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Abstract

Commercial motor vehicles are mandated to display a
valid U.S. Department of Transportation (USDOT) identifi-
cation number on the side of the vehicle. Automatic recogni-
tion of USDOT numbers is of interest to government agen-
cies for the efficient enforcement and management of the
commercial trucks. Near infrared (NIR) cameras installed
on the side of the road, to capture an image of an incom-
ing truck, can capture USDOT images without distracting
the drivers. In this paper, we propose a computer vision
based method for recognizing USDOT numbers using an
NIR camera system directed at the side of the commercial
vehicles. The developed method consists of two stages; first,
we localize the USDOT tag in the captured image using the
deformable part model (DPM). Next, we train a convolu-
tional neural network (CNN) using street-view house num-
ber (SVHN) dataset1 and sweep the trained classifier across
the localized region. Based on the calculated scores, we in-
fer the digits and their locations using a probabilistic in-
ference method based on Hidden Markov Models (HMM).
The most likely digit sequence is determined by applying the
Viterbi algorithm. A data set of 1549 images was collected
on a public roadway and is used to perform the experiments.

1. Introduction
The Federal Motor Carrier Safety Administration (FM-

CSA) requires that an active and valid USDOT identifica-
tion number must be properly displayed on both sides of
the vehicle where the identification number is preceded by
the letters “USDOT” [1]. Unlike license plates, USDOT
numbers are assigned to vehicle-owners rather than vehi-
cles so that commercial vehicles that belong to the same
person/company have the same identification number to en-
able collecting and monitoring company’s safety informa-
tion acquired during audits and inspections [1].

1The SVHN data set is restricted for non-commercial use only and is
no way used in a commercial product.

Several transportation management entities are inter-
ested in automated recognition of USDOT numbers using
NIR cameras mounted at the road-side at weigh/inspection
stations. The motivation for transportation management
entities to read USDOT numbers is two-fold: a) to en-
sure rapid validation of vehicle credentials and, b) to
pre-populate vehicle and driver information at a inspec-
tion/weigh station. The reason for USDOT recognition in
addition to license plate recognition (LPR) is to increase
the recognition accuracy by fusing the results from LPR
and DOT recognition systems. Reading USDOT number
reduces the pool of eligible LPR numbers which, in turn,
increases the overall accuracy and reduces congestion at the
inspection/weigh stations.

A common practice to locate and recognize USDOT
numbers in captured images is by using Optical Charac-
ter Recognition (OCR) engines to first identify the text re-
gions in the image and then reading the “USDOT” tag in
the text regions using an OCR engine. OCR-based local-
ization, however, yields low detection performance due to
the fact that the USDOT NIR images are captured under a
variety of illumination conditions (e.g., day and night time,
different weather conditions etc.) and can be noisy and have
low contrast. Using pre-trained OCR engines (e.g., Tesser-
act) for recognizing the USDOT number after localization
is also challenging given the poor image quality.

In this paper, we propose an end-to-end computer vision
based method for recognizing USDOT numbers from vehi-
cle side-view images captured by a NIR camera, which is
commonly used in transportation imaging systems to en-
sure that the illumination does not distract drivers. Our
algorithm for USDOT number recognition consists of two
stages: first, we utilize an elastic deformation model [17, 3]
for localizing the USDOT tag in the captured image. Next,
we train a CNN using SVHN dataset [9] and sweep the
trained classifier across the localized USDOT number re-
gion. Based on the calculated scores, we infer the digits and
their locations using a probabilistic inference method based
on Hidden Markov Models (HMM). The most likely digit
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sequence is determined by applying the Viterbi algorithm.
We evaluated the performance of the proposed method on a
dataset of 1549 images collected on a public roadway.

Recognizing text from natural scene images has been
considered in several studies in the literature and is still an
active research area [5, 15, 16, 10, 11, 2, 12, 4]. Some of
the methods in the literature leverages the language model
to constrain word recognition problem [15, 16], which is not
feasible in the USDOT number recognition. Several others
first perform a segmentation of the characters and performs
classification to recognize the text [2, 12]. The character
segmentation is, however, highly challenging with poor im-
age quality (e.g., noisy, low contrast etc.). In order to ad-
dress recognition in poor quality images, sequential charac-
ter recognition using, for example, a sliding window search
has been exploited [15, 16]. In a very recent work, a hy-
brid approach is proposed for segmentation and recognition
using CNN and HMM model to recognize the street-view
house numbers [5].

Our first contribution in this paper is posing a new prob-
lem of recognizing USDOT numbers from vehicle side-
view images captured by NIR cameras and proposing an
end-to-end system for the USDOT number recognition
problem. Our second contribution is localizing the USDOT
number in the captured NIR image by detecting the USDOT
tag using a deformable part model. Unlike the classical lo-
calization approaches based on OCRs, which is challeng-
ing in low quality images, the proposed localization algo-
rithm can accurately detect the USDOT tag even in noisy
and low constrast images. Our third contribution is apply-
ing a “transfer learning” where CNN classifier is trained
using SVHN dataset and applied in a different domain to
eliminate data gathering and manual annotation required for
training the classifier.

The organization of this article as follows. Section 2
briefly summarizes the image acquisition for capturing US-
DOT images. In Sec. 3, we describe the details of our
methodology for localizing USDOT number from captured
NIR images using the deformable parts model. Sec. 4
presents our method for recognizing USDOT number from
the localized regions. Evaluation of the methods using real
world road images are presented in Sec. 5. Sec. 6 discusses
the key findings of the present study.

2. Image Acquistion
A road-side NIR camera is installed and used to collect a

dataset of 1549 USDOT images for both day and night time.
Figure 1 shows samples of images of the side of a truck with
high and low contrast. The particular images not only con-
tain the US DOT number at the bottom of the door, but the
vehicle identification number in the center and the name of
the trucking company above that. Other trucks may con-
tain additional information such as the weight of the truck

and the location of the trucking company. A full image of
the truck may also contain text in the form of marketing
signage, and information that identifies the function of the
truck.

Figure 1. USDOT image samples with high contrast (a) and low
contrast (b) acquired by an NIR camera.

The USDOT number is written on the side of the truck
following the USDOT tag. The USDOT tag and number can
be written with a variety fonts and sizes on the side of the
truck. This variation, in addition to other source of noises,
low contrast and illumination variation, poses a challenge
on the recognition accuracy. Figure 2 illustrates several ex-
amples of cropped USDOT number images with variety of
fonts and sizes. Some of these images are very noisy since
captures of the side of the truck are not always performed
under optimal conditions. Imaging at night in an ongoing
traffic requires a NIR camera with low exposure time caus-
ing images to be noisy and low contrast. There are also
other variations that mitigate the recognition performance
such as dark on light or light on dark, embossing, glare, ex-
tra characters, blur etc. All these variations in turn have a
negative impact on the recognition accuracy. So the local-
ization and recognition system has to account for this vari-
ation in the operational phase.

Figure 2. USDOT number images with a variety of fonts and qual-
ity.

3. USDOT Number Localization
Figure 3 shows an overview of our end-to-end method-

ology for USDOT number recognition. For localizing the
USDOT number, we first detected the USDOT tag in the
captured image as the number is typically preceded by the
tag. Specifically, we train an appearance-based model to



detect and locate USDOT tag in a given vehicle side-view
image using a deformable part model where the score for a
particular configuration of landmarks L in a given image I
is defined as

S(I, L) = App(I, L) + Shape(L) (1)

In this function, App(I, L) leverages the histogram of
oriented gradients (HoG) features extracted at each pixel lo-
cation. The appearance evidence of each of the landmarks
is included in the App and the evidences for the spatial loca-
tions of the landmarks with respect to each other is included
in the Shape term. In [3], this model was viewed as a linear
classifier with unknown parameters, which is learned dur-
ing training using a latent SVM. The training constructs a
model by learning the appearance at each landmark point
and the relationship between points.

Figure 3. An overview of the methodology for recognizing US-
DOT numbers from side-view NIR images.

Figure 4. Landmarks located on a USDOT tag (a) and the trained
model using the located marks (b).

We note that USDOT number is sometimes preceded by
DOT instead of USDOT tag. In order to capture this vari-
ation, we trained our model for DOT, which is included in
both tags. For this purpose, we located 15 landmarks in our
positive samples to model the appearance of DOT/USDOT
tag. The red dots in Fig. 4 show the located landmarks and
the resulting DPM model. The number of landmark points
can be adjusted based on the amount of unique features to
be included. For example, for detecting faces in different
poses in an image, more than 30 landmark points are needed
in order to include unique facial features such as nose and
eyes. In DOT/USDOT tag localization, the edges are mostly
straight lines or curves. Hence, there is less benefit to in-
clude many landmark points as increasing number of land-
mark points can significantly increase the amount of manual
work in the training phase and computational cost in the on-
line application. Since the relationships between landmark
points are processed through dynamic programing, the end
points of the sequence of points cannot be connected. The

choice of where to position the end points can potentially
affect the performance and thus must be done with care.
Also note that in our specific implementation, we used only
one mixture to develop the model but more than one mix-
ture can also be used to capture different appearances of the
USDOT tag.

For an incoming image I , we identify a list of candidate
“USDOT” tag regions by maximizing the score function Eq.
(1) over L using dynamic programming to find the best con-
figuration of parts [17, 3].

S∗(I) = max
L

S(I, L) (2)

Once the location of the “USDOT” tag is detected, the
location of the USDOT number can be determined with re-
spect to the location, size, and aspect ratio of the detected
tag. In vast majority of the cases, the USDOT number is lo-
cated on the right side of the DOT/USDOT tag and has the
same size and aspect ratio as the USDOT tag. After plot-
ting the histograms of USDOT number locations/sizes with
respect to the USDOT tag locations/sizes, we observe that
histograms form approximate Gaussian distributions with
respect to the USDOT tag sizes and locations. Based on the
observed histograms, an image patch next to the detected
USDOT/DOT tag whose height and width is determined by
the size of the detected tag is determined as the location of
the USDOT number. Figure 5 shows sample image patches
automatically cropped from a region next to detected US-
DOT tags based on the observed histograms and after ap-
plying low level image processing for tight cropping.

Figure 5. Localized USDOT numbers.

4. USDOT Number Recognition
As shown in Fig. 5, the localized USDOT numbers show

a large variation in fonts, which requires that the training
data should capture this variation. We used SVHN dataset
in the training for each digit (i.e. 0 to 9) and trained a CNN
classifier.

CNNs have shown outstanding image classification per-
formance in many fields [8]. The success of CNNs is at-
tributed to their ability to learn rich mid-level image repre-
sentations as opposed to hand-designed low-level features
used in other image classification methods [13]. Recently,
image representations learned with CNNs have been effi-
ciently transferred to other visual recognition tasks with
limited amount of training data [7]. In the problem of rec-
ognizing USDOT numbers, the data labeling is very expen-
sive. This paper showed that transferring the knowledge



of CNN models learned on similar dataset such as SVHN
to recognize the USDOT numbers works very well. In our
implementation, the CNN classifier is trained using the net-
work described in [8]. We applied the method described
by Jarret et al. [6] of using locally normalizing sets of in-
ternal features, at each stage of the model. And the use
of smoother pooling functions, such as the L2 instead of
max-pooling [14] showed better results. To minimize the
false positive rate we trained four different CNN models at
different orientations (0,90,180,270) where each model was
trained separately and final score was calculated by averag-
ing over the four classifiers.

After the classifier is trained, a fixed window is swept
across a localized USDOT image and the classifier is ap-
plied to the image at each window location. The result is
a matrix of character confidences, for each digit, at each
window location. The vertically cropped USDOT image is
resized to a height of 32 pixels and a 32 × 32 pixel win-
dow is swept across it. This window size appears to be well
suited for localized USDOT images. Figure 6 illustrates the
sweeping window process. The figure shows a window (in
red) being swept across the localized USDOT number. We
also plot the maximum score at each window location. The
peaks in the plot represent the set of candidate digits.

Figure 6. Sliding window OCR.

For decoding the USDOT number for a given sequence
length N , we formulate the problem as

c∗ = argmax
c

p(c1, c2, ..., cN , x1, x2, ..., xN ) (3)

where ci ∈ 0, 1, ..., 9’s represent possible digits from the
digit set and xi’s represent the corresponding digit loca-
tions. Modeling the multidimensional density function, es-
pecially in the absence of physically inspired model, con-
stitutes a hard task. We therefore, use HMM to model

the problem of finding the highest probability sequence and
simplify the joint density function in Eq. 3. Figure 7 shows
a schematic of the HMM where A represents the transition
matrix and O the emission matrix. Aj,i represents the tran-
sition probability to go from character cj at xj to character
ci at xi. Oi is the OCR probability for character ci at loca-
tion xi. In the HMM formulation, the optimization problem
in Eq. 3 reduces to

c∗ = argmax
c

N∏
i=1

p(ci|xi)p(xi|xi−1) (4)

where p(ci|xi) and p(xi|xi−1) represent the emission and
transition probabilities, respectively, which need to be mod-
eled to find the highest probability sequence. We modeled
the transition probability as a function of the digit spacing
(xi − xj). Even though the digit to digit spacing within
a localized USDOT image shows variation for some digits
(e.g., the spacings between 1 and the other digits are usually
larger) it typically has a pre-dominant frequency (i.e., corre-
sponding to the average digit spacing) that can be estimated
by performing a fast Fourier transform (FFT) analysis on
the calculated CNN scores. Following the calculation of av-
erage digit spacing T , we modeled the transition probability
as a step function where the probability is set 0 if the digit
spacing deviates more than T/2 from the average spacing
(T ) between the digits. Using a step function instead of a
Gaussian distribution for the transition probability yielded
better results as the digit spacing can largely vary in US-
DOT numbers between different digits.

Figure 7. Graphical representation of HMM model for USDOT
number decoding.

We next calculate the emission probabilities (p(ci|xi))
from the calculated CNN scores. We observe that the CNN
scores can vary between 0 to −25 where higher CNN score
means higher confidence for the estimated digit. We also
note that CNN scores infer different confidences for differ-
ent digits. In order to address this variation we calculated
the CNN scores for the validation samples in the SVHN
dataset and fit exponential distributions for each digit based
on the calculated scores. Figure 8 shows the exponential
distributions fitted for each digit given the CNN scores of



Figure 8. Posterior probabilities for different digits versus CNN
scores.

the SVHN dataset. Based on these distributions, we normal-
ize the CNN scores of the USDOT numbers and calculate
the emission probabilities for each digit.

Given the emission and transition probabilities, we de-
coded the highest probability digit sequence using Viterbi
algorithm, which leverages dynamic programming to solve
the optimization problem in Eq. 4. Note that our problem
formulation for finding the best sequence is for a given code
length N . The typical length of USDOT numbers change
from 5 to 8 with the majority of them having a length of
6 and 7 (e.g., > 80% in our USDOT dataset). The Viterbi
algorithm can be repeated for different code lengths and the
best code can be selected from the codes returned by differ-
ent code lengths.

5. Experiments

In this section, we evaluated the performance of the
proposed algorithm for USDOT number localization and
recognition. The algorithm is implemented in Matlab and
tested on a set of images acquired by the image acquisition
system as described in Sec. 2.

We have conducted our experiments on a database of
USDOT images acquired from a real-world application set-
ting. In our set, we had 1549 USDOT images captured dur-
ing both day-time and night time. The resolution of the cap-
tured images was 2448× 1248 and the size of the height of
the USDOT tag was changing between 20 to 100 pixels.
Figure 1 shows two sample USDOT images in our database
captured during daytime, where the size, font and contrast
of the USDOT tags/numbers vary.

5.1. Localization

We first trained an appearance model for DOT tag us-
ing 15 landmarks located around the tag. In our training,

Figure 9. USDOT tags used for training the appearance model.

we used 100 positive and 100 negative samples. Figure 9
shows the USDOT tags used for training the appearance
model. For each positive sample, we manually located the
landmarks and trained our model using a linear SVM. The
model was then tested on 1549 test images and we observed
detection scores. In 90% of the images, our model correctly
located the USDOT tag as the highest score window. In 5%
of the images, the proposed method identified the USDOT
tag as the second highest window and 2% of the cases the
USDOT tag was identified as the third highest score win-
dow. This provided significant improvement over the OCR-
based localization approach.

5.2. Recognition

Figure 10. Accuracy-yield curves for the proposed probabilistic
inference approach for USDOT number decoding using CNN fea-
tures and its comparison with Tesseract.

We next evaluated the performance of the proposed prob-
abilistic inference approach on the localized USDOT im-
ages. In Fig. 10, the proposed approach for USDOT num-
ber decoding is compared with Tesseract on the localized
images. In order to make a fair comparison, we limited the
dictionary to only digits for Tesseract. For the proposed ap-



proach, we plotted two curves in the figure. The dotted red
curve corresponds to the case when the length of the digit
sequence is unknown. In this case, the Viterbi decoding
is repeated for each code length and the best code is se-
lected among the codes returned for each code length using
heuristics based on the code probability. The dashed blue
curve represents the case assuming the code length is known
and Viterbi decoding is performed only for the given code
length to find the highest probability code sequence. This
case forms an upper bound on the Viterbi decoding when
the code length is unknown. As is evidenced by Fig. 10, the
proposed approach vastly outperforms Tesseract, especially
in the high yield region. We expect that the performance
of the unknown code length case can be further improved
by (a) rejecting false characters that show up as peaks in
the CNN scores by introducing a null character in the OCR
training set to represent background and half characters in
a manner similar to [5], and (b) training a classifier to pick
the best code length.

Figure 11. Performance of the proposed USDOT number recogni-
tion framework. The images in the first row presents the wrong
recognitions due to the characters circled. The images in the sec-
ond row shows accurately recognized USDOT numbers. The con-
trast of the images is enhanced for visualization purposes.

Figure 11 presents the USDOT number recognition re-
sults for several sample images. The proposed probabilis-
tic inference approach has correctly recognized the USDOT
numbers in the second row. The images in the first row
shows the wrong recognitions due to the characters circled.
Note that the errors in the first, second and fourth image in
the first row is due the confusion between the digits 1 and
7. The error in the third image is because of the extra hash
tag character at the beginning of the digit sequence.

6. Conclusion
In this paper, we pose a new problem for recognizing

USDOT numbers from vehicle side-view images captured
by NIR cameras. The image regions where the USDOT
number is located, can be extracted by generating an ap-
pearance model for USDOT tags. The appearance based
localization can provide improvement over an OCR-based
localization approach especially for the poor quality images
in the existence of noise and low contrast. A CNN clas-
sifier trained using samples from SVHN dataset eliminates
data gathering and manual annotation required for training
the classifier for USDOT numbers. A probabilistic infer-
ence based on HMM and Viterbi decoding for finding the
highest probability digit sequence outperforms Tesseract for

USDOT number recognition.
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