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Abstract

Although extensive research on action recognition has

been carried out using standard video cameras, little work

has explored recognition performance at extremely low tem-

poral or spatial camera resolutions. Reliable action recog-

nition in such a “degraded” environment would promote the

development of privacy-preserving smart rooms that would

facilitate intelligent interaction with its occupants while

mitigating privacy concerns. This paper aims to explore the

trade-off between action recognition performance, number

of cameras, and temporal and spatial resolution in a smart-

room environment. As it is impractical to build a physical

platform to test every combination of camera positions and

resolutions, we use a graphics engine (Unity3D c©) to sim-

ulate a room with various avatars animated using motions

captured from real subjects with a Kinect v2 sensor. We

study the performance impact of spatial resolutions from a

single pixel up-to 10×10 pixels, the impact of temporal res-

olutions from 2 Hz up-to 30 Hz and the impact of using up-to

5 ceiling cameras. We found that reliable action recognition

for smart-room centric gestures can still occur in environ-

ments with extremely low temporal and spatial resolutions.

When using 5, single-pixel cameras at 30Hz we achieved

a correct classification rate (CCR) of 75.70% across 9 ac-

tions, only 13.9% lower than the CCR for the same camera

setup at 10×10 pixels. We also found that, in terms of the

impact on action recognition performance, spatial resolu-

tion has the highest impact, followed by number of cameras,

and temporal resolution (frame rate).

1. Introduction

Smart spaces of the future, whether at home or at work,

promise to bring improved energy efficiency, health ben-

∗This work was supported by the NSF under Smart Lighting ERC Co-

operative Agreement No. EEC-0812056.

efits, and productivity. For instance, energy savings can

be realized by lowering illumination in regions void of hu-

mans, while health benefits can be realized by optimiz-

ing lighting conditions for specific activities, e.g., reducing

screen glare when working on a laptop. Productivity can be

improved, for example, by localizing occupants in order to

maximize throughput rates in visible-light communication

between wall- or ceiling-mounted transceivers and mobile

devices. Furthermore, hand gestures can be used to control

various room conditions like temperature, light, sound, etc.

In addition to the detection, localization, and tracking

of human subjects, reliable recognition of human activities

and gestures is crucial for realizing the full spectrum of the

aforementioned benefits. Human activity and gesture recog-

nition has been extensively studied in the computer vision

and signal processing communities. However, most of the

work is based on video cameras where there is little to no

expectation of occupant privacy.

One way to address privacy concerns is to degrade (re-

duce) the quantity and quality of the data gathered to the

point where it no longer provides any “visual utility” to

eavesdroppers. However, this will also degrade action

recognition accuracy. The number of cameras and their spa-

tial and temporal (frame rate) resolutions are three impor-

tant data dimensions that significantly impact both “visual

utility” and action recognition accuracy. What are the lim-

its to which we can reduce these data dimensions without

significantly impacting action recognition accuracy? What

are the ranges of tradeoff between performance and resolu-

tion along different data dimensions? To which data dimen-

sion(s) is the performance most sensitive?

In this paper, we consider scenarios with 1 to 5 grayscale

cameras with no more than 10 × 10 spatial resolution and

2−30 Hz frame rate. Is there any hope of getting any useful

action recognition performance in such extreme scenarios?

We explore and attempt to answer these questions in the

remainder of this paper.



2. Related Work

Over the last decade or so, a vast amount of literature

has been published on action recognition from video (we

refer the interested reader to the survey by Aggarwal and

Ryoo [4]). Most of these publications have dealt with ex-

tracting discriminative features from high spatio-temporal

resolution video. These features have most commonly been

based on optical flow [9], point trajectories [6], silhouettes

[11, 15, 18], and spatio-temporal interest points [8, 14].

There are, however, a few veins of action recognition re-

search that have focused on video with low spatial or low

temporal resolution (but not both simultaneously). In terms

of low spatial resolution, Efros et al. [9] applied optical

flow with frame-to-frame normalized correlation in time on

subjects as small as 30 pixels in height. Similarly, Ahad et

al. [5] used directional motion history images on subjects

around 24 pixels in height. However, both these techniques

are ill-suited at an even lower resolution which we call ex-

tremely low resolution. At extremely low spatial resolutions

of 10×10 (with subjects as small as 7 pixels in height) down

to 1×1 (a single pixel), optical flow cannot be reliably (or

even meaningfully) computed.

Similarly, it has been shown that action recognition per-

formance can be reliable at low frame rates, even when only

a few key frames can be found (in extreme cases, even a

single still frame) [7, 10, 16]. Although these works do not

directly and systematically quantify the impact of having

a very low frame rate on recognition performance, their re-

sults are one of the motivating factors for our own investiga-

tion. The most related work in this context is by Harjanto et

al. [12], who conclude that the impact of frame rate varies

depending on feature selection and the environment and ac-

tions in the dataset. From the perspective of our work, how-

ever, their study is limited to actions with standard spatial

resolutions as they did not study the effect of low frame rate

combined with low spatial resolution.

With regard to privacy preservation through the use

of low-resolution data, perhaps the most closely related

work is that of Jia and Radke [13], who explore privacy-

preserving tracking and coarse pose estimation using a net-

work of ceiling-mounted time-of-flight sensors. Similarly,

Tao et al. [17] use a network of ceiling-mounted binary

passive infrared sensors to recognize a set of daily activi-

ties. However, activities in their dataset are only performed

in known fixed areas of the room. This activity-location de-

pendence is effectively utilized in their approach but may

not be realistic in practice.

3. Overview of Methodology

There exist overwhelmingly many camera configurations

that can affect action recognition performance. For exam-

ple, one could characterize a camera configuration by the

number of cameras, their resolution, frame rate, shutter

speed, aperture, zoom level, lens distortion, positions and

orientations relative to each other and the room, etc.; the

list goes on. In this paper, we study only a small but im-

portant set of these configurations. Specifically, we study

the impact of the number of cameras and their spatial and

temporal resolutions on action recognition performance.

Since it is impractical to test every configuration in a

real testbed, we used a graphically-rendered smart room in

Unity3D c© [3] to animate avatars. Fig. 1 shows our sim-

ulated smart room from one viewpoint. However, for the

avatar animations, we used true human motions captured

from subjects facing a Kinect v2 [2] sensor. The animated

avatars were captured from 5 viewpoints with varying spa-

tial and temporal resolutions and the resulting videos were

used to evaluate activity recognition performance.

Figure 1. A seminar room simulated in Unity3D c© with 5 ceiling-

mounted cameras in a pentagonal arrangement (cameras are num-

bered accordingly). A single omni-directional light source was

used to illuminate the entire room. For visualization, this light

source has higher intensity than shown in Figs. 2 and 3.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Figure 2. All camera viewpoints of an avatar raising his arm. These

camera viewpoints correspond to the ones shown in Fig. 1.

In this study, we assume that there is a single avatar in the

room and the zoom setting of each camera is such that the

avatar encompasses much of the field of view (see Fig. 2).

We also assume that all training and test avatars are roughly

at the same position and orientation relative to the camera

network. Finally, we assume that all cameras have the same

(common) spatial and temporal resolutions. With this setup,

we vary the number of cameras (from a pentagonal arrange-

ment of 5, to a subset of 3 out of the five, down to 1 out



of the five), their spatial resolution (from 10 × 10 down

to 1 × 1), and their temporal resolution (from 30 Hz to 2
Hz, including different time offsets) and evaluate the action

recognition accuracy.

3.1. Action Recognition Algorithm

In order to evaluate action recognition performance at

such extremely low resolutions, we developed a simple

pixel-wise, time-series based algorithm. The use of pixel-

wise time series is motivated by the lack of reliable estima-

tion algorithms for common features such as optical flow or

spatio-temporal interest points at the extremely low resolu-

tions that we study.

At a high level, our approach is based on extracting,

from a grayscale video sequence, a spatially-aligned and

grayscale-normalized rectangular spatio-temporal video

cuboid which tightly encompasses the avatar’s silhouette

tunnel (i.e., a sequence of silhouettes [11]). This accounts

for some of the global spatial misalignments between dif-

ferent action instances, and reduces inter-avatar appearance

variability (e.g., due to clothing).

In more detail, for each grayscale video sequence, we

first extract a sequence of binary silhouettes by threshold-

ing the absolute deviation of the grayscale value at each

pixel from the known background value (which is known

due to our Unity3D c© simulation but in general can be

estimated). Next, the smallest-volume rectangular spatio-

temporal video cuboid that contains the entirety of the

background-subtracted silhouettes is found.1 Effectively,

this isolates a fixed spatial region of interest (ROI) across

time by removing uninformative background pixels. Fur-

ther, as the dimensions of the rectangular cuboids from

different action sequences can be different, we resize all

cuboids to a fixed spatial resolution of R×R, with R = 10,

and a fixed temporal length of T = 500. Spatial resizing is

done through bi-cubic interpolation and temporal resizing

is performed using cubic-spline interpolation.

Finally, a variant of mean-variance normalization is ap-

plied to each resized cuboid {xijk[t], i, j = 1, . . . , R, t =
1, . . . , T}, where xijk[t] denotes the grayscale value of

pixel (i, j) at time t in camera k, as follows:

x̂ijk[t] =
xijk[t]− µijk

σk

. (1)

Here, µijk denotes the “static” pixel mean value across time

for the spatial location (i, j), and σk denotes the empirical

standard deviation taken across all pixels in the cuboid for

camera k. The subtraction of the mean emphasizes a sub-

ject’s local dynamics in the cuboid (by removing an inten-

1For image sequences with resolutions smaller than 3×3, this cuboid

is typically the original sequence in its entirety (the silhouettes span the

entire field of view).

sity bias), while the division by standard deviation partially

accounts for the variability in subject’s clothing.

Using these normalized cuboids, we propose a simplistic

nearest-neighbor classifier using the l1 distance to discrim-

inate between action sequences. The distance between two

normalized cuboids x̂ and ŷ is defined as:

d(x̂, ŷ) =
K∑

k=1

T∑

t=1

R∑

i=1

R∑

j=1

|x̂ijk[t]− ŷijk[t]|, (2)

where the distance is taken across all K cameras, each with

its own unique cuboid of spatial dimensions R×R and tem-

poral dimension T (chosen as 10×10 and 500 respectively).

4. Dataset and Simulation

In order to render realistic human motion in a virtual

smart-room environment, a small dataset of actions typi-

cal of seminar-room scenario were collected. These action

samples were collected from 12 subjects (7 males and 5 fe-

males, mostly college-aged), each of whom performed 9

distinct actions, repeating each action 3 times. All action

samples were performed while standing at a rest position

(hands at the side) in front of a single forward-facing Kinect

v2 depth camera. Further, subjects were requested to leave

and re-enter the field of view of the camera so as to reduce

position and pose biases between samples.

The 9 seminar-room centric actions that were collected

are: Answering Mobile (removing mobile from a pocket,

unlocking it and raising it to ear level; ≈ 6-17 seconds),

Checking Mobile (removing mobile from a pocket, unlock-

ing it and manipulating the device to read email, surf the

web, etc.; ≈ 10-17 seconds), Raising Hand (raising right

hand straight up as if voting or asking a question; ≈ 3-7

seconds), Lowering Hands (quickly raising both hands up

in tandem and then slowly lowering them in tandem as if re-

questing an audience to settle down; ≈ 3-9 seconds), Rais-

ing Volume (raising right hand up with the palm facing up

as if requesting to increase the sound volume; ≈ 2-5 sec-

onds), Writing on Board (≈ 4-12 seconds), Clapping (≈ 4-

10 seconds), Walking (≈ 3-5 seconds), and Sitting (≈ 6-11

seconds).

Example frames with forward-facing views for each of

these 9 actions are shown in Fig. 3. We note that some of

these actions have segments where they look very similar,

e.g., Raising Hand and Raising Volume. These were in-

cluded intentionally in order to discover the extent to which

similar-looking actions get confused at extremely low reso-

lutions.

Once a set of realistic action samples were recorded, a

virtual seminar-room environment was built in Unity3D c©

(see Fig. 1). The virtual environment simulated an avatar

moving around the center of a room whose actions were

captured by 5 grayscale ceiling-mounted cameras (arranged



Answering Mobile Checking Mobile Raising Hand

Lowering Hands Raising Volume Writing on Board

Clapping Walking Sitting

10×10 5×5 2×2

Figure 3. Discriminating poses of the 9 seminar-room centric ac-

tions from the forward-facing virtual camera (camera 1). The last

row shows the extremely low spatial resolution versions of the

Raising Hand pose.

in the shape of a pentagon pointing towards the avatar).

Each camera was set up such that the avatar would be con-

tained within its field of view (see Fig. 2). Various camera

configurations of the ceiling-mounted cameras were tested:

the number of cameras, and the temporal and spatial reso-

lutions (fixed across cameras) were varied. The parameters

and their values for these camera configurations are listed

in Table 1. Notably, the avatar was positioned and animated

Camera Configuration Values

Spatial Resolution [pixels] 1×1,2×2,3×3,4×4,5×5,10×10

Temporal Resolution [Hz] 2, 7.5, 15, 30

Number of Cameras 1, 3, 5

Table 1. List of parameter values for camera configurations tested.

based on the skeletal information of real-life subjects (from

median filtered pose estimates obtained from the Kinect 2.0

SDK). Each sample of each subject was mapped through

skeletal re-targeting onto multiple gender-matching avatars

(shown in Fig. 4). Gender-matching was done because the

skeletal proportions and avatar-builds of different genders

are quite distinct. For evaluation, we only used a subset of

these avatar mappings, which we describe in more detail in

the following section.

Figure 4. Various avatars (3 female, 5 male) used in Unity3D c©.

5. Experimental Evaluation

We report the average correct classification rate (CCR)

for various camera configurations using a variant of leave-

person-out cross-validation. This entails computing a run-

ning CCR across M subject-avatar matching iterations. In

each iteration, each of the 12 subjects is sequentially se-

lected to be the single “person-out” test subject. Then, one

same-gender avatar is randomly assigned to the test subject

and the assigned avatar and all 27 action samples from that

test subject (9 actions × 3 repetitions) are removed from the

pool. Next, the remaining training subjects are randomly

assigned same-gender avatars (different from test-subject’s

avatar) by sampling with replacement. Then, each of the 27

samples of the test avatar is classified using the 297 training

samples (27 samples × 11 training subjects) which yields

an average CCR for this test subject. By averaging the CCR

score across all 12 test subjects we get an average CCR for

one iteration. This process is repeated for M = 100 itera-

tions in order to obtain the final average CCR. We perform

this testing process for all the camera configurations that we

evaluate.

Notably, this procedure evaluates subject motion across

a range of avatars, each varying in build and shape. Fur-

thermore, this “leave-person-out” procedure is powerful in

showing the robustness of our results, as the classifier never

sees samples from the matched avatar and subject used for

testing.

5.1. Impact of Spatial Resolution

The impact of spatial resolution change was evaluated

for the resolutions ranging from 10×10 down to 1×1 across

5 cameras. The results of our method along with action-

specific CCRs are shown in Table 2.

Fig. 5 shows the mean-variance normalized time series

(see equation (1)) for all 9 actions at single-pixel resolution.

These plots highlight the differences that occur even when

the same action and avatar are used but different subjects

drive the same avatar’s motions. The intensity signals are

similar for the same action yet exhibit non-negligible varia-

tions thus further confirming the richness of our dataset.

From the highest resolution 10×10 down to 1×1, there



Spatial
CCR StdDev

Answering Checking Raising Lowering Raising Writing on
Clapping Walking Sitting

Resolution Mobile Mobile Hand Hands Volume Board

10×10 89.60% 1.53% 66.92% 80.19% 97.56% 99.61% 95.72% 85.25% 83.08% 99.83% 98.28%

5×5 86.80% 1.61% 68.11% 74.69% 95.31% 100.00% 90.17% 79.25% 75.39% 99.72% 98.58%

4×4 84.52% 1.58% 68.42% 62.64% 88.03% 100.00% 91.44% 78.89% 74.03% 99.64% 97.56%

3×3 86.71% 1.94% 77.22% 69.64% 91.11% 99.36% 89.33% 80.00% 76.56% 99.86% 97.28%

2×2 82.71% 1.96% 70.58% 45.64% 87.94% 99.75% 88.06% 76.56% 82.11% 99.64% 94.08%

1×1 75.70% 1.88% 50.92% 35.42% 85.53% 98.36% 85.69% 58.56% 79.81% 94.08% 92.94%

Table 2. Average CCR for various spatial resolutions R × R ranging from 10×10 to 1×1. The temporal resolution is fixed at 30 Hz and

the number of cameras is fixed to be 5. We have also shown the average CCR for each of the 9 actions per configuration.
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Figure 5. Normalized single-pixel grayscale intensities (see equation (1)) for all 9 actions from a fixed camera viewpoint. Shown are the

intensities of 2 subjects mapped to the same 2 avatars.

is generally a decrease in performance due to the drop in

spatial resolution. Although there is a slight performance

increase at 3×3, we believe this is due to frequent imper-

fect alignments which our cuboid-based technique cannot

perfectly compensate for.

In terms of individual actions, Raising Hand, Lowering



Hands, Raising Volume, Walking, and Sitting achieve con-

sistent CCRs in the range of 85-100% across all tested reso-

lutions. At the same time, Answering Mobile is the hardest

action to recognize as its CCR ranges from 50% to 67%,

primarily due to confusion with the similar action Checking

Mobile. Checking Mobile and Writing on Board have quite

high CCR at higher resolutions tested, but drop off dramat-

ically at single-pixel resolution, which is likely due to in-

tricate hand movements involved in both actions. Finally,

Clapping, has a consistent CCR in the 70-80% range but

quite a bit lower than that for the most reliable actions. This

is due to the relatively small amplitude of hand movements

extended in front of the body that can be partially confused

with Raising Hand, Lowering Hands, and Raising Volume.

Overall, however, these results are promising. Even at

extremely low spatial resolutions, good action recognition

performance appears to be attainable. Even for the largest

drop in spatial resolution from 10×10 to 1×1, there is a

relatively small 13.9% reduction in performance.

5.2. Impact of Temporal Resolution

The impact of temporal resolution was evaluated for

frame rates ranging from 30 Hz down to 2 Hz. A lower

frame rate was achieved by down-sampling the original 30

Hz signal by a fixed integer constant. To account for po-

tential bias due to temporal offsets, the performance from

every possible temporal offset was evaluated and averaged

together. The results along with action-specific classifica-

tion accuracies are shown in Table 3.

The drop in performance due to the decrease in tempo-

ral resolution is quite small. Even for the largest drop in

resolution, from 30 Hz down to 2 Hz, there is only a small

3.11% reduction in performance. This is not entirely sur-

prising, as most of the seminar-room centric actions were

arm- and body-based, so that large movements could still

be picked up by a camera with a low frame rate (for exam-

ple, some gestures had durations of up to 10 seconds). If,

however, one had to distinguish between very intricate and

quick hand motions, then this reduction of frame rate can be

expected to produce a significant performance degradation.

Similarly to the spatial resolution change, the same 5

actions: Raising Hand, Lowering Hands, Raising Volume,

Walking, and Sitting can be reliably recognized.

5.3. Impact of Camera Count and Arrangement

The impact of the number of cameras used and their ar-

rangement was evaluated with the results reported in Ta-

ble 4 along with action-specific classification accuracies in

Table 5. For a single camera and for 3 cameras, all com-

binations of camera selections were tested (5 positions for

a single camera, and “5 choose 3”, i.e., 10 combinations

for 3 cameras), with the resulting CCRs averaged and re-

ported in our table. Not surprisingly, the best-performing

single-camera viewpoint came from the frontal-facing cam-

era number 1. In fact, all the top-performing 3-camera com-

binations included the frontal camera. In terms of notable

Camera Combination CCR StDev

1 (front) 88.57% 1.89%

2 (right) 71.29% 2.37%

3 (back right) 69.65% 1.92%

4 (back left) 78.08% 2.71%

5 (left) 82.21% 2.26%

Average for 1 camera 77.96% 2.23%

1-2-3 85.49% 1.88%

2-3-4 83.29% 1.58%

3-4-5 84.02% 1.83%

4-5-1 89.92% 1.87%

5-1-2 89.99% 1.67%

1-3-4 87.12% 1.61%

2-4-5 86.24% 1.91%

3-5-1 90.15% 1.64%

4-1-2 89.30% 1.88%

5-2-3 83.94% 1.63%

Average for 3 cameras 86.95% 1.75%

5 cameras 89.60% 1.53%

Table 4. Average CCR for various camera counts and combina-

tions ranging from 5 to 1. The spatial resolution is fixed at 10×10

and the temporal resolution is fixed at 30 Hz. Notably, the top-

performing camera combinations always contain the frontal cam-

era (camera 1).

trends due to the reduction of camera counts, there is a slight

drop on average from 5 to 3 cameras (2.65% decrease), and

a larger drop on average from 5 to 1 camera (11.64% de-

crease). As before, the same 5 actions can be reliably rec-

ognized when changing the number of cameras and their

arrangement.

5.4. Summary of Results

Given the overwhelming amount of data provided in the

earlier tables, we overview our results for the extreme cam-

era configurations in Table 6 and their action-specific clas-

sification accuracies in Table 7.

There are a few notable trends that exist in every camera

configuration we tested. Firstly, there exist a set of actions

that consistently have reliable performance (normally above

85%, sometimes 100%). These actions are: Raising Hand,

Lowering Hands, Raising Volume, Walking, and Sitting. On

the other hand, Answering Mobile is the hardest action to

recognize. In fact, Answering Mobile is frequently confused

with the similar action Checking Mobile. Not surprisingly,

these two actions suffer the most from a 2×2 spatial reso-

lution reduction to 1×1, as does Writing on Board which

involves intricate hand movements.



Temporal
CCR StdDev

Answering Checking Raising Lowering Raising Writing on
Clapping Walking Sitting

Resolution Mobile Mobile Hand Hands Volume Board

30 Hz 89.60% 1.53% 66.92% 80.19% 97.56% 99.61% 95.72% 85.25% 83.08% 99.83% 98.28%

15 Hz 89.35% 1.44% 66.65% 80.26% 97.57% 99.61% 95.68% 84.42% 81.64% 99.88% 98.40%

7.5 Hz 89.35% 1.52% 67.77% 81.12% 97.29% 99.57% 96.40% 82.96% 80.69% 99.85% 98.52%

2 Hz 86.49% 1.79% 62.10% 77.47% 98.54% 98.68% 95.71% 74.95% 77.67% 97.34% 98.54%

Table 3. Average CCR for various temporal resolutions ranging from 30 Hz to 2 Hz through downsampling. The spatial resolution is fixed

at 10×10 and the number of cameras is fixed to be 5. We have also shown the average CCR for each of the 9 actions per configuration.

Camera
CCR StdDev

Answering Checking Raising Lowering Raising Writing on
Clapping Walking Sitting

Combination Mobile Mobile Hand Hands Volume Board

5 89.60% 1.53% 66.92% 80.19% 97.56% 99.61% 95.72% 85.25% 83.08% 99.83% 98.28%

Avg. of 3 86.95% 1.75% 59.61% 74.52% 95.83% 99.15% 95.39% 80.71% 80.37% 99.15% 97.40%

Avg. of 1 77.96% 2.23% 48.45% 61.05% 85.31% 94.58% 90.10% 70.16% 67.95% 95.33% 88.49%

Table 5. Average CCR for various camera counts and combinations ranging from 5 to 1. The spatial resolution is fixed at 10× 10 and the

temporal resolution is fixed at 30 Hz. We have also shown the average CCR for each of the 9 actions per configuration.

Description Camera Configuration CCR StDev

Best 10×10, 30 Hz, 5 cams 89.60% 1.53%

Low Frame-rate 10×10, 2 Hz, 5 cams 86.49% 1.79%

Single Camera 10×10, 30 Hz, 1 cam 77.96% 2.23%

Low Spatial Res. 1×1, 30 Hz, 5 cams 75.70% 1.88%

Everything Low 1×1, 2 Hz, 1 cam 48.39% 2.34%

Table 6. Overview of CCRs for various camera configurations.

Although our results, in general, show a decrease in per-

formance due to the drop in resolution and the number of

cameras, we occasionally observe a slight departure from

this monotonicity. We believe this is due to misalignments

of avatar-activity areas between the frames under compar-

ison which our coarse cuboid-based alignment technique

(Section 3.1) cannot perfectly compensate.

6. Validation on Real Data

In order to validate our findings on real data, we repeated

a subset of our experiments on the multi-view action se-

quences from the IXMAS action dataset [19] (5 cameras,

10 subjects, 12 actions). We used the static ROIs (64×48

pixels) provided by the dataset, where the subjects occupy

most of the field of view, and decimated the spatial and tem-

poral resolutions to simulate extremely low-resolution cam-

era views (Fig. 6).

For experimental validation, we used the method pro-

posed in Section 3.1, but with a different cuboid extraction

technique. This is due to the fact that the method proposed

earlier requires a known background which is not provided

for the ROI sequences in IXMAS. For each video sequence,

we extract the cuboid as follows. In order to determine the

column boundaries of the cuboid, we select a threshold and

find the first and last columns whose average temporal vari-

ance exceeds the threshold. By average temporal variance

of a column we mean the sum of the variances (across time)

of each pixel in the column divided by the total number

of pixels in the column (i.e., total number of rows). Sim-

ilarly, we detrmine the row boundaries of the cuboid as the

first and last rows whose average temporal variance exceeds

the (same) threshold. Effectively, this method computes a

cuboid that only contains areas with significant motion. For

example, if a subject’s action sample does not have signifi-

cant lower-body motion, then the cuboid would exclude that

subject’s lower body.

16×12 8×6 4×3

Figure 6. Extremely low spatial resolution frames generated from

the IXMAS dataset (decimated versions of the provided ROIs from

the frontal facing camera).

We evaluated action recognition performance for spatial

resolutions of 16×12, 8×6, 4×3, and 1×1, temporal reso-

lutions of 25 Hz and approximately 2 Hz (each 25 Hz se-

quence is down-sampled by 12 in time), and camera counts

of 5 and 1 (frontal only). CCR was computed in each case

using leave-person-out cross validation. The overview of

our results are shown in Table 8.

These results on real data are qualitatively consistent

with the results in Table 6 on synthetic data: the recogni-

tion rates improve with spatial and temporal resolutions and

the number of cameras, and the CCR is quite insensitive to

the decrease of temporal resolution with around a 5% CCR

loss from 25 Hz to 2 Hz. The best-performing configuration

has a CCR of 80%. While this is below the best CCR for

synthetic data, it is quite comparable. The close qualitative



Camera Answering Checking Raising Lowering Raising Writing on
Clapping Walking Sitting

Configuration Mobile Mobile Hand Hands Volume Board

10×10, 30 Hz, 5 cams 66.92% 80.19% 97.56% 99.61% 95.72% 85.25% 83.08% 99.83% 98.28%

10×10, 2 Hz, 5 cams 62.10% 77.47% 95.97% 98.68% 95.71% 74.95% 77.67% 97.34% 98.54%

10×10, 30 Hz, 1 cam 48.45% 61.05% 85.31% 94.58% 90.10% 70.16% 67.95% 95.33% 88.49%

1×1, 30 Hz, 5 cams 50.92% 35.42% 85.53% 98.36% 85.69% 58.56% 79.81% 94.08% 92.94%

1×1, 2 Hz, 1 cam 27.86% 20.45% 55.06% 79.18% 58.93% 27.71% 44.46% 65.32% 62.31%

Table 7. Average CCR for each of the 9 actions for various camera configurations.

Description Camera Configuration CCR StDev

Best 16×12, 25 Hz, 5 cams 80.00% 6.90%

- 8×6, 25 Hz, 5 cams 77.78% 7.52%

- 4×3, 25 Hz, 5 cams 76.94% 8.39%

Low Frame-Rate 16×12, 2 Hz, 5 cams 74.35% 6.68%

Single Camera 16×12, 25 Hz, 1 cam 67.11% 7.91%

Low Spatial Res. 1×1, 25 Hz, 5 cams 63.33% 11.40%

Everything Low 1×1, 2 Hz, 1 cam 29.21% 2.61%

Table 8. Overview of CCRs for various camera configurations on

the IXMAS ROI dataset.

agreement between the results on synthetic and real data is

quite encouraging because it validates the simulation-based

approach and provides evidence to support the conclusion

that a simulation-based study can serve as a fairly reliable

proxy for real-world data.

7. Conclusions

This paper investigated and empirically reported the im-

pact of extremely low temporal and spatial resolution, the

number of cameras used as well as their arrangement in re-

lation to action recognition performance within a seminar-

room scenario. Each factor was individually studied using

the proposed algorithm, when the other two factors were

fixed. From our study, we found that a reduction in spatial

resolution seems to have the most drastic effect on recogni-

tion performance, followed by camera count/arrangement,

and then temporal resolution. Further, we investigated the

worst-case camera configuration we could: 1 camera, with

a 1×1 spatial resolution, and a 2 Hz temporal resolution,

and found a very low average CCR of 48.39% ± 2.34%.

This result can be compared to our best performing cam-

era configuration: 5 cameras, each with a 10×10 spatial

resolution, and a 30 Hz temporal resolution, which had a

CCR of 89.6% ± 1.53%. The difference in performance

suggests that having a single camera, with almost no spa-

tial or temporal resolution whatsoever is ill suited for ac-

tion recognition. However, our work has shown that with a

slight increase in resolution and a few additional low reso-

lution cameras, a very reasonable recognition rate of around

80% can be achieved (see camera configuration: 5 cameras,

2×2, 30 Hz). Clearly, at this spatial resolution any privacy

concerns are mitigated. Further, these results have also been

validated on real data.

As a final point, this paper focused on understanding

the trade-offs between temporal and spatial resolution and

camera counts rather than seeking to find an algorithm that

would yield the best CCR. Yet, even with a simplistic al-

gorithm, we have achieved surprisingly good performance

with what would typically be considered extremely low and

unusable resolutions.

More information on this research as well as some re-

sources are available at [1].
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