traffic junctions, rail-
way stations etc., capturing video data round the clock. This
has resulted in an increased need for research in automated
analysis of surveillance videos, as it is impossible to mon-
itor this humongous data manually. Research in surveil-
lance automation has given rise to solutions for some of the
classic problems in computer vision such as tracking, detec-
tion, recognition etc. In this work, we propose an algorithm
for extracting long-term flow segments of vehicles and per-
forming flow analysis on the traffic surveillance videos.

A flow in a video can be defined as a temporal sequence
of image segments which are continuous and have a coher-
ent motion along the length of the sequence. In the prob-
lems of flow analysis, motion becomes a key feature as it
captures the essential temporal information of moving ob-
jects. Works such as Particle Video [22], Dense Point Tra-

jectories [23] etc. effectively characterize the long-term
motion in videos. These are primarily particle-based ap-
proaches, where the particles are initialized in regions with
rich texture and are propagated from frame to frame using
the optical flow and appearance consistency criterion. In
this work, we characterize the long-term motion of an ob-
ject in the video as a sequence of image segments. Each
image segment is a temporal instance of a homogeneously
moving connected component. The union of these coher-
ently moving image segments forms the long-term path for
the connected component.

We refer to an entire sequence of the image segments
corresponding to a single connected component as a long-
term flow segment. Our work attempts to extract these flow
segments for all the moving objects in the view frustum of
the camera simultaneously rather than tracking/segmenting
each independently. This task is different from the problem
of object segmentation considering that we do not require
the exact boundaries of moving objects but only smooth
spatio-temporal volumes with homogeneous flow represent-
ing the motion present in the video.

This task of extracting multiple flow segments simulta-
neously is achieved in a frame-by-frame manner by propa-
gating the flow segments from the current frame to the next
frame and initializing any new flow segments on the new
frame. Our algorithm achieves this using the framework
of Conditional Random Fields (CRF) by defining costs for
background, new flow segments and the existing flow seg-
ments. CRF [15] is a probabilistic model which finds an
optimal labeling over structured data by minimizing a de-
fined global energy under the conditions of local smooth-
ness. CRF has been extensively used in vision research in
the last two decades to deal with the problems of structured
prediction [10, 19, 20, 27].

We also develop a method for clustering these extracted
flow segments using a distance measure based on Dynamic
Time Warping (DTW). DTW finds a mapping between two
sequences such that the similarity between the mapped ele-
ments is maximized. Each of the obtained clusters represent
a dominant flow in the video (Fig. 1). We create a model to
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Figure 1: Overview of the proposed method

represent the flow segments of each dominant flow cluster
by mean pooling the time warped samples. Further, we il-
lustrate the applications of our model in predicting the path
of a vehicle entering the camera field of view. Using the
learnt dominant models, any anomalous movement i.e., a
vehicle moving along an unusual path, can also be detected.

The rest of this paper is organized in the following man-
ner: Section 2 discusses recent related work. Section 3 de-
tails the proposed method of extracting long-term flow seg-
ments from a video and clustering them to obtain dominant
flows. We also discuss its applications: path prediction,
anomaly detection. Section 4 discusses the experimental
evaluation of the proposed method. We conclude with a
short summary of the proposed method in Section 5.

2. Related Work
Recently there has been a good amount of work in char-

acterizing and analyzing motion patterns in surveillance
videos. These approaches primarily fall into three cate-
gories —flow field/particle based [1], topic models based
[7, 8, 14, 25] and the ones based on analysis of trajectories
[16, 17, 18].

Ali et al., [1] proposed a flow field based approach for
segmenting and analyzing motion in crowd videos. Their
approach involves studying the Lagrangian dynamics of
particles propagated on flow fields generated by a moving
crowd. The evolution of these particles over time is tracked
using a Flow Map and the eigenvalues of their deformation
tensor is used to reveal the Lagrangian Coherent Structures
(LCS) of the underlying flow. Using these structures, the
flow field is divided into regions, each with different motion
dynamics, and the final flow segments are identified. But
this approach assumes that the flow in the video is static
and doesn’t change with time i.e., a pixel location in the
frame can only have a single flow going through it.

Also, there have been approaches which analyze the re-
current patterns in surveillance videos to extract dominant
flows and detect anomalies in the framework of topic mod-
els. Kwak et al., [14] used Latent Dirichlet Allocation
(LDA) model for abnormal event detection. Varadarajan et

al., [25] proposed motif - a sequential topic model, which
models not only the co-occurrence of words in a docu-
ment but also their temporal order. Further, they proposed
a method for recovery of sparse distributions to represent
the starting times of various topics using regularization con-
straints.

Another popular approach in this area is based on the
analysis of motion trajectories. Morris et al., [17, 18]
demonstrated that trajectory patterns learned by clustering
can demonstrate the various typical behaviors in a surveil-
lance video. They have done extensive experiments with a
wide variety of distance measures —DTW, PCA, Hausdroff
etc., for clustering and demonstrated that warping based ap-
proaches generally work better.

Kim et al., [11] represented trajectories as continuous
dense flow fields using Gaussian Process Regression. Upon
learning different classes of motion using this representa-
tion and a novel random sampling strategy, they perform
path prediction and anomalous event detection by compar-
ing the trajectories of vehicles with the learned models.

Our approach for flow analysis deals with long-term flow
segments, which can be thought of as an extension to the
trajectories and capture the spatio-temporal information of
the moving object more effectively.

3. Proposed Method
In this section, we present our method for long-term flow

segmentation in videos followed by the algorithm for clus-
tering them and modeling dominant flows. An overview of
the proposed method is shown in Fig. 1.

3.1. Long-term Flow Segmentation

In this work, our goal is only to obtain smooth space-
time flow segments with coherent motion and not to get a
boundary accurate object segmentation. This means that
two objects, in close proximity, moving together for their
entire duration will be segmented out as a single flow. These
extracted flow segments can be used for various flow anal-
ysis tasks in video surveillance, like dominant flow extrac-
tion, path prediction, anomalous flow detection etc.



For flow segmentation, our approach uses optical flow
vectors and local color histograms as features in the frame-
work of CRF which is a probabilistic graphical model for
the joint labeling of structured data. In this model, the struc-
ture present in the data is captured by the edges of an undi-
rected graph while the data itself is represented as features
of the nodes in the graph. The model aims to find an op-
timal labeling for each node in the graph while maximiz-
ing the joint probability of the overall labeling. For this,
the model assumes Markovian property - the probability of
a node taking a label is conditionally independent of the
non-neighboring nodes given the features of its neighbor-
ing nodes and their labels. With the Markovian assumption,
the joint probability of a labeling when expressed as energy,
Eq. (1), is a summation of potentials defined over cliques in
the graph, Eq. (2).

P (x) =
1

Z(x)
exp(−E(x)) (1)

E(x) =
∑
c∈CG

φc(xc) (2)

Here, x is a possible labeling over the nodes of an undi-
rected graph G and CG denotes the set of possible cliques in
this graph. The optimal labeling is the one that minimizes
the overall energy defined in Eq. (2).

The proposed flow segmentation method operates in a
frame-by-frame manner by propagating the currently active
flow segments on to the next frame and initializing new flow
segments whenever a new moving object is found. Both the
propagation and initialization are done using a CRF con-
structed on the image grid of the subsequent frame. Each
pixel in the frame is considered to be a node and cliques of
size 4 are formed by connecting each pixel with its top, left,
bottom, and right pixels. The pixel nodes of this CRF are
characterized by three features - location, optical flow and
local color histogram.

Let there be K active flows at a time instant t. We prop-
agate these flow segments to the frame at time instant t+ 1
by constructing a CRF and solving it to obtain an optimum
labeling for each pixel node into the following:

- Background
- New flow segment
- One of the existing K flow segments

Thus the optimization of the CRF is carried out over a
set of K + 2 possible labels for each node. The unary and
pair-wise terms for the CRF are described below.

3.1.1 Unary Cost

Background The nodes in the graph where the motion is
negligibly low are encouraged to take the background label
by defining the unary cost to be a decreasing function with

fall in the flow magnitude. Specifically, the unary cost for a
node u at location xu, with optical flow vector fu, for taking
the background label lB is defined as

ϕu(lB) = C1 ∗ exp(−α2) (3)

where C1 is a scaling constant and α is defined as

α =
thmag(xu)

‖fu‖2
(4)

Here, ‖.‖ denotes the l2 norm and thmag is a location-
dependent threshold on the magnitude of optical flow to
determine noisy flow vectors. This is calculated using the
median flow statistics at each location. This makes the
threshold location dependent, enabling it to deal with the
problem of near-by and far-from camera motion.

New Flow Segment This label denotes regions where a
new vehicle has just entered the view or an existing vehicle
has started to move. The unary cost for this label favors
nodes with a high motion magnitude. The unary cost for a
node u at location xu, with optical flow vector fu, to belong
to the new segment label lN is calculated as

ϕu(lN ) = C1 ∗ exp(−
1

α2
) (5)

where α is defined as in Eq. (4). Each connected compo-
nent in this segment will be considered as an independent
flow segment and will be assigned a new label in the
subsequent frames.

Existing Flow Segments Now we define the unary costs
for a node to belong to any of theK existing flow segments.
Let the kth flow segment be FSk and the corresponding la-
bel be lFSK

. To facilitate the computation of unary cost for
a pixel node u to take this label lFSK

, we create a likelihood
map on the t+1th frame. This likelihood map is computed
using a non-parametric model built from the pixels of flow
segment FSK in the tth frame.

Let these pixel nodes from frame t be {vi}Ni=1 and
their location and optical flow respectively be {xvi}Ni=1 and
{fvi}Ni=1. The likelihood for the node u in frame t + 1 to
take the label lFSK

is given as

L(label(u) = lFSK
) =

1

N

N∑
i=1

Kx(xvi+fvi−xu)Kf (fvi−fu)

(6)
where Kx, Kf are spatial and optical-flow kernels re-

spectively. In this work, we have used multi-variate Gaus-
sian kernels whose variances are determined from the statis-
tics of magnitude of optical flow in the video. Since the
Gaussian falls quickly, the likelihood is computed only for
pixels within the vicinity of {xvi + fvi}Ni=1 and is assumed
a very low constant value elsewhere. This is done to avoid
the overhead of computing likelihood over the entire frame.



The likelihood computed for a pixel node is converted to
unary cost as

ϕu(lFSk
) = −log(L(label(u) = lFSk

)) (7)

This formulation makes the unary cost a decreasing
function of the node’s spatial proximity and motion similar-
ity to the pixels of the flow segment in the previous frame.

The regularization performed during the computation
of optical flow can quite often result in over-smoothening.
This results in blurring of the optical flow vectors near
the object boundaries and can cause background pixel
nodes to be labeled as flow segments. This problem is
countered by scaling the defined non-background unary
costs, i.e., ϕu(lN ), ϕu(lFSk

), by a factor proportional
to the Bhattacharya similarity between the local color
histograms of pixel node in the frame t + 1 and that in the
background model. This amplifies the non-background
unary costs at background regions and helps in preserving
the boundaries. Here, the local color histograms are
computed using the linear-time implementation of Locality
Sensitive Histograms [9].

3.1.2 Pair-wise Cost

In our CRF formulation, we have used the Potts model for
the pair-wise term as there is no prior information regard-
ing the neighborhood relationship between labels. The pair-
wise cost for two neighboring nodes u and v taking different
labels is given as

ψu,v = C2 ∗ exp(−‖fu − fv‖2) (8)

where C2 is a scaling constant, fu and fv are the optical
flow vectors of nodes u and v respectively.

3.1.3 Inference in CRF

With the unary and pair-wise cost terms defined for the
CRF, optimization is carried out to find a labeling which
minimizes the following overall cost.

E(x) =
∑
u

ϕu(label(u)) +
∑
u,v
u6=v

ψu,v(label(u), label(v))

(9)
By assigning optimal labels for all the nodes, existing

flow segments are propagated from the current frame t to
the next frame t + 1 and simultaneously any possible new
flow segments are initialized.

Since the problem of exact energy minimization for the
formulated CRF is NP hard, we use an approximate solu-
tion. This is determined using the graph cuts based algo-
rithm proposed by Boykov et al., [3, 4, 6, 12]. Their algo-
rithm is known to converge quickly for CRFs formulated on

image grids by making very large moves towards the min-
ima whenever possible. The moves made by the algorithm
are primarily of two kinds: α−β swap and α expansion. In
α−β swap, for an arbitrary set of pixels, the labels α, β are
swapped. These swap moves are made until the global en-
ergy can not be further reduced by a swap. In α expansion,
an arbitrary set of pixels are assigned the label α. These
moves generate a labeling such that its energy can not be
further brought down by any expansion move.

One of the problems that could be encountered during
flow segmentation is flow bifurcation. This can happen
when two objects, which are very close by, move together
for a certain distance and then take different paths. To han-
dle such scenarios, we assign different labels to each of the
component flows, in the frame where they begin to diverge.
The segmentation procedure is then reapplied in the reverse
temporal order, over the original combined flow pipe, with
the two new flows as possible labels. This splitting up of
the flow is done within the same CRF framework using the
above formulated unary and pair-wise costs.

3.2. Flow Clustering

Each flow segment can be thought of as a sequence of
binary masks. Each mask contains exactly a single con-
nected component indicating the position of an object at a
time instant. Let FS1 = {B1

1 , B
2
1 , B

3
1 , ..., B

M
1 }, FS2 =

{B1
2 , B

2
2 , B

3
2 , ..., B

N
2 } be two flow segments and Bi

k be the
ith binary mask of the kth flow segment. In order to perform
clustering of these flow segments, we first define a measure
of distance between any two binary masks followed by a
distance measure for flow segments.

The distance between two binary masks Bi
1 and Bj

2 is
defined as

dist(Bi
1, B

j
2) = ‖c(Bi

1)−c(B
j
2)‖2+|r(Bi

1)−r(B
j
2)| (10)

where c(Bi
1), r(B

i
1) denote the centroid location and

mean radius of the connected component in binary mask
Bi

1 . This is illustrated in Fig. 2 by placing the connected
components of both the binary masks on the same frame.
Also, we define the mean of two binary masks Bi

1 and Bj
2

to be a binary mask with a single connected component with
centroid 1

2

(
c(Bi

1) + c(Bj
2)
)

and radius 1
2

(
r(Bi

1) + r(Bj
2)
)
.

With the distance measure defined by Eq. (10), we find
a frame-to-frame mapping between FS1 and FS2 using the
technique of Dynamic Time Warping(DTW) [21, 24]. The
process of time warping results in a frame-to-frame map-
ping between the two flow segments with minimum cumu-
lative cost over the mapped frames while ensuring that the
mapping is both continuous and monotonic. Finally, we de-
fine the distance between two flow segments to be the over-
all cost of warping them with respect to each other.

Similar to Kim et al. [11], we have considered only com-
plete flow segments for the clustering. Let there be N flow



rj 2

Bi
1

Bj
2

ri 1

d

Distance(Bi
1, B

j
2)

= max(d + (ri1 - r
j
2), d + (rj2 - r

i
1))

= d + |ri1 - r
j
2|

d + (
ri 1

 - r
j 2

)

d + (
rj 2

 - r
i 1

)

Figure 2: Distance between binary masks

Figure 3: (a) Sequences A and B (b) Dynamic Time Warp-
ing of A and B (c) Sequence A warped to B and sequence
B warped to A

segments obtained from the flow extraction step after prun-
ing out noisy and incomplete flow segments. We construct
a distance matrix D of size N × N where D(i, j) is the
overall warping cost between the flow segments FSi and
FSj . Using this distance matrix, we cluster the flow seg-
ments using the Spectral Clustering algorithm [5, 26]. This
will result in semantic clusters i.e., flow segments in a clus-
ter will closely resemble each other in terms of their path
and correspond to a dominant flow of the video.

3.3. Modeling the Dominant Flows

Now, we create model flow segments to effectively rep-
resent each of the clusters. This model flow segment is also
a sequence of binary masks.

Let there beM flow segments FS1, FS2, . . . , FSM , be-
longing to a cluster k. The representative model, FSmodelk ,
for this cluster can be defined to be the centroid of this clus-
ter. In the sense of the proposed distance measure for flow
segments, this centroid can be obtained as

FSmodelk = argmin
FS

M∑
i=1

dwarp(FS, FSi) (11)

Algorithm 1 : Modeling a Dominant Flow

Require: M Flow Segments of a cluster k: {FSi}Mi=1

Ensure: Model Flow Segment: FSmodelk

%% Assume the longest flow segment as initial model
FSmodelk = FSj s.t. j ∈ [1M ]

while !convergence(FSmodelk) do
for i = 1 → M do

%% Time align the sequence to model using DTW
as shown in Fig. 3
FSwarp

i = warp(FSi, FSmodelk)
end for

%% Update the model to be mean of all warped se-
quences
FSmodelk = mean({FSwarp

i }Mi=1)
end while

where dwarp(FS, FSi) denotes the warping cost be-
tween FS and FSi.

We propose an approximate solution to the optimization
problem in Eq. (11) as follows: we start by assuming the
longest flow segment from the cluster as our initial model.
All the flow segments in that cluster are warped to this
model as illustrated in Fig. 3 (c). After warping, each of
the warped flow segments will have the same number of
frames as that of the model. These are then average pooled
across each frame to obtain the new model. This process
is then repeated until the model converges as described in
Algorithm 1.

3.4. Path Prediction

Since the dominant flow segments indicate the paths
commonly traversed in a video, we can predict the path of
a vehicle entering the camera field of view by comparing
its incomplete flow segment with the representative models
learned for each dominant flow. Let the partial flow segment
of a vehicle be denoted by FStest. We warp this flow seg-
ment with each of the dominant flow models and obtain a
warping cost as described in the Section 3.2. The likelihood
for a vehicle with the partial flow segment FStest to move
along the kth dominant flow can be related to their warping
cost as

Lk(FStest ∈ FSmodelk) = 1− dwarp(FStest, FSmodelk)
K∑
i=1

dwarp(FStest, FSmodeli)

(12)
where dwarp(FStest, FSmodelk) denotes the proposed

warping based distance between the flow segments FStest



and FSmodelk .

3.5. Anomaly Detection

The proposed dominant flow models can also be used to
detect anomalies due to wrong turn/path in traffic. The flow
segment of an object moving in an anomalous path does
not warp well to any of the learned dominant flow models
resulting in a high warping cost. Further, the anomaly score
for a test flow segment can be defined as

A(FStest) = min
k

(dwarp(FStest, FSmodelk)) (13)

4. Experiments

We have evaluated the proposed method of dominant
flow extraction on the following traffic videos: UCF video
[2], Adam dataset [11], Junction video.

The UCF video is a short video of 1 minute 11 sec-
onds duration with 5 dominant flows. Among these dom-
inant flows, a few flows have paths with a common ori-
gin/destination. Also some of the flows have paths inter-
secting with each other. However these intersecting flows
do not occur at the same time. The proposed method for
flow extraction has obtained 45 complete flow segments
from this video. Since the clustering is unsupervised, quan-
titative evaluation of the clustering would require obtaining
a one-to-one correspondence between clusters formed and
the ground-truth labels. We have used the Hungarian algo-
rithm [13] to find the correspondence which minimizes the
number of misclassified flow segments. Using this, we have
obtained a clustering accuracy of 100% on this video.

In the Adam dataset, we have used three videos which
do not contain any anomalous motions to learn the domi-
nant flows. These videos together are about 7 minutes 23
seconds duration and they have 4 dominant flows. This
video has the additional complexity of amplification of ve-
hicle movements near-by camera as the view plane is not
parallel with the camera (Fig. 4). We have performed clus-
tering on the extracted complete flow segments using the
proposed warping based distance and obtained a clustering
accuracy of 100%.

The 4 dominant flow models built using these clustered
flow segments are shown in Fig. 4. The flow models are
represented as points scattered along the length of the flow.
The color of the points denote the temporal evolution of
the flow where green indicates the starting point and red
indicates the ending point of the flow.

The Junction video is captured at a traffic intersection for
a duration of 13 minutes 47 seconds. It contains 12 differ-
ent dominant flows of all possible paths in a 4-road junction.
This video also has high intra-class variance for each dom-
inant flow. 267 complete flow segments are extracted from
this video. These flow segments, upon clustering, are clas-

Figure 4: 4 dominant flows captured for the Adam video

Figure 5: Anomaly Scores for a vehicle moving along a
regular path and an anomalous path.

sified into the 12 dominant flows and the proposed method
has obtained a classification accuracy of 96.25%.

The 12 dominant flow models built using these clustered
flow segments are shown in Fig. 6. Out of the 12 possible
paths in the junction, the flow which starts from the left-
center and ends in the top-center of the image frame has not
been captured by the algorithm. This is because of the very
few complete flow segments extracted which represent this
path.

The application of dominant flows in predicting the path
of a vehicle is illustrated for the Junction Video in Fig. 7.
In each of Fig. 7 (a), (b) the red bounding box indicates the
vehicle for which the path is being predicted. At a time in-
stant, the predicted path for the vehicle is indicated by color
markers - green indicating the starting position and red in-
dicates the end of the path. The size of the markers indicate
the likelihood of the vehicle taking a particular path. As



Figure 6: 12 dominant flows captured for the Junction video

(a)

(b)

Figure 7: Path prediction for vehicles entering the camera view. Colored markers indicate predicted paths for vehicle in the
red bounding box and the size of the markers indicated the likelihood of each path.

it is evident from the Fig. 7 the likelihoods are updated as
the time progresses and they become less degenerate. Also
the path with the highest likelihood matches with the actual
path taken by the vehicle.

In order to demonstrate the performance of the proposed
method in detecting vehicles taking unusual paths, we have
introduced synthetic anomalies in the Junction video. These
are generated by time reversing the motion of certain vehi-



Anomaly scores for a vehicle moving along a regular path

Anomaly scores for a vehicle moving along an unusual path
(a)

Figure 8: Detection of vehicles moving in unusual paths using the extracted dominant flows. Score above each bounding box
indicates the anomaly score for the vehicle.

cles. The frames in the top row of the Fig. 8 (a) are taken
from a sequence depicting a vehicle moving along a regu-
lar path. This sequence is temporally reversed to introduce
anomalous motion and the corresponding frames are shown
in the bottom row.

We have performed long-term flow extraction on both of
these sequences and calculated the anomaly score at each
frame. The anomaly score at a time instant is shown a the
bounding box of the vehicle in each frame. The color of
the bounding box also indicates if the vehicle movement
is an anomaly - green for vehicles moving along dominant
paths and red for the anomalies. As evident from the figure,
the anomaly scores for the bottom row, in Fig. 8 (a), are
higher than that of the top row indicating that the vehicle is
moving along an unusual path. For the case of Fig. 8 (a), the
anomaly scores at each frame in the sequence are plotted in
Fig. 5.

The dominant flows obtained from these three datasets
are evaluated quantitatively by calculating the Jaccard simi-
larity measure of the obtained outputs with the ground truth
dominant flows. These results are presented in Table. 1

5. Conclusion
The main contribution of this work is a novel method

for the extraction of long-term flow segments which char-
acterize the movements of vehicles in traffic surveillance
videos. This long-term flow segmentation is done using the
Conditional Random Fields using the motion and color in-
formation. These flow segments are more informative than
the usual trajectories as they capture the spatial extent of a

Video Sequences Jaccard Similarity
UCF 0.71

Adams 0.80
Junction 0.63

Table 1: Jaccard Similarity Measure with Ground-truth
Dominant Flows

moving body along with its path.
We have defined a time warping based distance mea-

sure for these flow segments and used this distance measure
for clustering the flow segments into dominant flow clus-
ters. We have also created a model for representing each
dominant flow by mean pooling over the warped flow seg-
ments belonging to its cluster. Further, we have illustrated
its applications in predicting the path of vehicles entering
the camera view and detecting vehicles moving along un-
usual paths.
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