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Abstract

To apply brightness and color adjustments to projected
images, the color transfer function (CTF) of the projector
has to be known. We propose a novel approach to determine
the CTF using a high sampling density, which is suitable for
modern DLP projectors working with color wheels with ad-
ditional primaries. Our approach is based on the principle
of measuring patterns consisting thousands of color sam-
ples at once, using a DSLR camera and high dynamic range
photography. To ensure high accuracy, additional correc-
tion patterns are introduced to compensate for the influence
of the dynamic background light caused by displaying the
patterns itself. Furthermore, several permutations of the
samples in the patterns are captured to address spatial vari-
ances of both the projector and the camera. We show that
our method achieves comparable accuracy to existing meth-
ods, but is one to two orders of magnitude faster. A 643 sam-
pling of the CTF can be acquired in a few hours, compared
to several weeks that sequential spot measurements would
take. Additionally, we demonstrate that a different config-
uration of our method can be used to capture 173 samples
extremely fast, indicating the applicability for cases where
sparse sampling is sufficient.

1. Introduction
Applying photometric corrections to the output of pro-

jectors is a challenging task since adjusting brightness and
color requires knowledge of the CTF, which describes the
output color produced for each input RGB triplet in some
device-independent color space (usually CIE XYZ). Using
the inverse CTF, the device-specific RGB value to achieve
a desired output can be determined. In the process of build-
ing stereoscopic powerwalls, we experimented with differ-
ent methods for measuring the CTFs. We are using off-the-
shelf projectors not specifically designed for such use cases.
Moreover, we focus on “ultra short throw” devices to build
very space-efficient installations. Such projectors are devel-
oped for office use and are typically implemented as single-

chip DLP devices with 6-segment color wheels (RGB +
cyan, yellow and white). We found that none of the exist-
ing color calibration methods achieved compelling results
in such scenarios. This is especially apparent when the pro-
jector’s native 3D modes are activated. In that modes, the
CTF is altered to incorporate the time needed for the shutter
glasses to switch (and often also, for the additional white
flash for synchronization with DLP-Link glasses [10]). The
color reproduction of these devices is generally quite poor
and deviates significantly from standard RGB models. We
even observed discontinuities in the CTF (see the abrupt use
of the cyan segment in fig. 5), while most existing calibra-
tion methods assume smooth and continuous functions.

In this paper, we present a novel method to measure the
CTF of display devices to address the aforementioned is-
sues. The applicability of existing methods is limited by the
measurement time. In practice, at most a couple of hours
per projector is tolerable, so that a sparse sampling con-
sisting of a few thousand samples can be taken. To ade-
quately measure the local deviations and discontinuities, a
much higher density is desirable. Our method is based upon
the the fact that DSLR cameras consist of millions of sep-
arate sensor elements, and displays consist of millions of
independent pixels, so that in principle, a high number of
measurements can be taken in parallel with a single photo.

2. Related work
Stone characterizes the color transfer of RGB projectors

based on two assumptions [8]: color constancy (the color
primaries’ chromacity coordinates are constant at all inten-
sity levels) and channel independence (each primary’s in-
tensity is independently controlled by one of the input chan-
nels). In such a scenario, the color transfer can be described
by the XYZ coordinates of each primary (at maximum in-
tensity) as well as the black offset, and a linear-combination
of three one-dimensional intensity transfer functions (ITFs),
which can be measured with varying sampling density
(Stone uses spectroradiometers and colorimeters). Exact
colorimetric measurements are only required for determin-
ing the primaries and the black offset, while output intensi-



ties can be measured using standard cameras. Raij et. al use
a black-and-white digital video camera [6] and rely on high
dynamic range (HDR) photography techniques as described
by Debevec and Malik [2]. Since projectors typically work
with 8 bit color depth, measuring all three ITFs will require
at most 768 samples.

Unfortunately, many projectors’ color transfer functions
cannot be characterized this way. Especially single-chip
DLP devices with a color wheel include additional color
primaries. Regarding the RGB input space, the color con-
stancy and channel independence assumptions do not hold
any more. Wallace, Chen and Li address this problem by
directly measuring the 3D color transfer function of DLP
projectors with RGBW color wheels [9]. They use a sparse
sampling of 133 measurements (with a higher density at
lower intensities to accommodate for the nonlinear nature of
the function) and linearly interpolate in between them. Sa-
jadi, Lazarov and Majumder suggest using 3D Bézier vol-
umes [7] for interpolation and report that using their method
with 93 sample points yields comparable results to 163 sam-
ples with linear interpolation. They further report that high-
end DSLR cameras’ color gamuts are wide enough to di-
rectly capture the color transfer function of most projectors,
so that a 3×3 matrix may be applied to convert the camera’s
(RAW) sRGB images to XYZ. Measuring 93 samples took
about 2 hours with that approach, while 163 took 11 hours.

3. Camera-based measurement
To achieve a much higher sampling density, we suggest

to divide the set of input color samples into patterns, each
of which can be displayed and captured at once.

3.1. Aggregation of camera pixels

For optimal quality and reduction of noise, the number of
sensor pixels per color sample should be maximized. Since
most digital cameras use color filters in a Bayer pattern [1],
the actual number of available measurements per (camera)
color channel is further reduced to 1

2 (G) or 1
4 (R and B).

We render each color sample as an axis-aligned rectangle
in projector image space and assume that a geometric reg-
istration between the camera and projector image space has
been established, so that each camera pixel can be assigned
the ID of a color sample, denoted by the function m(x, y).
This mapping is calculated by transforming the four corner
points of the camera pixel into projector space. If all four
points lie in the same sample, the camera pixel is assigned
to that sample, otherwise it is marked invalid.

To compensate for inaccuracies of the geometric regis-
tration, unsharpness of the projection or cameras as well as
slight variations over time (e.g. due to change in tempera-
ture), a weighting factor w(x, y) is applied to each camera
pixel, smoothly fading out to the borders of the sample, so
that crosstalk between neighboring samples is minimized.

Since we are not interested in reconstructing an image,
the expensive interpolation to determine an RGB triplet
per pixel can be skipped. Instead, we define a function
h(x, y, z) which assigns each pixel (x, y) and raw input
channel z a camera color channel1 and calculate a weighted
average of all of the camera pixel values assigned to a single
color sample and image channel, resulting in single mea-
surement vector q̃ per sample i, in the camera’s native color
space as

q̃j(i) =

∑
(x,y,z)∈Vj(i)

w(x, y) · q̂z(x, y)∑
(x,y,z)∈Vj(i)

w(x, y)
(1)

where (x, y) denotes the camera pixel location, j the cam-
era color channel, Vj(i) = {(x, y, z) | m(x, y) = i ∧
h(x, y, z) = j} the set of pixels for sample i and q̂z the
linearized sensor value for color channel z.

3.2. Exposure parameters and dynamic range

We build upon the HDR approach by Debevec and Malik
and take a series of photos with varying exposure parame-
ters. This is especially relevant when further constraining
the range of the sensor values. We define an interval for the
preferred range, and always try to get exposures for each
sample in that range (although we resort to using values
outside of that range if no better exposure is possile due
to the constraints described below). For our experiments,
we chose [0.03, 0.90] as the preferred interval, which limits
the dynamic range of a single photo to 30 : 1. This im-
plies that even for patterns containing just a subset with a
quite limited range in color and brightness, several different
exposures may be are required.

As noted in [2], the aperture should not be changed in the
HDR series, because this changes vignetting characteristics
of the image and breaks the fundamental HDR assumption
that the linearized sensor values at each pixel location of
two different exposures are linearly related by the relative
factors of the exposure values. Debevec and Malik gen-
erally recommend varying only the exposure time. Since
modern cameras offer a range of exposure times from frac-
tions of milliseconds to many seconds or even minutes, the
achievable dynamic range is very high.

However, for our use case, additional constraints have to
be taken into account. The display devices we want to mea-
sure might create the image in a time-sequential manner.
E.g., taking photos with exposure times less then one revo-
lution of the color wheel will produce meaningless data. As
the camera and display are not synchronized to each other,

1Note that with cameras with Bayer pattern the number of raw input
channels is one, so that z is always 0 and h just maps each sensor pixel
to a color channel. However, the chosen model can also represent Foveon
sensors, where three different values are available per sensor location [3].



there is no guarantee that an integral number of revolutions
or frames is captured, so that the exposure time should be
chosen at least an order of magnitude higher than the frame
time to minimize the error introduced by incorporating an
incomplete frame. Additionally, photos can be repeated
with the same exposure parameters to further cancel out this
effect. We suggest selecting the number of photos per ex-
posure setting as a function of the exposure time ∆t as

cnt(∆t) = max

(
n · frametime

∆t
, k

)
(2)

so that in total at least n full frames are captured and at least
k photos are taken. For devices which continuously dis-
play the complete image, frametime = 0 can be assumed.
From empirical experiments, we recommend n = 100 and
k = 2 to always repeat each measurement at least once, and
∆t > 30frametime.

On the other hand, the upper limit for ∆t should not be
chosen too high, because doing so would increase the over-
all duration and would also introduce additional noise. We
limit ourself to the available exposure time steps offered by
the camera and avoid long-term “bulb” exposures, so a typ-
ical upper limit is ∆t <= 30s. We found that with those
constraints, the resulting dynamic range is too low to cap-
ture the full range of the projector outputs. Therefore, we
also vary the sensitivity (ISO value) S during the HDR se-
ries. Modifying the ISO value does not change the light
reaching the sensor, but it controls the amplification before
the digitizing operation, so it reduces quantization noise.
In general, the sensitivity should be kept as low as possi-
ble and only increased for very dark contents. However,
modern cameras deal quite well with moderate ISO values
< 1000, so that slightly increasing S early can be benefi-
cial. To incorporate the changed sensitivity value S into the
HDR calculations, we extend the concept of the exposure
value to a generalized exposure factor b = A2

∆t·S .
The exposures are selected on a predefined path in the 2D

parameter space defined by (∆t, S). This path represents
series of points, since the parameters can only by chosen
in discrete steps. Each point is characterized by the corre-
sponding b value. Tuning this path allows to make a trade-
off between speed and quality by earlier/later resorting to
higher ISO values.

The exposure series must capture the full dynamic range
of each native camera channel. An iterative algorithm is
used for that. An initial guess for the exposure is made
by calculating the average of the input color samples and
predicting the display’s output assuming a simple RGB
model. Then, the point on the exposure path which maps
the expected value closest to the center of the measurement
range is selected and the cnt photos are taken. An interval
[bmin, bmax] is used to keep track of the already covered expo-
sure range.As long as overexposed (underexposed) samples

are present, a new exposure is searched along the path to
decrease bmin (increase bmax), and the photos taken accord-
ingly. The distance to walk on the path is controlled by a
user parameter. This method is repeated separately for each
color channel. However, the intervals of previous channels
might be re-used if the exposure ranges are not totally dis-
junct. To do so, the number of under- and overexposed sam-
ples per color channel is stored and updated for each inter-
val border. This is always done for all color channels, not
only currently processed one. Before a new photo is taken,
the intervals of previous channels are searched for that ex-
posure factor. If it is already covered, the current interval
and the previous one can be united.

The standard HDR approach assumes that the exposure
value of each photo is exactly known, so that for two expo-
sures α, β the equation q̂α

q̂β
=

bβ
bα

= f holds for every sen-
sor location (correctly exposed in both photos). We modify
this approach by not calculating f from the exposure pa-
rameters, but by relying on the presence of many samples
correctly exposed in both photos to find an optimized factor
f ′ using a least-squares minification strategy. This corrects
for slight variations in the data as well as uncertainties in
the exposure parameters.2 Since we work on the aggregated
sensor elements and not directly on the millions of raw cam-
era pixels, this optimization step is not very expensive.

Reconstructing the HDR data starts by selecting the ex-
posure with the most not over- or underexposed samples.
Then, iteratively, of the remaining photos, the one with the
most overlapping samples is added. When adding a new
image and determining f ′, the data accumulated up to this
point is used. The values are normalized so that for the ac-
cumulated image, the exposure factor b = 1 is assumed.
This results in a measurement value ṡi per sample, which is
independent of the exposure parameters.

3.3. Emulating spot measurements

In the existing approaches, cameras are primarily used
as replacements for spot measurements with colorimeters
or spectrophotometers. Majumder found that projectors
mostly vary in luminance, while chrominance and espe-
cially the nonlinear characteristics of the ITFs remain spa-
tially constant [4], so an arbitrary location can be chosen.
But when measuring many samples at different locations,
the individual measurements must be related to each other,
so that the spatial variations cannot be neglected any more.

A naive approach would be capturing the output of a uni-
form color across the whole display and determining a scale
factor for each camera pixel. This could be seen as a mod-
ification of Majumder and Steven’s LAM method [5], just

2Debevec and Malik did report hat the actual exposure times of digital
cameras deviated from the displayed ones, with the actual ones strictly
organized in an 1

2
or 1

3
f-stop raster. We already corrected for this effect,

but the actual ISO values are also not exactly known.



(a) #1 (min) (b) #2 (max) (c) #3 (d) #4

Figure 1. Sub-patterns for pattern #43 out of a set of 64. The
minimum- and maximum reference pattern and two permutations
are shown. The reference samples are marked with red (max) and
blue (min) borders.

applied to the camera image (containing the composition
of the projector’s and the camera’s spatial luminance vari-
ations) instead of the projector image. However, we found
that this strategy does not work well in practice. It turns
out that the the background light cannot be neglected. The
irradiance E at some sensor pixel can be characterized as
E = Eb + Ex, where Eb is caused by background light
(both of the room as well as the black offset of the display)
andEx represents the actual output of the projector which is
to be measured. Assuming that the measurement take place
in a darkened room and capturing a map of Eb is not suffi-
cient, though. Displaying the pattern itself illuminates the
whole room, and the light gets diffusely reflected back onto
the display. Conceptually, this can be seen as a dynamic
background light, so that the actual irradiance incident at
the sensor is Eb + Ed(Ex) + Ex. Assuming that the reflec-
tive characteristics of the room stay constant, the dynamic
background light might be characterized asEd(Ex) = τEx.
This does not pose a problem for traditional spot measure-
ments, because after correction for the static black level, the
measured irradiance is (1 + τ)Ex, so this only changes the
already arbitrary scale factor. But in our use case, Ex varies
per sample, but Ed will be a function of all samples of the
pattern, so that the samples influence each other.

To address this issue, we are capturing correction data
specifically for each pattern. Two reference samples are
created per pattern, one contains the minimum (input) in-
tensity (per channel), the other the maximum. For each pat-
tern, a set of sub-patterns is created. Each sub-pattern is
measured with the method described in the previous sec-
tions. The first sub-pattern consists only of recurrences of
the minimum reference sample, the second one uses the
maximum reference sample. Finally, θ sub-patterns con-
sisting of the actual samples are created. To each of these
color sub-patterns, n recurrences of the minimum and maxi-
mum samples are added. Furthermore, the sample positions
in each sub-pattern will be permuted in a pseudo-random
manner, so that for each color sample, θ measurements will
be made at (very likely) different locations of the display
surface. Using more than one permutation provides more
data points per sample, so that noise can be further reduced.
It also mitigates the influence of spatially varying color re-

production of the projector.
Furthermore, the sub-patterns are enlarged by duplicat-

ing the border samples. Those additional fields are ignored
during the measurement and are added to ensure a similar
neighborhood for all samples in the pattern. Fig. 1 illus-
trates the layout of the sub-patterns which are actually dis-
played during the measurement process.

Let i be the index of the sample, j the index of the sub-
pattern (1 and 2 denote the min/max sub-pattern), lj(i) the
location of sample i in sub-pattern j and ṡj(l) the measured
value of sub-pattern j at the location l. We also capture the
static background ṡ(0)(l) when displaying black to calculate
corrected values s̃j(l) = ṡj(l) − ṡ(0)(l). To reconstruct a
location-independent value for sample i, a relative factor is
determined as

ri,j =
s̃j(lj(i))− (α1,j s̃1(lj(i)) + β1,j)

α2,j s̃2(lj(i)) + β2,j − (α1,j s̃1(lj(i)) + β1,j)
(3)

The coefficients α and β allow estimating the value that
the reference sample would have had at the sample’s lo-
cation in sub-pattern j. These coefficients are found by a
least-squares optimization using the reference samples of
the sub-pattern and the corresponding values of the refer-
ence patterns. In other words, we “project” the surface of
the reference sub-patterns into the color sub-patterns using
a linear model f(x) = αx+β and determine the relative po-
sition of each sample in-between those surfaces. Note that
r is not limited to the range [0, 1], because the min and max
samples were chosen with respect to the input color space,
and do not take the actual properties of the display’s CTF
into account.

To emulate the spot measurement, an arbitrary sample
location lref is chosen. The data is reinterpreted for the
new sample location as

s′i,j = ri,j(s̃2(lref)− s̃1(lref)) + s̃1(lref) (4)

using the uncorrected reference sub-patterns, which provide
a global frame of reference for the measurement data match-
ing the traditional spot-measurement methods. In figure 2,
the process of the reconstructing these position-independent
values from the sub-patterns is illustrated. The final value
si for each sample is calculated as the average of the s′i,j
for j = 3, . . . , θ + 2. The method is applied to each color
channel separately, so that for each input color sample, the
vector si representing the display’s output in the camera’s
native color space is determined.

3.4. Partitioning of the color samples

The gamut of the a display is defined by its outputs for
all possible RGB input combinations. The sampling density
is controlled by the step size in the input color range. For
example, when using a step size of 4, the resulting number
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Figure 2. Measurement of the pattern from fig. 1. Only data of the green channel is shown for illustration. In all graphs, the minimum
reference samples are shown blue (circle symbol), maximum reference samples in red (asterisk symbol), color samples in black (cross
symbol). (a) The reference sub-patters. The ultra-short-throw projector uses a strong off-axis projection so that the hot spot is at the border.
(b) Fitting the reference sub-pattern into the color sub-pattern using the reference samples. The dashed line represents the uncorrected
case (y = x). (c) Relative interpretation of a single color sample in 4 different permutations (green line, square symbol). The dashed
lines represent the uncorrected min- and max-samples for that location. The lines between the data points were only added to highlight the
proportions, they bear no direct meaning.

of color samples will be 643 or 653 (with the highest inten-
sity clamped to the maximum of 255). Since the number of
samples is much higher than what can be captured with a
single pattern, the samples are partitioned into several pat-
terns.

To improve overall speed, the dynamic range of each
pattern should be minimized. Furthermore, samples in a
pattern should not differ too much in color and brightness
to minimize crosstalk between the virtual sensor elements,
and to ensure that the dynamic background light created by
the pattern is uniform and does not deviate much from the
individual samples’ colors.

Although the display might significantly deviate from
an ideal RGB model, that is still valid as a rough approx-
imation for the device’s CTF, because otherwise the im-
age produced for typical RGB image content would be not
tolerable. Therefore, it appears reasonable to partition the
RGB cube in input color space into axis-aligned sub-cubes.
Within each sub-cube, the dynamic range is limited, and the
color and brightness of the samples will appear similar.

We recommend choosing the number of samples per pat-
tern to be at least as high as the number of samples per sub-
cube (otherwise, the sub-cube is splitted into several pat-
terns). Using a step size of 4 requires 4096 to 4913 (for the
653 case) samples per pattern (not including the reference
samples and the duplicated border). In a typical setup with
a 12 megapixel camera, this results in 1000 to 2000 cam-
era pixels (with non-zero weight) per sample. If a pattern
provides more sample locations than samples present in the
sub-cube, the actual samples are repeated until the pattern
is filled. This appears preferable to increasing the sample
size, since more distinct locations across the whole image
are captured at once.

4. Post-processing and LUT generation
To use the data for color transformations, a 3D LUT

mapping each input color sample to the projector’s response
s is built. First, the data is transformed into the projector’s
color space, defined by the red, green and blue output and
the black point. This basis is modified to ensure that no
negative sample values arise. Then, a pseudo-linearization
operation is applied by assuming an ideal RGB model and
finding the best fitting gamma value using the Levenberg-
Marquardt nonlinear least-squares optimization algorithm.
The data is gamma-corrected using the inverse of the found
gamma value. A 3D gauss filter is applied to further re-
duce measurement noise. The rationale for filtering the data
in this space is that for an ideal RGB projector and per-
fect measurements, the transformed LUT would represent
the identity mapping and the sample points would lie on an
uniform grid. Applying a gauss filter would not change the
data at all, contrary to applying it before the linearization.
The LUT transformations up to this point are illustrated in
fig. 3.

After the data is filtered, the missing samples are interpo-
lated. For each cell formed by the 2× 2× 2 neighborhood,
a piecewise linear tetrahedron interpolation is performed.
Since this interpolation is applied in the pseudo-linearized
space as well, this effectively results in a gamma-corrected
interpolation.

As the last step, the LUT is transformed back by revers-
ing the pseudo-linearization. However, the original basis is
not restored, but a new basis is chosen to convert the data
from the camera’s native color space into CIE XYZ using
the camera’s 3× 3 color matrix.

The inversion of the CTF is implemented by finding the
nearest neighbor to a target value in the point cloud rep-
resented by the forward LUT, using CIE Lab color space
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Figure 3. Postprocessing of the LUT. For better illustration, only one slice (blue= 0) is shown in 2D. Left: LUT in device-specific basis,
middle: after pseudo-linearization, right: after filtering. Values > 1 represent points which lie outside of the gamut formed by the RGB
basis of the device. In this case, the extrusion of the gamut is the result of a separate yellow segment on the color wheel of a DLP projector.

to minimize the ∆E color distances. To speed up the cal-
culations, a k-d-tree is used for the neighborhood queries.
For interactive use, the inverse CTF is pre-calculated as an-
other LUT as follows: An enclosing parallelepiped in XYZ
space is sampled non-uniformly (according to the gamma
value), and for each sample, the closest point of the for-
ward LUT is determined and the corresponding input color
value is stored in the inverse LUT. This does not assume
monotonous CTFs, but may lead to discontinuities in the
inverse function in this case, so that the LUT should only
accessed with nearest point sampling. Hence, the size of
the inverse LUT should be chosen high enough; we recom-
mend 3843.

5. Experimental results
For our experiments, we used a Nikon D3s high-end

DSLR and a XRite i1pro spectrophotometer (abbreviated
as SP in the following) as reference. Our target was mea-
suring the CTF of a Sanyo PDG DWL-2500 projector with
enabled 3D mode.3 We used two different setups of our
measurement method. The dense configuration represents
643 samples in 64 patterns, and the fast configuration 173

samples in 8 patterns. The number of samples per pattern
was the same for both. In the fast setup, the samples were
repeated at least 7 times per pattern. In either case, 64 ad-
ditional reference samples were added per pattern. We used
∆E in CIE Lab color space as metric for the quality of the
results. For conversions between XYZ and Lab, we used
the projector’s native white point as Lab reference point.

In a first experiment, we determined the influence of the
parameter θ on quality and measurement time. We selected
2 patterns from the dense set. We chose the first pattern
(containing the darkest samples in the input range [0, 60])
and #43. Furthermore, we measured 83 samples from pat-
tern #1 and all 163 samples from pattern #43 with the SP.4

3The mode is called “NVidia 3D Vision”, but it only differs from mode
“On” in that DLP-Link is deactivated.

4The lower number of reference samples for the first pattern is due to
the fact that the SP needs a higher the exposure time for dark samples too,
which took too long for all 4096 samples.
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Figure 4. Accuracy and measurement time as a function of θ.

For this experiment, we wanted to minimize the influence
of the color matrix of the camera and only focus on the er-
ror introduced by our measurement, and by nonlinear dis-
tortions in the camera’s color-space. To do so, we used an
optimized 3 × 3 matrix to convert the raw data to XYZ.
This was obtained by minimizing the residuals between the
corresponding camera and SP data (resulting in a slightly
different matrix for each pattern).

In fig. 4, the ∆E error is shown for varying values of
θ. The results indicate that using multiple permutations can
improve the quality considerably, but more than 5 permuta-
tions do not reduce the average error significantly any more.
Only the maximum error can be slightly improved. How-
ever, the time requirements increase linearly with θ, so that
2 to 5 permutations seems a reasonable range.

In another experiment, we measured the CTF completely
(see fig. 5). We compared our results to a 173 sampling
taken with the SP. The results are shown in table 1. Since
the color matrices for most DSLRs are not openly docu-
mented, we extracted the matrix for our camera from the
open source utility dcraw. However, the results achieved
with this matrix are not very good. It is not clear how this



∆E Mdcraw ∆E Mopt speed
Ø σ max Ø σ max time smp

sec
f1 7.89 3.84 18.73 0.67 0.41 3.99 19.1 4.29
f2 7.87 3.84 18.28 0.64 0.38 3.52 24.4 3.36
f3 7.87 3.84 18.10 0.61 0.37 3.46 29.9 2.74
f4 7.87 3.84 18.02 0.61 0.36 3.49 35.6 2.30
d1 8.09 4.04 20.02 0.59 0.39 3.59 132.6 32.95
d2 8.08 4.03 20.13 0.53 0.35 3.27 178.8 24.43
d3 8.07 4.03 20.78 0.51 0.36 3.09 223.5 19.55
d4 8.07 4.03 20.02 0.50 0.35 3.29 273.7 15.96

SP (93) 57.2 0.21
SP (163) 307.2 0.23
SP(173) 362.7 0.23

Table 1. Quality (average, standard deviation and maximum ∆E),
time consumption and average speed (samples per seconds) of dif-
ferent configurations (d for dense 643 and f for fast 173, each
for θ = 1 . . . 4) of our method.
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Figure 5. Measured color gamut of the Sanyo PDG-DWL 2500
projector with 643 samples in the camera’s native color space.

matrix was created and how good it is in general. It is prob-
ably optimized for a wide range of different spectral stimuli.
However, the gamut of the projector is quite restricted and
the spectral power distributions it is able to produce are just
linear combinations of 6 primaries (and ultimately created
by one lamp). So it should be possible to create an op-
timized matrix using just the corresponding measurements
between the camera and the SP. This step can be seen as a
calibration for the camera itself. It must be noted that this
calibration data needs to be acquired only once per camera
and can be reused for repeated measurements of the same
or similar projectors.

Using Mopt confirms that the high ∆E errors observed
so far were primarily caused by the linear color space trans-
formation. The maximum error could be reduced from 20 to
4, the average error from 8 to 0.5− 0.7. In other words, for

∆E abs ∆E rel
method Ø σ max Ø σ max
linear 93 1,55 1,15 9,98 1,90 1,35 14,41
linear 173 0,99 0,77 4,92 0,94 0,67 6,53
Gamma 93 1,90 1,14 10,81 1,98 1,41 14,42
Gamma 173 1,19 0,61 6,21 0,90 0,62 6,55
f2 Mdcraw 7,19 3,01 20,08 0,95 0,70 7,38
d4 Mdcraw 5,93 3,75 18,19 0,66 0,51 3,78
d1 Mopt 0.93 0,58 5,78 0,71 0,60 8,78
d4 Mopt 0,61 0,48 3,48 0,65 0,51 3,76
hybrid 0,65 0,38 3,13 0,49 0,33 3,81

Table 2. Accuracy of the inverse CTF for 825 XYZ target colors
comparing different methods. The relative and absolute error met-
rics are explained in the text.

most samples, the error introduced by our method is below
the perception threshold of a human. The maximum error
is still in the noticeable range, though.

It can be seen that in the fast configuration, the er-
rors are somewhat higher than when using dense sampling.
This might seem counter-intuitive at first, because in the
fast setup, the number of raw measurements per sample is
7 times as high. However, since only a 2×2×2 subdivision
was used, the variations in luminance and color inside each
pattern was much higher, which lead to a higher dynamic
range and more background light per pattern.5

The effect of θ appears smaller than our first experiment
suggested. Working with 4 permutations decreased the av-
erage error only by 15%. We think that the nonlinear distor-
tions of the camera color space might superpose the actual
measurement noise addressed by repetitions. In the fast

setup, the effect of θ is even smaller. This was to be ex-
pected, because of the presence of repeated samples in each
pattern.

Our method is orders of magnitude faster than spot mea-
surements. With our fast mode, we are able to gather 173

samples in half an hour, which is an improvement of factor
10 over previous methods. In the dense configuration, 1971
photos were taken in 4.5 hours (θ = 4), so an improvement
of factor 70 is achieved (factor 143 for θ = 1).

To evaluate our method in a real-world scenario, we did
another experiment to test the inverted CTFs. We selected
35 colors, distributed roughly uniform over the gamut of
the projector in the CIE xy chromacity plane (7 of these
representing the corners of the input RGB cube). For each
color, we chose 25 luminance steps uniformly distributed
from black to maximum output intensity. We transformed
the 875 samples to RGB input colors for the projector us-
ing the inverse CTF and measured the projector’s actual re-

5This is also the reason why we did not capture all 173 samples in
just one pattern. In that case, the dynamic background light created by
the pattern is so high that the dark color samples cannot be measured with
reasonable precision.



sponse with the SP. We used two different metrics for our
evaluation: the absolute ∆E error between the actual and
the requested output, and a relative ∆E error. For the lat-
ter, the achieved xy coordinates for each color at maximum
intensity are chosen as the reference coordinates for all lu-
minance steps of that color. This metric cancels out the
effects of linear color transformations. It is motivated by
our use case of photometric calibration for segmented dis-
plays, where we want to achieve uniform colors across all
segments and need to be able to independently control the
luminance, but do not necessarily need absolute color cali-
bration exactly reproducing a specified XYZ value.

We compared different variants of our method to linear
and gamma-corrected interpolation directly operating on SP
data with 93 and 173 samples. The results (see table 2) show
that 93 samples are far too few for this projector. We con-
sider the relative error metric first. Using the fast setup,
our method is comparable in quality to the SP, the average
error and standard deviation is almost identical, only the
maximum observed error is 10% higher. Using the dense

configuration, the average error can be reduced by 30%
compared to the best result achieved with the SP alone, and
the maximum error can be reduced from 6.5 to 3.8. Using
only one permutation cannot be recommended, since this
leads to a noticeable higher maximum error. We also tested
a hybrid method by combining the SP data with the camera
samples. The results show that this further improves the av-
erage error but it also increases the measurement time to 9.5
hours. In the absolute metric, variants using Mdcraw result
in high errors, as already expected. When using Mopt, the
results are very similar to the relative metric. This shows
that our method is eligible for absolute color calibration, as
long as a calibrated camera color matrix is available.

6. Conclusions and future work
In this paper, we proposed a new method to measure the

CTF of projectors. We address the characteristics of the
CTFs of modern DLP projectors by using a very high sam-
pling density. We have shown that our method is dramati-
cally faster than sequential spot measurements, without sac-
rificing the measurement quality. For the first time, a 643

sampling of a CTF can be acquired in a reasonably time
frame.

Our method can be used without a colorimeter or spec-
trophotometer at all, as the results with the relative ∆E met-
ric show. In that case, instead of using CIE XYZ as device-
independent color space, the camera’s native color space
can directly be used as the reference. This is especially use-
ful for multi-projector display systems, where photometric
uniformity is desired.

If the goal is absolute color calibration, the camera can-
not replace a colorimeter or spectrophotometer. However,
an optimized camera color matrix can be created, which can

be re-used for recurring measurements of the same or sim-
ilar projectors. Furthermore, a hybrid approach might be
used, where the high-precision, sparsely sampled SP mea-
surements are enriched by the densely sampled camera data.

Although our method was specifically developed for
dense sampling, our experiments with the fast configura-
tion indicate that it can also be applied to cases were sparse
sampling is sufficient. Therefore, our method can also be
used in conjunction with previous approaches, for example
ADICT [7].

Our method could be extended to work with multiple
cameras at once. We imagine a very interesting configu-
ration consisting of using several black-and-white cameras
and external color filters, so that each camera could be as-
signed to a color channel. This would allow to further speed
up the measurement, as well as using more than 3 channels,
possibly improving the accuracy. It might be possible to
transfer this approach to inexpensive industry cameras.

References
[1] B. Bayer. Color imaging array, July 20 1976. US Patent

3,971,065.
[2] P. E. Debevec and J. Malik. Recovering high dynamic range

radiance maps from photographs. In Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’97, pages 369–378, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[3] A. El Gamal. Trends in CMOS image sensor technology
and design. In Electron Devices Meeting, 2002. IEDM’02.
International, pages 805–808. IEEE, 2002.

[4] A. Majumder. Properties of color variation across a multi-
projector display. In Proceedings of SID Eurodisplay, 2002.

[5] A. Majumder and R. Stevens. LAM: luminance attenuation
map for photometric uniformity in projection based displays.
In Proceedings of the ACM symposium on Virtual reality
software and technology, VRST ’02, pages 147–154, New
York, NY, USA, 2002. ACM.

[6] A. Raij, G. Gill, A. Majumder, H. Towles, and H. Fuchs.
Pixelflex2: A comprehensive, automatic, casually-aligned
multi-projector display. In In Proc. IEEE International
Workshop on Projector-Camera Systems, 2003.

[7] B. Sajadi, M. Lazarov, and A. Majumder. ADICT: accurate
direct and inverse color transformation. In Proceedings of
the 11th European conference on Computer vision: Part IV,
ECCV’10, pages 72–86, Berlin, Heidelberg, 2010. Springer-
Verlag.

[8] M. C. Stone. Color and brightness appearance issues in tiled
displays. IEEE Comput. Graph. Appl., 21(5):58–66, Sept.
2001.

[9] G. Wallace, H. Chen, and K. Li. Color gamut matching for
tiled display walls. In Proceedings of the workshop on Vir-
tual environments 2003, EGVE ’03, pages 293–302, New
York, NY, USA, 2003. ACM.

[10] A. Woods and J. Helliwell. A Survey of 3D Sync IR Proto-
cols. whitepaper, Curtin University, Perth, Australia, 2011.


