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Abstract

The pupillary response has been used to measure mental
workload because of its sensitivity to stimuli and high
resolution. The goal of this study was to diagnose the
cognitive effort involved with a task that was presented
visually. A multinomial processing tree (MPT) was used
as an analytical tool in order to disentangle and predict
separate cognitive processes, with the resulting output
being a change in pupil diameter. This model was fitted to
previous test data related to the pupillary response when
presented a mental multiplication task. An MPT model

describes observed response frequencies from a set of

response categories. The parameter values of an MPT
model are the probabilities of moving from latent state to
the next. An EM algorithm was used to estimate the
parameter values based on the response frequency of each
category. This results in a parsimonious, causal model
that facilitates in the understanding the pupillary response
to cognitive load. This model eventually could be
instrumental in bridging the gap between human vision
and computer vision.

1. Introduction

A critical goal of cognitive neuroscience and
psychology is to determine connections between human
thought processes and the resulting behavioral patterns.
Cognitive load can be generally defined as the mental
processing load or workload exerted during the
performance of a cognitive task. An increase in cognitive
load causes changes in autonomic physiological responses,
such as electro-dermal activity, changes in heart rate, and
changes in pupil diameter.

Changes in pupil diameter respond to cognitive load
quickly and can reflect small differences in the load.
Therefore, the pupillary response has been found to be an
optimal secondary physiological measure of mental
workload, due to its sensitivity to stimuli and high
resolution. Without loss of generality, pupil dilation
magnitude increases as the difficulty of a cognitive task
increases [1]. The goal of this study was to diagnose the
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cognitive effort involved with a task that was presented
visually. Before discussing the methods used for this
study, it is necessary to examine the instrumentation used,
the data collected, and the neuroanatomical context of the
model.

1.1. Instrumentation

Most modern pupillometry studies use remote eye
trackers in order to measure changes in pupil diameter.
There are two major types of eye trackers used: head-fixed
and remote. Head-fixed camera eye trackers place the
camera close to the subject’s eye. In order to accomplish
this, either the camera is head-mounted or the camera is
desk-mounted and an apparatus such as a chin rest is used
to restrain the subject’s head. Remote eye trackers do not
require the head to be fixed and are typically mounted on a
desktop below eye level, yet still within the field of vision.

Both types of devices have their own advantages and
disadvantages. Although head-fixed eye trackers have a
relatively high accuracy, they may cause discomfort for
the subject, resulting in artifacts. While remote eye
trackers have a lower accuracy, they do not come into
contact with the subject. Since remote eye trackers have a
comparable precision, they are still widely used for the
measurement of relative pupil dilations [1][2].

1.2. Collected Data

The pupillary data was adopted from Dr. Jeff Klingner’s
dissertation. During his study, he collected pupillary data
from 12 students studying either Computer Science or
Communications at Stanford University. 431 trials were
performed, with number of trials per subject ranging from
32 to 43 [3].

During a 2 second accommodation period, each subject
fixated on a target presented at the center of a computer
screen.  After the accommodation period, a mental
multiplication problem was visually presented on the
screen. The task had three levels of difficulty: easy,
medium, and hard. For example 3x6 would be considered
an easy task, while 15x19 would be considered a more
difficult task. The subjects were given 5 seconds to
respond. They typed their answers on a low-contrast, on-



screen keypad. The mental multiplication problems were
randomly selected and were categorized as either easy,
medium, or hard.  Klingner maintained a constant
luminance for the graphical user interface and the entire
room. The pupillary response was recorded with the Tobii
T120 remote desktop eye tracker. The data was sampled
at a rate of 50 Hz [3]. The average pupillary response
across all trials, for each level of difficulty is shown below
in Figure 1.
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Figure 1: The average pupillary response across all trials, for
each level of difficulty (easy, medium, and hard) is shown above.
This figure was recreated using raw data collected by Dr. Jeff
Klingner. Signal processing (described in more detail in the
methods) was performed in MATLAB [3].

1.3. Neuroanatomical Context

An understanding of neural anatomy is necessary in
order to determine the relationship between changes in
cognitive load and the pupillary response. This section
proposes a possible neurological pathway that is involved
with the pupillary response to cognitive load.

A visual stimulus enters through the pupil and is
projected onto the retina. Photoreceptors within the retina
convert light energy into electrical energy in a process
known as photo-transduction.  The electrical signal
propagates along the optic nerve and crosses over at the
optic chiasm. The signal travels through the thalamic
Lateral Geniculate Nucleus (LGN) to the Primary Visual
Cortex.

In the case of mental multiplication, information from
the Primary Visual Cortex is transferred to the prefrontal
lobe where the multiplication operation can be performed.
During this process the electrical signal travels to the
Hippocampus. From the Hippocampus, the signal travels
along the Para hippocampal gyrus to the central nucleus of
the Amygdala. The signal reaches the Locus Ceruleus
(LC) (located in the pons) via efferent fibers of the
Amygdala. The LC releases norepinephrine, which
eventually reaches the neuromuscular junction of the

dilator pupillae and the ciliary ganglion. The dilator
pupillae muscles have norepinephrine receptors that, when
activated, cause the pupil to dilate [4][5]. The
neuroanatomical context of the pupillary response to
cognitive load is illustrated below in Figure 2.

©
Visual Primary
Stimulus Thalamus Visual Prefrontal
Cortex Lobe

Amygdala

@ Hippocampus

NE release

Figure 2: A diagram illustrating a possible pathway involved in
the pupillary response to cognitive load is shown above.

An understanding of the neurological pathways
involved with the pupillary response to cognitive load
facilitates the construction of a visual cognitive diagnostic
model. Computer vision and pattern recognition
algorithms use black, white, or grey box methods of
evaluation. A black box system has known inputs and
outputs, but the internal structure is either not well known
or completely unknown. In contrast the internals of a
white box system are completely known. In a grey box
system, there is some insight of the internals of the
system, yet there are still unknown internal components
[7].

A cognitive diagnostic model using the pupillary
response can be thought of as a grey box system. The
inputs are the presented mental multiplication tasks and
the outputs are the subjects’ responses to the problem.
The internal components that are unknown are the
neurological mechanisms involved. If the neural pathways
involved in the cognitive pupillary response are
understood, then the pupillary dynamics can provide
insight into the system internals. A block diagram of a
cognitive diagnostic model using the pupillary response is
shown in Figure 3. Recently computer vision has been
transitioning into a more robust cognitive vision, allowing
for the Al system to learn, adapt, and weigh alternative
solutions. Machine learning algorithms, such as artificial
neural networks, can learn from the parameters
determined by the cognitive diagnostic model and allow
the system to process visual information similar to how a
human would.
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Figure 3: The block diagram above illustrates the visual
cognitive diagnostic model as a grey box system. The inputs are
the presented mental multiplication tasks of varying difficulty.
The outputs are whether the subject answered correctly,
incorrectly, or provided no response. The measured changes in
pupil diameter provide insight into the internal components of
the system.

2. Methods

The following section provides a description of methods
used for this study. Though listed sequentially, some of
the steps involved in data analysis were performed
sequentially.

2.1. Signal Processing of the Raw Pupillary Data

Signal processing of the raw pupillary data was
performed in MATLAB. The methods are similar to those
performed by Klingner et al. The raw pupillary data
consisted of the pupil diameter measured from both the
left and right eye of each subject. All blinks were
removed from each trial. A linear interpolation was
performed at each resulting gap.

In order to convert the absolute pupil diameter data to
relative pupil dilation data, a baseline subtraction was
performed. To accomplish this, the pupil diameter was
averaged over the last 20 samples of the pre-stimulus
accommodation period. This average was considered the
baseline pupil diameter. To obtain the relative pupil
dilation signal, the baseline pupil diameter was subtracted
from the absolute pupil diameter signal.

There is an abundant amount of high frequency,
instrumentation noise involved with a remote eye tracker
when measuring the pupillary response. This can be due
to eye drift, tremors, and a non-spherical eye shape. The
pupillary response is a low frequency signal. Therefore, a
10 Hz, low-pass FIR filter was used in order to reduce the
high frequency noise of the signal. After filtering the
signal, the left and right eyes were averaged. The signal
processing involved is illustrated in Figure 4.

Figure 4: The diagram above illustrates the signal processing
involved in this study.

2.2. Creation of Bins

All pupillary data trials for each level of difficulty were
divided into three bins: small, medium, and large. There
were three types of divisions used, which are listed below
in Table 1.

Division Description
Type #
1 Mean + Standard Deviation (SD)
2 Mean =+ Standard Error (SEM)
3 Mean + Midpoint Between SD and SEM

Table 1: A list of the three types of bin divisions is shown in the
above table.

A method used to evaluate each bin division type will be
discussed later in this section. Figures 5 and 6 illustrate
bin division types 1 and 2, respectively, for all trials
involving the presentation of an easy multiplication task.

For each bin, the data was further sorted into 3 response
categories: correct, incorrect, and no response. As a result
the entire data was sorted into a total of 27 unique
response categories. The response frequencies were
determined for each category. Data sorting was performed
in MATLAB.
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Figure 5: Division type 1 for easy pupillary data is illustrated
above.
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Figure 6: Division Type 2 for easy pupillary data is illustrated
above.

2.3. Multinomial Processing Trees

A major challenge in developing a cognitive model is
being able to quantify latent cognitive states. A
Multinomial Processing Tree (MPT) was used as an
analytical tool in order to disentangle and predict separate
cognitive processes, with the resulting output being a
change in pupil diameter. An MPT model describes
observed response frequencies from a set of response
categories. The “root” of the tree is presented stimulus.
Each “branch” of the tree represents an estimated
parameter value. The parameter values of the MPT model
are the probabilities of moving from one latent state to the
next. The “leaves” of the MPT are the known response
frequencies. While ad hoc analyses, such as ANOVA, are
limited to only testing hypotheses on observed data, MPT
models decompose the data into latent cognitive processes
[8].

multiTree, a computer program developed at the
University of Mannheim, was used to create the MPT
models used for this study. The software uses an
Expectation Maximization (EM) algorithm in order to
estimate the parameter values of any given MPT model.
As the name implies, this algorithm can be split into an
expectation phase and a maximization phase. Before the
EM parameter is implemented, it is necessary to initialize
the parameter values.  The software automatically
initializes all parameter values at 0.5. During the
expectation phase, the parameter vector of the previous
trial is used to estimate the expected frequency values.
During the maximization phase, the parameter values are
estimated based on the expected frequencies from the

expectation phase. The iterates until
convergence.

There are a large variety of criteria that can be used for
the final model selection. Each one has its strengths and
weaknesses.  Therefore, multiple criteria should be
observed to determine the “best” final model.

G’ is a goodness-of-fit measure that is the discrepancy
between the statistical predictions and the observed data.
This is only a measure of goodness of fit. It does not take
flexibility of the model into account.

Akaike’s Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are measures that do take
flexibility of the model into account by adding punishment
factors to the original G* value. The drawback to these
measures is that they ignore the differences between
various models’ functional form. The equations for these
two criteria are shown below:

algorithm

AIC = G? + 2§ (1)
BIC = G*+1In(N) =S )

The Fisher Information Approximation (FIA) is a
measure that favors simpler models. It takes into
consideration the goodness-of-fit, flexibility, and the
model’s functional form. The criterion is calculated using
the following formula:

1 S (N
FIA = > G?* + Eln (7) + f,/det (1(©))de 3)

As shown above, this is a computationally intensive
calculation that requires software [8][9]. It is desirable to
minimize FIA, AIC, and BIC.

This study can be divided into two phases: the best bin
division phase and the model-fitting phase. During the
best bin division phase, the simplest possible MPT model
was generated using the response frequencies of each of
the three bin division types. The model selection criteria
were compared to determine the best bin division.

During the model-fitting phase, a more complex model
that provides a greater amount of cognitive information
was fitted to the best bin division data. The multinomial
processing trees used for the best bin division phase and
the model-fitting phase are shown in Figures 7 and 8,
respectively.
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Figure 7: The multinomial processing tree model for the best bin division phase is shown above. There were three trees: Easy (left),
Medium (center), and Hard (right).
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Figure 8: The multinomial processing tree model for the model-fitting phase is shown above. There were three trees: Easy (left),
Medium (center), and Hard (right).
The description of each parameter of the MPT model

The description of each parameter of the MPT model generated during the model-fitting phase is shown below
generaFed during the best bin division phase is shown in Table 3.
below in Table 2.
Parameter Description
Parameter Description R Same as Best Bin Division Phase
R This is the probability that the subject P Same as Best Bin Division Phase
will recognize the mental multiplication a Solving Probability when Perceived as
problem, recalling it from long-term Easy Difficulty
Memory. _ : b Solving Probability when Perceived as
P Thllls is th'e prt(})lb?latﬁlty th]jlt the’ sultajflft Medium Difficulty
Wil pereetve that the probiem 1s at the c Solving Probability when Perceived as
level of difficulty. .
— — - Hard Difficulty
a This is the probability that the subject - e -
d Solving Probability when Perceived as
knows how to solve the problem. .
— oy - Extremely Difficult
cr This is the probability that the subject —
crE Correct Recall Probability for Easy
can correctly recall the answer a e -
. crtM Correct Recall Probability for Medium
problem that he or she recognizes. I C Recall Probability for Hard
t This is the probability that the subject is o orrect Reca .ro 2,1 1 %ty or 1ar
able to meet the time constraints of the ¢ Same as Best Bin Division Phase
task.

Table 3: A list describing each parameter of the MPT generated

Table 2: A list describing each parameter of the MPT generated during the model-fitting phase is shown in the above table.

during the best bin division phase is shown in the above table.



3. Results

The following section provides the results of both the
best bin division phase and the model-fitting phase.

3.1. Best Bin Division Phase

Table 4 compares the model selection criteria for each
type of bin division.

Bin
Division AIC BIC FIA
Type #
1 1110 1129 563.7
2 1228 1247 622.9
3 1325 1344 671.4

Table 4: The above table compares the model selection criteria
for each type of bin division.

3.2. Model-Fitting Phase

The parameter values of the model-fitting phase are
shown in Table 5. The table also includes SEM values
and 95% confidence limits.

95%
Parameter Mean SEM Lower 55%
Value CL Upper CL

R 0.147 | 0.018 0.111 0.182
P 0.840 | 0.020 0.801 0.881
a 0.979 | 0.015 0.950 1.000
b 0.857 | 0.032 0.794 0.920
c 0.446 | 0.052 0.344 0.547
d 0.600 | 0.126 0.352 0.848
crE 0.941 | 0.057 0.829 1.000
crM 0.917 | 0.056 0.806 1.000
crH 0.571 | 0.132 0.312 0.830
t 0.682 | 0.051 0.583 0.781

Table 5: The above table compares the parameter values during
the model-fitting phase.

All parameter values of interest with their SEM bars are
illustrated in a bar graph shown in Figure 9. All parameter
values with their confidence intervals are illustrated in a
bar graph shown in Figure 10. Note that the parameters
are sampled from a Beta distribution. Therefore a t-test or
a standard ANOVA test is not applicable, since they both
have a normality assumption.
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Figure 9: A bar graph of the parameter values with their SEM
bars is shown above.
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Figure 10: A bar graph of the parameter values with their
confidence intervals is shown above.

4. Discussion

Based on the model selection criteria, the best bin
division type was division type 1, which uses the standard
deviation of the pupillary response to separate the bins.
The response frequencies for the model-fitting phase were
based off bin division type 1.

Parameters a, b, and ¢ were found to be significantly
different from one another. Both their SEM bars and
confidence intervals did not overlap, suggesting statistical
significance. Based on the bar graph of these parameters
of interest shown in Figure 10, the probability that the
subject knows how to solve the mental multiplication task
decreases with the level of perceived difficulty. Statistical
significance was determined by using the SEM and the
confidence intervals of the parameter values. It should be
noted that a more formal and robust significance test for a
Beta distribution should implemented in future studies.



The parameters used in the multinomial processing tree
model have more of a psychological context. More
research is necessary to determine a model that has a more
neurobiological context.

Using a MPT model is a robust way of diagnosing
visual cognitive effort. The model determined in this
study was a parsimonious, causal model that facilitates in
the understanding of the pupillary response to cognitive
effort. Future research will be devoted to designing an
MPT that further aligns with the neurological pathways
involved, with the parameter values representing the
probability of an action potential propagating to the next
subcomponent of the visual pathway. Therefore, the use
of an MPT as a diagnostic tool for visual cognitive effort
could be instrumental in bridging the gap between human
vision and computer vision.
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