This CVPR2015 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

A Model-Based Approach to Finding Tracks in SAR CCD Images

Tu-Thach Quach

Rebecca Malinas

Mark W. Koch

Sandia National Laboratories*
Albuquerque, NM 87185-1163

tong@sandia.gov, rmalina@sandia.gov, mwkoch@sandia.gov

Abstract

Combining multiple synthetic aperture radar (SAR)
images taken at different times of the same scene pro-
duces coherent change detection (CCD) images that
can detect small surface changes such as tire tracks.
The resulting CCD images can be used in an auto-
mated approach to identify and label tracks. Fxisting
techniques have limited success due to the noisy na-
ture of these CCD images. In particular, existing tech-
niques require some user cues and can only trace a sin-
gle track. This paper presents an approach to automat-
ically identify and label multiple tracks in CCD images.
We use an explicit objective function that utilizes the
Bayesian information criterion to find the simplest set
of curves that explains the observed data. Experimen-
tal results show that it is capable of identifying tracks
under various scenes and can correctly declare when no
tracks are present.

1. Introduction

Multiple synthetic aperture radar (SAR) images
taken at different times of the same scene can be com-
bined to produce coherent change detection (CCD) im-
ages that can detect small surface changes such as tire
tracks [4, 8]. The CCD images, however, are noisy
due to SAR speckle, vegetation, shadows, and other
weather related phenomena. These undesirable noise
sources make it difficult to identify and label vehicle
tracks.

Track finding can be viewed as fitting principal
curves, an extension of principal components, through
a set of points [5, 7, 12]. Unfortunately, the majority
of the existing principal curve algorithms assume the

*Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL&5000.

data contains little to no noise and that there is only
a single principal curve in the data. The noisy nature
of SAR CCD images, along with the fact that there
might be multiple or no tracks in a single image, limit
the usability of existing principal curve algorithms.

The difficult nature of this problem is exemplified by
the limited success of existing techniques [2, 3]. Given
a search cue, e.g., starting location of a path, the tech-
nique in [2] finds the vehicle track by tracing parallel
lines (tire tracks). The proposed method can find a
single track provided that the user supplied the initial
search cue. A related method uses cubic spline fitting
to extract vehicle tracks [3]. It is limited to a single
non-overlapping track.

In practice, a scene can have an arbitrary number of
tracks, including no tracks. In order to automate the
process of finding tracks, we must be able to account for
these conditions. This work presents a novel approach
for automatic track finding that can identify and la-
bel multiple tracks as well as declaring when no tracks
are observed in the image. Unlike existing techniques,
our approach defines an explicit objective function that
quantifies how well our model fits the observed data.
It further penalizes complex models and favors simple
models that explain the data well. This makes it pos-
sible to determine when we have found all tracks in the
image or whether there are no tracks at all.

Our approach is presented in Section 2. Experimen-
tal results demonstrating the effectiveness of our al-
gorithm under various scenes are shown in Section 3.
Concluding thoughts are provided in Section 4.

2. Finding Tracks

Given a CCD image, our goal is to identify and label
the vehicle tracks. Our algorithm must also be able
to correctly declare when no tracks are present. We
assume that the input to our algorithm consists of a
set of 2-dimensional points that indicate the locations
on the image that are likely to be parts of a track.
This can be obtained via different techniques such as

41

normalized cross-correlation with a template [9] and is
not the focus of this paper.

Given a set of n spatial points, X = {1, x2,...,Tn},
we identify the tracks by modeling them as a set of m
curves, C = {c1, ¢, ..., ¢n}. The distance of a point to
a curve is the distance from that point to its projection
on the curve. We assume this distance is normally
distributed with zero mean and a variance of ¢. Since
the input is likely to be noisy, we use a special curve, ¢y,
to capture the noise. Our model is a Gaussian mixture
model with the following likelihood function:

L(x|Cc) = HZ L(xi|ey), (1)
i=1 j=0

where 7; is the mixing coefficient of curve ¢;. For real
curves, e.g., j > 1,

Laies) = 1o e (8

where ||¢;|| is the length of curve ¢; and ||z; — ¢l is
the Euclidean distance from point z; to its projection
on curve ¢;. For the noise curve, e.g., j =0,

L($i|00) = lnoise7 (3)

where lise 1S a constant.

As with any model selection problem, we must be
careful so that our model does not overfit the data.
In other words, we must quantify the complexity of
our model and penalize more complex models. We
capture this using the Bayesian information criterion

(BIC) [10]:

B(X|C) = —2log(L(X|C)) + klog(n), (4)

where k is the number of free parameters of the model.
In our case, k = Y7, |cj|+m, where |c;] is the degree
of freedom of curve c¢;, and the term m comes from
the mixing coefficients. As an example, if ¢; is a line
segment in a two-dimensional space represented by its
endpoints, then |¢;| = 4.

Our task is simply to find a set of curves that mini-
mizes (4). Our approach consists of the following steps:

1. Set C =0, Byin = B(X|C)
2. Find a line segment ¢ through X
3. If B(X|C Uc¢) < Bmin

(a) Set C =CUc, Byin = B(X|C)

(b) Remove points assigned to C from X

(¢) Repeat step 2.

Figure 1: Forming line segments using the extreme
ends of the projected points may result in poor seg-
ments due to noise (black line). Our approach finds
segments that fit the density of the data (blue line).
Best viewed in color.

4. Refine C and the model parameters iteratively un-
til convergence

5. Merge segments in C to form curves

Steps 2 and 3 are responsible for finding initial line
segments that fit the data well. Note that step 1 com-
putes Bpin on an empty set of curves. This enables
the algorithm to declare that no tracks are found if
the condition in step 3 is not satisfied. Step 4 is the
standard expectation-maximization procedure that it-
eratively refines the model parameters. Prior to step 5,
our curves are simply line segments. A vehicle track,
however, may consist of several line segments. Step 5
merges line segments into curves. The following sub-
sections describe steps 2 and 5 in details.

2.1. Finding Line Segments

Step 2 involves finding line segments that fit the
data. We accomplish this by a two-step process. First,
we find a line that fits the data, then we form a line
segment from the obtained line. Any line-finding pro-
cedure must also account for the fact that the data can
be noisy. We use RANSAC [6], a line finding algorithm
that is robust to noise.

Once a line is found, we project the associated points
onto it. We cannot simply form a line segment by using
the extreme ends of the projected points. Doing so
may result in long segments due to noise as illustrated
in Figure 1. For better results, we must try to identify
valid parts of the line to form our segment. For each
projected point y, we perform the following steps:

42

a b, c d. e f a b c e f
a b _c f e d a_ b d e f
c b a d e f a_b_c e d
c,b,a f ,e.d a_ b f ,e.d
a_b e f c. b_ a e f
a_b e d c.b d e f
c.b e f c.,b_ a e d
c b e _d c.b f e d

Figure 2: All 16 different ways to join two curves. The
first curve is represented by line segments a, b, and c.
The second curve is represented by line segments d, e,

and f.

1. Compute p, the mean value of all projected points
within distance r from y

2. Sety=p+r

3. Repeat step 1 until p changes by less than 3

The segment corresponding to point y is defined by
the first and last p’s. Among all obtained segments, we
select the longest one. Intuitively, the algorithm walks
along the line until it finds gaps in the projected points
and is analogous to mean shift in one dimension. The
search is one-dimensional along the line.

It is not necessary that we find the best line segment
that captures all the points belonging to the actual seg-
ment. If we capture only half of the actual line segment
(due to breaks), we can still discover the other half
later in the main algorithm. What is more important
is to prevent forming long segments that include noise
points. This is accomplished by setting the threshold
for convergence to a relatively large quantity, 5. In all
our experiments, the parameter r is derived from o,
r = 100.

2.2. Merging Curves

Step 5 involves joining curves that should be con-
nected to each other. Initially, the curves are just line
segments. As we continue the process, these segments
turn into curves, each consists of piecewise continuous
line segments. Given two curves, ¢; and c;, we can sim-
ply form a single curve by adding a new line segment
that connects them. In addition, we can also remove
an end segment from either or both curves and then
join them. This enables two segments that are parts of

a straight track to form into a single curve with fewer
model parameters. There are a total of 16 ways to join
two curves as illustrated in Figure 2.

For each pair of curves in C, we form a new curve for
each configuration as described above. This new curve
replaces the previous two curves. We then compute
the BIC of the new model. Among all pairs of curves,
we keep the one with the smallest BIC. If this BIC is
smaller than the original BIC, we update C by joining
the corresponding curves and repeat the process.

3. Experimental Results

We first demonstrate the steps of our algorithm us-
ing simulated point data. We generate the data shown
in Figure 3(a) using 3 line segments, each consists of
100 points. These points are displaced by a zero-mean
Gaussian noise with ¢ = 4. In addition, we add 300
random noise points for a total of 600 points. We set
lhoise = %, where a is the smallest area that encloses
all points. Our algorithm initially finds 4 segments as
shown in Figure 3(b). This is due to a break in one of
the segments. After merging, our algorithm correctly
produces 3 curves as shown in Figure 3(c). An example
with more curvature is shown in Figure 3(d). The data
consists of 200 points, 100 points for the curve plus 100
noise points. Due to the high curvature, no single line
segment could capture the entire curve. The algorithm
still finds the curve and represents it with several short
segments.

We now demonstrate the effectiveness of our ap-
proach using real SAR CCD images from a publicly
available data set [1]. As described earlier, given a
CCD image, we identify pixel locations that are likely
to be parts of a track and use these points as input
to our algorithm. We use a simple approach (other
techniques can be used as well), perhaps the simplest,
based on normalized cross-correlation. Our template is
a 5-by-21 image that resembles a short track (5 pixels
long). We correlate the CCD image with the template
rotated at 5-degree intervals and keep the maximum
coefficients at each pixel. This results in a correlation
image. We then threshold the correlation image and
perform basic binary morphological processing to ob-
tain our input points. We set 0 = 4 and l,oise = ﬁ,
where h and w are the dimensions (height and width)
of the input CCD image. The value for [ise Sim-
ply means that we assume the noise is uniformly dis-
tributed throughout the entire image. The results are
shown in Figure 4.

Most tracks are represented by several segments due
to their natural curvatures. The last image does not
have a track and our algorithm correctly states that.
There are a total of 3 tracks in Figure 4(d). Our al-

43

(©)

(d)

Figure 3: Algorithm illustration: (a) input data (3 segments plus noise), (b) obtained segments prior to merging,
(c) final results, (d) another example with more curvature. Data points are displaced by a zero-mean Gaussian

noise with o = 4. Best viewed in color.

gorithm finds parts of all three tracks. The region be-
tween the green and red tracks does not match our
template well. As a consequence, there are few points
along that region.

To quantify the performance of our algorithm, we
evaluate it on a set of 40 CCD images of size 800 x 600
containing simulated tire tracks of various curvatures.
Each test image is generated from a real SAR image
pair (from the same publicly available data set) and
contains a single randomly-generated tire track. The
tire track midline is taken to be ground truth. Given a
track and a pair of SAR images of the same scene, the
track is added to the output CCD image by adding ran-
dom (Gaussian) phase shifts to pixels along the track
trajectory in the non-reference image of the SAR image
pair [11]. We generate three test sets of varying track
thicknesses: light, medium, and dark. The same set of

background images and tracks are used to generate all
three test sets. This allows for a fair comparison among
the three sets. The average track length is 705.18 pix-
els. Example images are shown in Figure 5.

Detection is defined with respect to tire track mid-
line (between the tracks) pixels. In the following, we
define the function D(pq, p2) as the Euclidean distance
between pixels p; and ps. Let m denote a midline pixel
we wish to detect, d denote the candidate track pixel
(i.e., classified as the midline of a track by the algo-
rithm) that is closest in Euclidean distance to m, and
let t denote the tire track pixel that is closest in Eu-
clidean distance to d. Then m is correctly detected if
and only if d is contained within the area bounded by
the outer edges of the tire tracks, i.e.,

D(m,d) < D(m,t). (5)

44

Figure 4: Track finding results on real SAR CCD images. The last image does not have a track. Best viewed in
color.

45

Figure 5: Example test images: (a) dark, (b) medium, (c) light, and (d) original CCD image. Each set consists of
40 images of size 800 x 600 containing various track curvatures and background clutters. The average track length

is 705.18 pixels.

To evaluate false alarms, for a given candidate track
pixel d, we define m as the ground truth midline pixel
closest to d, and t as the tire track pixel closest to d.
Then d is a false alarm if and only if d lies outside the
tire tracks, i.e.,

D(m,d) > D(m,1). (6)

Note that a ground truth midline pixel is correctly de-
tected as long as the closest (in Euclidean distance)
candidate track pixel lies within the area bounded by
the tire tracks (including the tracks themselves), and a
candidate pixel is counted as a false alarm if and only
if it lies outside the tire track area (candidate pixels
are permitted to lie on the tire tracks).

Given the above definitions of correct detection and
false alarms, we use the following accuracy metric to
evaluate the performance of our algorithm:

TP

GT + FA’ (7)

where TP is the number of correctly detected midline
pixels, GT is the total number of ground truth midline
pixels, and F'A is the number of non-track (outside tire
track area) pixels incorrectly identified as track pixels.
Our accuracy metric is a real number between 0 and
1. It is 1 if and only if all midline pixels are detected
and there are no false alarms. As the number of false
alarm pixels increases, accuracy decreases. Likewise,
as the number if correctly detected pixels decreases,
accuracy also decreases. We note that this metric only
captures some aspects of the problem, namely detec-
tion and false alarms. It does not quantify the number
of tracks detected and whether they are correctly con-
nected. A more general metric that captures all aspects
of this problem remains an open problem.

Table 1 shows the mean, median, and standard de-
viation of the accuracies computed for all three test
sets. We use the same algorithm parameters and tem-
plate to detect tracks across all three test sets. The

Mean Median Std. Dev.
dark 0.9721 0.9872 0.0471
medium | 0.8352 0.9108 0.1812
light 0.2631 0.2623 0.2495

Table 1: Mean, median, and standard deviation of ac-
curacies for the three test sets.

results show that the algorithm performs well for dark
and medium tracks and has difficulties detecting light
tracks. The detection of light tracks may be improved
by using a different template or noise parameter. To
verify that our algorithm can determine when no tracks
present, we also test it on the 40 original background
CCD images that contain no tracks. Out of 40 images,
the algorithm detects tracks in two images.

4. Discussion

The ability to find tracks is an important tool in the
areas of security and surveillance. While CCD images
offer the possibility of seeing small surface changes, de-
veloping automatic algorithms to find these tracks have
been limited. This work presented an approach that
can accomplish this task. Our approach can find mul-
tiple tracks and declare when no tracks are visible.

The proposed approach is straightforward, requiring
only a single user-supplied parameter, o. It is straight-
forward to estimate this parameter from known data.
The computation required by our algorithm consists
mainly of computing the distance from a point to a
line segment, which involves only simple matrix oper-
ations making the algorithm efficient. Due to the fact
that we use line segments to represent curves, tracks
with high curvatures might not be as smooth. This
can be remedied by a final step in the algorithm that
fits a cubic spline through each track.

We emphasize that our algorithm operates on a set
of points. Furthermore, we are not limited to using
normalized cross-correlation to extract points from the

46

image; any alternative method, such as those based on
a classifier, can be used as a substitute as long as it pro-
duces a set of points as input to our algorithm. As a
consequence, a high-quality point extraction algorithm
may lead to better track finding results. This decou-
pling also makes it possible to use the same algorithm
on different types of tracks, e.g., vehicles, foot. We
defer investigating these problems to our future work.

Acknowledgment

This work was supported by PANTHER, a Labo-
ratory Directed Research and Development (LDRD)
Project at Sandia National Laboratories. For addi-
tional information about PANTHER, please contact
Kristina Czuchlewski, Ph.D., krczuch@sandia.gov.

References

[1] W.J. Bow Jr. Sandia SAR data collect 2006. Tech-
nical Report SAND2006-2290P, Sandia National
Laboratories, 2006.

[2] M. Cha and R. Phillips. Automatic track trac-
ing in SAR CCD images using search cues. In
Signals, Systems and Computers (ASILOMAR),
pages 1825-1829. IEEE, 2012.

[3] M. Cha, R. Phillips, and M. Yee. Finding curves in
SAR CCD images. In ICASSP, pages 2024-2027.
IEEE, 2011.

[4] D. G. Corr and A. Rodrigues. Coherent change de-
tection of vehicle movements. In Geoscience and
Remote Sensing Symposium, pages 2451-2453.
IEEE, 1998.

[5] J. Einbeck, G. Tutz, and L. Evers. Local princi-
pal curves. Statistics and Computing, 15:301-313,
2005.

[6] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with ap-
plications to image analysis and automated car-
tography. Comm. of the ACM, 24(6):381-395,
1981.

[7] T. Hastie and W. Stuetzle. Principal curves.
Journal of the American Statistical Association,
84(406):502-516, 1989.

[8] C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C.
Ghiglia, and P. A. Thompson. Spotlight-mode
synthetic aperture radar: a signal processing ap-

proach. Kluwer Academic Publishers Norwell,
MA, 1995.

[9] J. P. Lewis. Fast normalized cross-correlation. Vi-
sion Interface, 10(1):120-123, 1995.

[10]

[11]

[12]

47

G. E. Schwarz. Estimating the dimension of a
model. Annals of Statistics, 6(2):461-464, 1978.

E. Turner, R. D. Phillips, C. Chiang, and M. Cha.
Inserting simulated tracks into SAR CCD imagery.
In Autumn Simulation Multi-Conference. Society
for Modeling & Simulation International, 2012.

J. J. Verbeek, N. Vlassis, and B. Krose. A k-
segment algorithm for finding principal curves.
Pattern Recognition Letters, 23:1009-1017, 2002.

