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Abstract

Pain is a critical sign in many medical situations and
its automatic detection and recognition using computer vi-
sion techniques is of great importance. Utilizes this fact
that pain is a spatiotemporal process, the proposed sys-
tem in this paper employs steerable and separable filters
to measures energies released by the facial muscles during
the pain process. The proposed system not only detects the
pain but recognizes its level. Experimental results on the
publicly available pain database of UNBC show promising
outcome for automatic pain detection and recognition.

1. Introduction
Pain is an unpleasant sensation that informs us about

some (potential) damages or danger in the structure or the
function of the body. It causes emotional effects like anger
and depression and may even impact on the quality of life,
social activities, relationships and our job. Yet pain is one
of the most common reasons for seeking medical care, over
80% of patients complain about some sorts of pain [16].
So, for clinical trials and physicians, pain, similar to blood
pressure, body temperature, heart-beat rate and respiration,
is an important indicator of health. Therefore, reliable as-
sessment of pain is essential for health related issues. That
is why in 1995 Dr. James Campbell called the pain assess-
ment as the fifth vital sign and suggested that quality care
means that pain is measured and treated [17].

The most popular technique for pain assessment is Pa-
tient self-report. It is convenient and does not require spe-
cial skills, but has some limitations. It includes inconsis-
tent metrics, reactivity to suggestions, efforts at impres-
sion management and differences in conceptualizations of
pain between clinicians and sufferers [15]. Moreover, self-
reporting cannot be used, e.g., with children and those pa-
tients who cannot communicate properly due to neurolog-
ical impairment or those who require breathing assistant.
Craig et al. in [6] evidenced that changes in facial ap-
pearance can be a very useful cue for recognizing the pain.

In Atul Gawandes recent book [9], it has been shown that
periodically monitoring of patients pain level by medical
staff improves patients treatment. However, sustained mon-
itoring of patients by this way is difficult, unreliable and
stressful. To solve this issue, automatic recognition of pain
using computer vision techniques, mostly from facial im-
ages, has received great attention over the past few years
[3]-[19]. Brahman et al. [3] proposed a binary pain detec-
tion approach (pain versus no-pain) using Principal Compo-
nent Analysis (PCA) and Support Vector Machines (SVM).
Ashraf et al. [1] detected the pain using Appearance Active
Model (AAM). Littlewort et al. [13] employed a two-layer
SVM-based approach in order to detect real pain or posed
pain. The above mentioned systems implement a binary
classifier, meaning they recognize only two cases of pain
versus no-pain, while based on the Prkachin and Solomon
Pain Intensity metric [18], pain can be quantized into 16
discrete levels ranging from no-pain (0) to maximal pain
(15).

To the Best of our knowledge, there are only few re-
search articles that have estimated the pain level automat-
ically, like those in [11-14]. In [14] a system has been
developed which can detect three levels of pain intensity.
It uses geometry-based and appearance-based features with
a separate SVM classifier for each intensity level of pain.
Kaltwang et al. [11] proposed an approach using a combi-
nation of appearance-based features, Local Binary Pattern
(LBP), and Cosine Discrete Transform (DCT), for detecting
intensity levels of pain. They applied a Relevance Vector
Regression (RVR) model to predict the pain intensity from
each feature set. The above mentioned systems use hand-
crafted features like LBP and try different classifiers like
PCA, SVM, and RVR to detected and recognize the pain.
Though they produce interesting results, they do not con-
sider the dynamics of the face. We have observed during
our experiments that pain is exposed on the face through
changes and motions of some of the facial muscles. These
motions obviously release some energy. The level of the re-
leased energy is in direct relationship with the level of the
pain. This is exactly the point that we want to exploit in this
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Figure 1. The block diagram of the proposed system.

paper: we develop a system for pain recognition that mea-
sures the level of the released energy of the facial muscles
over the time. Changes (activation) of facial muscles during
the pain have been previously used for pain recognition in
Prkachin and Solomon [18]. However, they do not consider
the released energy of the facial muscles, but detect the fa-
cial Action Units (AU)s and combine them to measure the
pain.

There is not that many research work neither on exploit-
ing the temporal axis nor on exploiting the released energy
of the facial muscles for detecting and recognizing the pain.
For example, [19] measures the pain over the temporal axis.
However, it does not use the released energy of the mus-
cles and is more focused on developing a classifier for pain
recognition, which is based on Conditional Ordinal Ran-
dom Fields (CORF). The only system that uses the released
energy of facial muscles is the one developed by Hammal
et al. [10]. This system uses a combination of AAM and an
energy based filter, Log-normal filter, to estimate four inten-
sity levels of pain. Though this system exploits the released
energy of the facial muscles, it does that only on a frame by
frame basis, in a spatial domain. The proposed system in
this paper exploits the released energy of the facial muscles
not only on the spatial domain, but also in the temporal one.
To do that, we use a specific type of spatiotemporal filter
which is shown to be very useful for extracting information
in both spatial and temporal domains at the same time, for
other applications, like region tracking in [7], [4].

The rest of this paper is organized as follows: the em-
ployed filter and the other details of the proposed system
are given in the following section. Section 3 explains the
performed experiments and discusses the results that are
obtained on a public facial database. Finally, section 4 con-
cludes the paper.

2. The Proposed System
The block diagram of the proposed system is shown in

Fig. 1. Following the diagram, given an input video se-
quence, the faces are first detected, simply using the pro-
vided landmarks 1. Then, an Active Appearance Model

1The employed database in this paper provides the positions of the fa-
cial landmarks for all the images.

(AAM) algorithm is used to align the detected faces in dif-
ferent frames of the video to a fixed framework using the
provided landmarks. This registration to the fixed frame-
work will cause losing some of the areas of the face, in some
of the frames, which appear as holes or lines on the regis-
tered faces. To compensate for this, we use an inpanting
algorithm. Then, the spatiotemporal filtering is performed
in both x, y, and t dimensions to detect the energy released
by the facial muscles motion of the aligned faces. Finally,
the pain is detected and its level is recognized. These steps
are explained in the following subsections.

2.1. Face Detection and Alignment

Detecting the face is an essential step in any facial anal-
ysis system, including, pain recognition. The employed
database in this paper [18] provides the position of facial
landmarks in all the frames of the dataset. We simply use
these landmark positions to extract the facial regions in each
frame. To do so, as it is shown in Fig. 2a, the facial land-
marks are used as vertices of triangles which cover the en-
tire face area, as it is done in [12]. This detected face needs
to be segmented from the rest of the image. For this pur-
pose, first, a binary mask (Fig. 2b) is generated such that:

Mask =

K⋃
k=1

Ik (1)

where:

Ik =

{
1 Pij ∈ Tk
0 Otherwise

(2)

where Tk is the kth triangle created by landmark points,
Pij is a pixel on the image located at (i, j), Ik is a binary
image corresponding to Tk and U is a union function. Fi-
nally, the face can be segmented from the rest of the image
by applying the mask on the image (Fig. 2c).

As mentioned before, the proposed system measures the
energy that is released due to the motion of the facial mus-
cles. However, in a video sequence, such motions are not
the only type of motion. For example, Fig. 3a shows the
positions of 66 facial landmarks in a video sequence of 100
frames. If there was no motion in the video at all, one could
only see 66 facial landmarks, but as it can be seen in Fig. 3a,



Figure 2. a) Triangles generated from facial landmarks using the algorithm of [12] for face detection, b) the used mask for segmenting the
face, and c) the segmented face.

the position of each landmark is changing from one frame
to another. This indicates the presence of other motions on
the face, like motions resulting from the head pose. Such
motions should be filter out. To do that, we employ the face
alignment algorithm of [8]. The faces in this algorithm are
aligned using the facial landmarks. The results of this align-
ment, applied to Fig. 3a, can be seen in Fig. 3b.

Figure 3. Facial landmarks of 100 face images of a sequence: a)
before and b) after alignment.

The alignment algorithm first finds the alignment param-
eters using the facial landmarks. Then, it uses these align-

ment parameters to warp the face images of the input video
sequence into a common framework using the warping al-
gorithm of [5]. The reader is referred to [5] for the details
of the warping algorithm. The result of this warping for a
face image is shown in Fig. 4a. It can be seen from Fig.
4a that there are usually some holes (or even lines) in the
results of the warped image, which indicate unknown pixel
values. This is due to the warping of the facial images that
are of different head poses. To deal with this, we use the in-
painting algorithm of [2] which uses a series of up-sampling
followed by down-sampling. The results of this algorithm
applied to Fig. 4a can be seen in Fig. 4b.

Figure 4. The warped aligned face image: a) before and b) after
inpainting.

Having aligned the facial images of the input video se-
quence and generating an aligned facial video, using the
above mentioned steps, the next step is to extract the spa-
tiotemporal features. These features extract the direction
and the level of the energies released by the facial muscles.
These directions and levels are different for different facial
expressions. For example, for a neutral face one should not
expect too much energy to be released, while for a laughing
face or a face suffering from pain, different levels of energy
will be released by the facial muscles in different directions.
Extracting of orientation and level of the released energy of



Figure 5. Pixel-based energies (white regions) obtained for the image shown in Fig. 4b computed at four different orientations. The
different colors represent different facial regions.

the facial muscles are explained in the following subsection.

2.2. Spatiotemporal Feature Extraction

The extraction of the orientation and the level of the en-
ergies released by the facial muscles are done through steer-
able and separable filters of [4]. These filters compose of a
second derivative Gaussian G2(θ, γ) followed by a Hilbert
transform H2(θ, γ), in different directions of θ, and scales
of γ. We do not use a multiscale method, because the level
of the energy is not that much visible in coarse scales, hence
γ = 1. During the pain, however, the facial muscles can
move in any directions, but such motions can be decom-
posed into four main directions. Therefore, we measure the
released energies in four main directions corresponding to
θ = 0, 90, 180, and 270 degrees. The released energy from
every pixel is then calculated by:

E(x, y, t, θ, γ) = [G2(θ, γ) ∗ I(x, y, t)]2

+ [H2(θ, γ) ∗ I(x, y, t)]2 (3)

where * stands for a convolution operator, (x, y, t) shows
the pixel value located at the position of x and y of the
tth frame (temporal domain) of the aligned video sequence
of I , and E(x, y, t, θ, γ) shows the energy released by this
pixel at the direction of θ and the scale of γ. To make the
above obtained energy measure comparable in different fa-
cial expressions, we normalize it using:

Ê(x, y, t, θ, γ) =
E(x, y, t, θ, γ)∑
E(x, y, t, θi, γ) + ε

(4)

where θi considers all the directions and ε is a small bias
used for preventing numerical instability when the overall
estimated energy is too small. Finally, to improve the local-
ization, we weight the above normalized energy using [4]:

Ė(x, y, t, θ, γ) = Ê(x, y, t, θ, γ).z(x, y, t, θ) (5)

where



z(x, y, t, θ) =

{
1
∑
γi
Ê(x, y, t, θ, γi) > Zθ

0 Otherwise
(6)

in which Zθ is a threshold for keeping energies at the di-
rection θ, as too small energies are likely to be noise. The
weighted normalized energy obtained in Eq. 5 assigns a
number to each pixel (corresponding to the level of the re-
leased energy by that pixel) in each of the four chosen di-
rections of θ = 0, 90, 180, and 270. Fig. 5 shows these
pixel-based energies for a facial image computed at the four
different orientations.

The above obtained pixel-based energies can be con-
verted into a more understandable form, if we study the
regional changes/motions of the facial muscles of different
parts of the face. Based on our observations, different re-
gions of the face contribute differently to the level and di-
rection of the energy in different facial statuses. We have
observed that facial muscles that are actively participating
to the facial motions during the pain are coming from the
three regions that are highlighted in Fig. 6. Besides this, the
facial muscles on the left side and the right side of each of
these three regions are participating differently in motions
during the pain. Because of this, inside each region we have
used different colors to distinguish between the left and the
right sides.

Figure 6. The facial muscles of these three regions are actively
contributing to the facial motions during the pain.

To convert the pixel-based energies into region based en-
ergies, we obtain the histograms of the directions of the
pixel-based energies, computed above, for all the three men-
tioned facial regions. We calculate the histogram of the di-
rections, H(Ri), by:

HRi(t, θi, γ) =
∑
Ri

Ė(x, y, t, θi, γ) (7)

where Ri, i = 1, 2, or 3 is the ith region of the face. Fig.
7a to Fig. 7c show three histograms of directions of the

weighted normalized energies that are obtained using Eq.
7 at three different stages of a pain process. Fig. 7a (top)
shows a neutral face, therefore, there is not that much en-
ergy in either of the directions. It can be verified by Fig. 7a
(bottom). Fig. 7b (top) shows just the beginning of a pain.
The corresponding histogram in Fig. 7b (bottom) it can be
seen that muscles in region 1 release energy in direction 270
degree (downwards), but those in region 2 release energy in
direction 90 degree (upwards) and those in region 3 release
some energies to sides (here direction 180 degree). Fig. 7c
(top) shows the face just before revealing from the pain. It
can be seen from its corresponding histogram shown in Fig.
7c (bottom) that muscles are releasing energy in the oppo-
site direction of Fig. 7b (bottom) to get back to their original
locations.

The above obtained energies can inform us only about
some muscles activities (motions), but we need a specific
interpretation to see if these motions are due to the pain or
not. To do that, we need to study the effect of the pain on the
motions of the muscles in the temporal domain. To consider
the time domain, we simply obtain the histograms of the
directions for each facial region in the aligned input video
(Fig. 8(left)). However, as mentioned, since the muscles
will move back to their original locations at the end of the
pain, instead of the measured directions, we simply consider
the changes of the released energies of the muscles in two
main orientations: up-down (UD) and left-right (LR). For
UD we use UDRi

= HRi
(t, 0, γ)−HRi

(t, 180, γ), and for
LRRi

= HRi
(t, 90, γ)−HRi

(t, 270, γ). These will convert
the histograms of directions in (Fig. 8(left)) into changes in
histograms of orientations, as shown in Fig. 8(right).

2.3. Pain Recognition

Having obtained the histograms of orientations from
each region, the final step is to combine them by consid-
ering the temporal domain and recognize the pain. To con-
sider the temporal domain for monitoring the changes in the
released energy we take the integral of the two UD and LR
histograms of orientations in each region, using:

ARiUD
=

n∑
t=1

UDt (8)

and

ARiLR
=

n∑
t=1

LRt (9)

where ARiUD
and ARiLR

are the integrals of UD and
LR for the ith region (i = 1, 2, 3), respectively, and n is
the number of the frames in the aligned video. Finally, the
pain intensity, PI , is obtained by calculating the above two
integrals for each of the three regions:



Figure 7. Histograms of directions of the normalized released energies from different facial regions (bottom row), for three different images
(top row) at different stages of a pain process: a) neutral face, b) the beginning of the pain, and c) just before the end of the pain.

Figure 8. Histograms of directions (left) and changes in histograms of orientations (right) for three facial regions for the aligned facial
images of a video sequence of 60 frames. The red, green, blue, and dark colors in the left column show the released energies at directions,
0, 90, 180, and 270, respectively. The red and blue colors in the right column show the up-down (UD) and left-right (LR) histograms of
orientations, respectively.

PI =

3∑
i=1

wRiUD
ARiUD

+

3∑
i=1

wRiLR
ARiLR

(10)

where wRiUD
and wRiLR

define some experimentally



obtained weights of the corresponding regional histograms
of orientations. The PI gives us an indication of the pres-
ence of the pain in each frame of the video. Depending
on the value of PI we find some experimentally achievable
thresholds to classify the pain into three class of no-pain,
weak, and strong. The experimental results are given in the
next section.

3. Experimental Results
The proposed system has been implemented in Mat-

lab 2014b. We have used the publicly available UNBC-
MacMaster Shoulder Pain Expression Archive Database
[18] for evaluating the proposed system. This database is
composed of 25 participants who suffer from pain in their
shoulders. They have been filmed during series of move-
ments in two different scenarios (active and passive). In
the active scenario participants move their arms themselves,
but in the passive scenario a physiotherapist is responsible
for this. Videos were captured at a resolution of 320×240.
The total number of the recorded frames is 48398. In this
database, the ground truth pain information has been pro-
vided using AUs (see Fig. 9), by:

Pain = AU4 + max (AU6, AU7)+

max (AU9, AU10) +AU43 (11)

Figure 9. Active AUs of Pain, the image is from the UNBC
database of [18].

For each frame in the database, the AU intensities were
coded on a 6 level scale except the AU number 43 which
was coded on two levels [6].

To evaluate our system we selected randomly 50 se-
quences from 12 participants, containing 4926 frames. Ta-
ble 1 shows the results of the proposed system against the
results of the system developed in [10]. The last columns of
the table show the percent by which the system have been
able to recognize the pain in that specific level. It can be
seen from Fig. 10 and this table, that our system not only
detects the pain but also recognizes three different levels of
the pain. These three levels are no-pain where PI ≤ 0,

weak pain where 1 ≤ PI ≤ 2, and strong pain where
PI ≥ 3. The proposed system actually outperforms the
system of [10] in terms of the accuracy of recognizing the
level of the pain. It should be mentioned that system of
[10] is the only energy based system in the literature for
calculating the pain, but it is working in the spatial domain.
Outperforming this system by our proposed system means
that including the temporal information in an energy-based
pain recognition system results in better outcomes.

We should take into account that the pain intensity in
[10] has been classified into four levels. Two pain levels of
Trace and Weak in [10] correspond to the level Weak in our
system. Therefore, for comparison purposes mean of the
Trace and Weak levels has been reported as Weak in Table
1.

Finally, Fig. 10 shows the PI values obtained by the
proposed system (using Eq. 10) for two different video se-
quences each containing100 facial images, along with their
ground truth data taken from the database employed. It can
be seen from this figure, that there is a good overlap be-
tween the peaks of the estimated pain intensity curve and
the ground truth. It should be noted that the negative values
in the estimated values will be considered as zero (no-pain).

4. Conclusion
The proposed system in this paper uses separable steer-

able filters for automatic detection and recognition of pain.
To do that, it applies these filters in both spatial (x, and
y axises) and temporal (time axis) domains and measures
the energies released by the facial muscles that are active
during the pain process. The proposed system has pro-
duced promising experimental results on the publicly avail-
able dataset of UNBC [18]. The results can be improved
more by employing a better warping algorithm to compen-
sate for the variations of head pose, for which we plan to
use 3D information of facial landmarks in our future works.
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