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Abstract

In this paper, we address the problem of human pose es-
timation through a novel articulated Gaussian kernel cor-
relation function which is applied to human pose track-
ing from a single depth sensor. We first derive a unified
Gaussian kernel correlation that can generalize the previ-
ous Sum-of-Gaussians (SoG)-based methods for the sim-
ilarity measure between a template and the observation.
Furthermore, we develop an articulated Gaussian kernel
correlation by embedding a tree-structured skeleton model,
which enables us to estimate the full-body pose parame-
ters. Also, the new kernel correlation framework can easily
penalize undesired body intersection which is more natu-
ral than the clamping function in previous methods. Our
algorithm is general, simple yet effective and can achieve
real-time performance. The experimental results on a pub-
lic depth dataset are promising and competitive when com-
pared with state-of-the-art algorithms.

1. Introduction
Human pose estimation has been intensely studied for

decades in the field of computer vision due to its wide ap-
plications. Recently, the launch of low-cost RGB-D sen-
sors (e.g. Kinect) has further triggered a large amount of
research due to their good performance from extra depth
information. The existing algorithms can be roughly cat-
egorized into three groups, i.e., discriminative, genera-
tive and hybrid ones. The approaches in the first group
usually require a large database for querying or training
[9, 11], while those in the second group need an articu-
lated mesh/geometrical body model for template matching
[19, 6] and those in the third category often involve both
[5, 2, 18, 17]. To capture the human pose efficiently from
multi-view video sequences, a sum of Gaussians (SoG)
model was developed in [14]. This simple yet effective
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Figure 1. The illustration of SoG and GSoG human shape models
and their kernel density maps, as well as the visual results of pose
estimation from SoG-SoG and SoG-GSoG kernel correlation.

shape representation provides a differentiable model-to-
image similarity function, allowing a fast and accurate full-
body pose estimation. The SoG model was also used in
[8, 12, 3] for human or hand pose estimation. Extended
from SoG, a generalized SoG model (GSoG) was proposed
in [4], where it encapsulated fewer anisotropic Gaussians
for human shape modeling, and a similarity function be-
tween GSoG and SoG was derived in 3D space. Meanwhile,
a sum of anisotropic Gaussians (SAG) model [13] shared
the similar spirit with GSoG for hand pose estimation, and
it provided an overlap measurement between projected SAG
and SoG/SAG in 2D image.

Although GSoG and SAG based approaches have im-
proved the pose estimation performance with better model
adaptability, their similarity functions are specifically de-
signed for different situations/applications. Also, the
clamping function which aims to handle the model intersec-
tion problem in previous SoG-based approaches [14, 8, 4]
leads to a discontinuous energy function that could hinder
the gradient-based optimization. In this work, inspired by



the classical Kernel Correlation-based algorithm [16], we
generalize previous SoG-based methods and derive a uni-
fied similarity function from the perspective of Gaussian
kernel correlation. More importantly, we embed a kinemat-
ical skeleton into the kernel correlation which enables us to
achieve a fast articulated pose estimation.

There are mainly three contributions in this work com-
pared with [4]. First, we treat human pose estimation
as an articulated kernel correlation problem and have a
more general similarity function, where the human shape
model and the input data from a depth image can be any
pairwise combination, including SoG↔SoG, SoG↔GSoG,
GSoG↔GSoG or even mixed model↔mixed model (shown
in Fig. 1 and Fig. 2). Second, we embed a kinematical skele-
ton into the continuous and differentiable kernel correlation
function to achieve an efficient articulated pose estimation
using a gradient-based optimization. The third contribution
is that our generalized kernel correlation framework natu-
rally deduces a new continuous intersection penalty term
to deal with the model self-intersection problem. This in-
tersection penalty term can replace the artificial clamping
function in the previous SoG-based methods, leading to
an optimization-friendly constraint. Our algorithm is sim-
ple and efficient and can run at about 20 FPS on a desk-
top PC without GPU acceleration. We evaluate our pose
tracking algorithm on a challenging benchmark dataset [5],
which shows that our pose estimation accuracy is competi-
tive compared to the best results reported so far [15, 18, 19].

2. Articulated Gaussian Kernel Correlation

2.1. Multivariate Gaussian Kernel Correlation

In this paper, we focus on the Gaussian kernel correla-
tion and extend the univariate Gaussian case to the multi-
variate Gaussian one. With this generalization, all the pre-
vious SoG-based methods can be unified in one framework.
Given two points µ1,µ2 ∈ Rn, their Gaussian kernel corre-
lation is defined as the integral of the product of two Gaus-
sian kernels over the whole space [16],

KC(µ1,µ2) =

∫
Rn

G(x,µ1) ·G(x,µ2)dx, (1)

where x ∈ Rn, and G(x,µ1), G(x,µ2) represent the Gaus-
sian kernels centered at the data point µ1,µ2, respectively.
The non-normalized univariate Gaussian kernel defined in
[10] has the form,

Gu(x,µ) = exp(−||x− µ||2

2σ2
), (2)

where σ2 is the variance. Replacing (1) with (2), it is
straightforward to have the univariate Gaussian kernel cor-

relation of µ1,µ2 as,
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If the variance σ2 is extended to the covariance matrix Σ,
we have the non-normalized multivariate Gaussian kernel
form,

Gm(x,µ) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4)

We re-write (1) using (4). Then, we can derive the mul-
tivariate Gaussian kernel correlation of two kernels which
are centered at points µ1,µ2 and are modeled by the co-
variance matrices Σ1,Σ2 respectively,

KCm(µ1,µ2)=
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(5)

2.2. Sum of Gaussian Kernels Correlation

Several Gaussian kernels which are centered at a set of
points Ω = {µ1, · · · ,µk} can be combined as a sum of
Gaussian kernels K,

K =

k∑
i=1

G(x,µi). (6)

Given two collections of Gaussian kernels KA and KB ,
composed by M and N Gaussian kernels respectively, their
kernel correlation is defined as,

KC(KA,KB) =

∫
Rn

M∑
i=1

N∑
j=1

G(x,µi)G(x,µj)dx

=

M∑
i=1

N∑
j=1

KCm(µi,µj), (7)

where KCm(µi,µj) has been derived in (5). It worth not-
ing that KA and KB can be composed by univariate Gaus-
sian kernels (SoG in Fig. 2 (a)) or multivariate Gaussian
kernels (GSoG in Fig. 2 (c)) or both of them (mixed model
in Fig. 2 (d)). Consequently, we obtain a unified kernel cor-
relation function in (7) to evaluate the similarity between
any pairwise combination of SoG, GSoG and mixed model,
as shown in Fig. 2. When the covariance matrices in KB

degenerate to variances in the 3D space, the degenerated
equation (7) will be equivalent to the similarity function
between SoG and GSoG in [4]. Further, if the covariance
matrices in KA degrade to variances, (7) will become the
SoG-SoG similarity in [3, 8, 12]. Both degenerations imply
that our kernel correlation function generalizes the previous
SoG-based methods.



Figure 2. The illustration of the sum of Gaussian kernels KA (red)
and KB (green) in four cases: (a) SoG-SoG, (b) SoG-GSoG, (c)
GSoG-GSoG, (d) mixed model-mixed model.

2.3. Kernel Correlation for an Articulated Model

Now, we aim to embed a collection of Gaussian kernels
into an articulated structure and explicitly derive the artic-
ulated Gaussian kernel correlation. For human pose esti-
mation in this work, the body template comprises a kine-
matic skeleton and a GSoG shape model KA composed by
M anisotropic Gaussians. We denote K0

A as a standard T-
pose template as shown in Fig. 1 (right). The benefits of
GSoG model compared with SoG model has been demon-
strated in [4]. The kinematic skeleton is constructed by a hi-
erarchical tree structure, as illustrated in Fig. 3. Each rigid
body segment defines a local coordinate system that can be
transformed to the world coordinate system via a 4×4 trans-
formation matrix Tl, as

Tl = Tpar(l)Rl, (8)

where Rl denotes the local transformation from segment l
to its parent par(l). If l is the root (the hip joint), Troot is
the global transformation of the whole body. In this way,
the center of each Gaussian kernel in the segment l at the T-
pose µ0

i can be transferred to its new position in the world
coordination through the transformation matrix Tl,

µi = Tlµ
0
i . (9)

The Rl of all body segments and Troot are the pose parame-
ters to be estimated. In this work, we express a 3D joint ro-
tation as a normalized quaternion which facilitates gradient-
based optimization. Here, we have U joints (U = 10,
marked as red stars in Fig. 3 (b)), each of which allows a
3 DoF rotation represented by a quaternion vector of four
elements. Also, there is a global translation at the hip (root)
joint. As a result, we totally have 43 pose parameters in the
variable Θ. Similar to (9), given the shape model at T-pose
K0

A, we can obtain the deformed model under pose Θ as,

KA = K0
A(Θ)

=
M∑
i=1

G(x,µ0
i (Θ)), (10)

Figure 3. (a) The illustration of a kinematical chain structure and
the coordination transformation from the child segment to its par-
ent segment, i.e., S3 → S2 via R2 and S2 → S1 via R1. (b) The
articulated human skeleton model where the red stars represent the
body joints to be estimated.

Re-writing (7) using (10), we explicitly obtain the articu-
lated Gaussian kernel correlation as,

KC(K0
A(Θ),KB) =

M∑
i=1

N∑
j=1

KCm(µ0
i (Θ),µj), (11)

where KCm(µ0
i (Θ),µj) can be calculated in (5). Conse-

quently, the Gaussian kernel correlation is embedded into an
articulated skeleton and controlled by the pose variable Θ.
To represent the raw 3D point cloud data with a SoG model
KB , we employ the same method in [4], where an Octree is
used to directly partition the 3D point cloud in terms of the
standard deviation of the points in a Octree node along the
depth direction. More details for the SoG-based point cloud
representation can be found in [4].

The analytical representation of our articulated kernel
correlation in (11) constructs the main part of the objective
function. As a result, the pose estimation problem is con-
verted to finding the maximum kernel correlation of the hu-
man template K0

A(Θ) and the point cloud observation KB .
We use the same subject-specific body shape modeling al-
gorithm in [4] to obtain a subject-specific body template.
Next, we will present the objective function based on our
articulated kernel correlation in details.

3. Proposed Pose Estimation Algorithm
In this section, we will present our objective function,

where a balanced kernel correlation specially for the artic-
ulated model is proposed. Also, we enhance the energy
function with a new intersection penalty term that is a by-
product of our generalized Gaussian kernel correlation in
(11), and additional two constraints (visibility and continu-
ity). Last, we provide the gradient of the objective function
with respect to pose parameters.

3.1. Objective Function

Our pose tracking algorithm is to estimate the pose pa-
rameters Θ at time t from an observed point cloud con-



verted from the corresponding depth image, by optimiz-
ing an objective function. We define our objective func-
tion that includes the articulated Gaussian kernel correla-
tion KC(K0

A(Θ),KB) defined in (11) along with three ad-
ditional terms. The first is a visibility term V is to cope
with the incomplete data problem from occlusion; The sec-
ond one is an intersection penalty Eint(Θ) to penalize the
body segments self-intersection; The third one is a continu-
ity term Econ(Θ) to enforce smooth pose transition during
tracking. Then pose estimation is formulated as an opti-
mization problem with the objective function,

Θ̂ = argmin
Θ

{ M∑
i=1

−KC(µ0
i (Θ),KB) · V is(i)

+λEint(Θ) + γEcon(Θ)

}
, (12)

where µ0
i (Θ) means the center of the ith Gaussian kernel

in the body model at pose Θ, λ, γ are the weights to bal-
ance the intersection penalty and continuity terms and V is
is defined as,

V is(i) =

{
0 if the ith Gaussian is invisible,
1 otherwise. (13)

Balanced Kernel Correlation The main part of the
energy function is the Gaussian kernel correlation
KC(K0

A(Θ),KB), which can be evaluated according to
(11) and (5). In practice, we find that the kernel correla-
tion from larger segments (e.g. torso in the human body or
palm in the hand) could dominate the energy function, over-
shadowing contributions from small segments. This domi-
nance may trap the optimizer in a wrong local minimum,
since the direction of the gradient is also mostly effected
by the body segments that achieve relatively considerable
energy. To equalize the energy contributions from different
segments, we propose a simple yet effective modification to
(11) to balance the influence of each articulated segment,
referred as “Balanced Kernel Correlation”. Specifically, the
kernel correlation from each body segment is normalized by
a coefficient, which is formulated as,

KCb(K0
A(Θ),KB) =

L∑
l=1

1

ωl

ml∑
i=1

N∑
j=1

KCm(µ0
li(Θ),µj),

(14)
where ml is the number of Gaussian kernels in the lth body
segment (totally we have L segments with the equality m1+
· · · + ml + · · · + mL = M ), and 1

ωl
means the weight of

the corresponding segment. Without loss of generality, we
calculate ωl as the integral of all the Gaussian kernels in the

lth segment,

ωl =

∫
Rn

ml∑
i=1

G(x,µ0
i )dx

=

ml∑
i=i

√
(2π)n

|Σ−1
i |

, (15)

where ωl means a volumetric measure of the lth segment,
revealing that the larger body segment, the greater value of
ωl, but less weight it has. In this way, we balance the con-
tribution of every body segment to the kernel correlation
using a given subject-specific body shape. Meanwhile, the
value of ωl can be calculated off-line without reducing the
efficiency.

Intersection Penalty Term In previous SoG-based pose es-
timation methods, to avoid the situation that two or more
body segments intersect and overlap with each other, an ar-
tificial clamping function was used to constrain the energy
contribution of each Gaussian kernel in KB . However, this
energy clamping causes a discontinuity of the energy func-
tion, which may hinder the performance of the local opti-
mizer. In this paper, we present an intersection penalty term
to replace the artificial clamping function. Interestingly, the
new intersection penalty is straightforwardly deduced from
our derived Gaussian kernel correlation framework in (11).
Our idea is that two body segments are treated as a model
Ka and a target Kb, respectively. Consequently, their ker-
nel correlation measure is equivalent to their intersection
penalty. In practice, we consider five self-intersection cases,
i.e., head-torso, forearm-arm, upper limb-torso, shank-thigh
and lower limb-torso.

Eint(Θ) =
S∑

s=1

KC(s)(K0
a(Θ),Kb), (16)

where s in KC(s) represent the sth intersection case (S
would be 5 in this work), and K0

a,Kb is the model and tar-
get parts separated from a full-body template. When any
two body segments intersect with each other, Eint will be
triggered as a soft constraint, which is still continuous and
differentiable.

Visibility Term To address the occlusion problem in a non-
frontal view, we use the same strategy that was developed in
[4]. The idea is that a relatively large overlap among mul-
tiple Gaussian kernels in the projection plane may indicate
an occlusion. The pose in the previous frame is used to de-
tect the visible parts. First, each Gaussian component of
the SoG model is orthographically projected to a 2D image
plane along the depth direction, resulting in a set of circles.
Then, we compute the overlap area between every two cir-
cles. if the overlap area of any two circles is larger than



certain percentage (e.g. 1
3 ) of the area of the smaller one,

we declare an occlusion. The Gaussian component which
is closer to the camera is remained. The occluded ones are
excluded during optimization. More details about occlusion
handling can be found in [4].

Continuity Term To encourage continuous sequential pose
tracking, we augment the energy function with a continuity
term to smooth pose estimation,

Econ(Θt) =

Nk∑
k=1

[(
Θ

(k)
t −Θ

(k)
t−1

)
−
(
Θ

(k)
t−1 −Θ

(k)
t−2

)]2
,

(17)
where Θt is the pose parameter at time t and Θt−1,Θt−2

are the previous two poses; k is the index of the dimension
of the parameter Θ (totally Nk = 43 in this work). As a
regularizer, the continuity term penalizes a large deviation
from previous poses, ensuring a smooth pose transition.

3.2. Gradient­based Optimization over Pose Θ

Due to the differentiable energy function and the benefits
of quaternion-based rotation representation, we can explic-
itly derive the derivative of the objective function E with
respect to Θ and employ a gradient-based optimizer. Dif-
ferent with a variant of steepest descent used in [14, 8], we
employ a Quasi-Newton method (L-BFGS [1]) because of
its faster convergence. For simplicity, we ignore the visibil-
ity term in (12) and has the following form:

∂E(Θ)

∂Θ
= −∂KC(K0

A(Θ),KB)

∂Θ

+λ
∂Eint(Θ)

∂Θ
+ γ

∂Econ(Θ)

∂Θ

= −
L∑

l=1

1

ωl

ml∑
i=1

N∑
j=1

KCm(µ0
li(Θ),µj)

∂Θ

+λ
∂Eint(Θ)

∂Θ
+ γ

∂Econ(Θ)

∂Θ
. (18)

We denote r = [r1, r2, r3, r4]
T as an un-normalized quater-

nion, which is normalized to p = [x, y, z, w]T according to
p = r

∥r∥ . We represent the pose Θ as [t, r(1), . . . , r(U)],
where t ∈ R3 defines a global translation, U is the num-
ber of joints to be estimated, and each normalized quater-
nion p(u) from r(u) ∈ R4 defines the relative rotation of the
uth joint. Defined in (5), µli is the center of ith Gaussian
kernel in the lth segment which is transformed from its lo-
cal coordinate µ0

li through transformation Tl in (9) and the
corresponding covariance matrix Σ

(l)
i is approximated and

updated from the previous pose under the assumption that
is adjacent poses should be close to each other. We explic-
itly represent every pairwise kernel correlation using (5) and
take derivative with respect to each pose parameter, which

will be sum over to obtain the gradient vector of our kernel
correlation:
∂KCm

∂tn
=

∂KCm

∂µi

∂µi

∂tn
, (n = 1, 2, 3) (19)

∂KCm

∂r
(u)
m

=
∂KCm

∂µi

∂µi

∂Tl

∂Tl

∂p(u)

∂p(u)

∂r
(u)
m

, (m = 1, ..., 4)(20)

which are straightforward to calculate. The derivative of
Eint(Θ) is the same with above two equations (19), (20).
Since Econ(Θt) in (17) is a standard quadratic form, we
have its gradient expression directly as:

∂Econ(Θt)

∂Θ
(k)
t

= 2
[(

Θ
(k)
t −Θ

(k)
t−1

)
−
(
Θ

(k)
t−1 −Θ

(k)
t−2

)]
.

(21)
Again, k is the index of the dimension of the parameter
Θ. The initialization of Θ is the estimated pose in previ-
ous frame and the pose in the first frame is assumed to be
close to a standard pose, similar to the treatment in many
other algorithms.

4. Experimental Results
4.1. Experiment Setup

Test Database: We evaluate our algorithm and compare
with a few recent algorithms using the same benchmark
dataset SMMC-10 [5]. The ground truth data are the 3D
marker positions recorded by the optical tracker. The large
amounts of noise and outliers in this dataset makes it chal-
lenging yet proper for evaluating algorithm robustness and
noise tolerance.
Evaluation Metrics: We adopt two evaluation metrics in
our experiments. One evaluation metric is to directly mea-
sure the averaged Euclidean distance error between the
ground-truth markers and estimated ones over all markers
across all frames,

ē =
1

Nf

1

Nm

Nf∑
k=1

Nm∑
i=1

∥pki − v
(i)
disp − p̂ki∥, (22)

where Nf and Nm are the number of frames and markers;
pki and p̂ki are the ground-truth location of the ith marker
and the estimated one in the kth frame, respectively; v(i)

disp

is the displacement vector of the ith marker. Because the
definitions of marker location across different body models
are different, the inherent and constant displacement vdisp

should be subtracted from the error, as a routine in most
recent methods. In this paper, we have improved the dis-
placement calculation method used in [4] to make the vdisp

independent with poses by projecting the markers on each
centerline of the segment and computing a local offset for
each segment individually. The other evaluation metric is
the percentage of correctly estimated joints whose errors are
less than 10cm.



Figure 4. The accuracy comparison with the state-of-the-art methods [5, 2, 18, 15, 7, 3, 4] in terms of the joint distance error (cm). Except
[3, 4] and ours, all the others use a large scale database and a mesh model.

Figure 5. The prediction precision comparison with the state-of-the-art methods [5, 11, 6, 19, 3, 4].

4.2. Quantitative Results

Tracking accuracy comparison
In Fig. 4 and Fig. 5, we compare our algorithm with the
state-of-the-arts in two metrics. Our approach achieves the
accuracy of average 3.65cm on SMMC-10 dataset and it is
close to the best results so far (around 3.4cm) [18, 15, 19]
where a database and/or a detailed mesh model are involved.
We notice that our results are much more accurate than
the original SoG algorithm (implemented in [3]) and [7]
where extra inertial sensors were used. It also outperforms
the GSoG method [4], which should owe to our proposed
balanced kernel correlation and the continuous intersection
penalty term, as well as the new displacement calculation.
Compared with others (except [4]), our algorithm is simpler
and the computational complexity is lower. Furthermore,
we compare the accuracy by the correct rate of joint estima-
tion (less than 10cm) in Fig. 5. It shows that our algorithm is
still comparable with the best algorithms [19, 6], revealing
the accuracy and robustness of our pose tracking algorithm.

Efficiency Analysis
Among all mesh-based generative methods, the computa-
tional complexity is expressed as O(MN), where M is the
number of vertices in a surface model and N is the num-

ber of points in observation. Due to the GSoG body shape
representation, M and N in our approach are much less
than those in the state-of-the-art methods and M in GSoG is
only about a quarter as that in SoG, leading to a lower com-
putational cost. We implement our tracking algorithm in
C++ with the L-BFGS optimization library [1]. Currently,
the efficiency is evaluated on a PC without GPU accelera-
tion. We allow maximum 30 iterations in the first frame and
then 15 iterations in the following frames, and we ignore the
computing time of background segmentation using a depth
threshold and the Octree partitioning which are very effi-
cient. The average processing rate of our algorithm is about
20 frames per second without the code optimization. Our
algorithm is also suitable for GPU-based parallel comput-
ing for further speed-up.

4.3. Qualitative Results

Some pose estimation results are shown in Fig. 6 to illus-
trate the performance of our method. While the estimated
poses are visually correct in most frames and the visibility
term can solve the incomplete data problem to some ex-
tent, our tracker may fail when deal with some complex
motions with significant occlusion problems. One possi-
ble reason is the visibility term employs an approximation



Figure 6. Some pose tracking results from the depth motion sequences 0-27 and some tracking failure examples (the bottom row). The
blue points are the input point cloud data and the red skeleton represents the estimated pose.



from previous result and a coarse orthographical projection
assumption when to identify the invisible components, and
the other possible reason is that the optimizer may be stuck
into local minima and cannot be recovered automatically.
Both possible reasons will guide our future work.

5. Conclusion

We have developed a generalized Gaussian kernel cor-
relation framework that provides a continuous and differ-
entiable similarity measure between two point sets, both of
which are represented by a collection of univariate or mul-
tivariate Gaussians or even a mixed model. Based on the
unified kernel correlation function, we have presented an ef-
ficient human pose tracking algorithm, where the observed
point cloud is represented by a SoG and the human template
is developed by embedding a GSoG in a quaternion-based
articulated skeleton. Consequently, the human pose is es-
timated by maximizing a new articulated kernel correlation
along with three additional constraints to ensure valid and
smooth pose estimation. The new articulated kernel cor-
relation function naturally supports a penalty term to dis-
courage undesired body segment intersection which is more
natural than the clamping function used before. We evalu-
ate our proposed tracker on a public depth dataset, and the
experimental results are encouraging and promising com-
pared with the state-of-the-art algorithms, especially con-
sidering its simplicity and efficiency. Our algorithm can
achieve real-time human pose tracking with competitive ac-
curacy and robustness. Moreover, the generalized Gaussian
kernel correlation framework could be applied to other ap-
plications involving an articulated structure and complex
multi-segment structure.
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