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Abstract

The harmful effects of cell phone usage on driver be-
havior have been well investigated and the growing prob-
lem has motivated several several research efforts aimed
at developing automated cell phone usage detection sys-
tems. Computer vision based approaches for dealing with
this problem have only emerged in recent years. In this
paper, we present a vision based method to automatically
determine if a driver is holding a cell phone close to one
of his/her ears (thus keeping only one hand on the steer-
ing wheel) and quantitatively demonstrate the method’s ef-
ficacy on challenging Strategic Highway Research Program
(SHRP2) face view videos from the head pose validation
data that was acquired to monitor driver head pose varia-
tion under naturalistic driving conditions. To the best of our
knowledge, this is the first such evaluation carried out using
this relatively new data. Our approach utilizes the Super-
vised Descent Method (SDM) based facial landmark track-
ing algorithm to track the locations of facial landmarks in
order to extract a crop of the region of interest. Following
this, features are extracted from the crop and are classified
using previously trained classifiers in order to determine if a
driver is holding a cell phone. We adopt a through approach
and benchmark the performance obtained using raw pix-
els and Histogram of Oriented Gradients (HOG) features
in combination with various classifiers.

1. Introduction

The number of deaths due to distractions caused by cell
phone usage during driving are on the rise, not just in the
US but across the world. In 2013, 3, 154 people lost their
lives and an estimated 424, 000 were injured in the US due
to a distracted driver [1]. Distraction due to cell phone us-
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age constitutes a sizable portion of the statistic with 18% of
the incidents involving cell phone usage in 2009. Studies in
a simulated driving environment under controlled settings
have shown that impairment associated with using a cell
phone while driving can be as profound as those associated
with driving while drunk [23]]. Braking reactions were de-
layed when drivers were conversing on a cell phone, leading
to more traffic accidents [22} 23]]. Therefore, it is becoming
increasingly important to accurately detect cell phone usage
by drivers, both from the safety and law enforcement points
of view.

In order to study the more general problem of driver be-
havior, the Federal Highway Administration (FHWA) re-
cently commissioned an exploratory project that challenged
researchers in university and industry to develop computer
vision and machine learning based algorithms that were ca-
pable of processing naturalistic videos of drivers and detect-
ing signs of tiredness in drivers, cell phone usage by drivers,
tracking head pose, monitoring if the driver had both hands
on the steering wheel, efc. The driver monitoring algorithms
that can be developed will be useful for two reasons. Firstly,
they could potentially be deployed in a real-world scenario
for driver monitoring as part of a law enforcement effort.
Secondly, they could be used to automate the process of an-
notating the videos that have been already collected or col-
lected for a future study. Currently, videos collected have
to be manually annotated and processed (sometimes on a
frame by frame basis) in order to provide researchers with
ground truth data, which in turn limits the scale of such data
sets. This in turn limits the scale of the studies. It is in this
context that our work aims at addressing the specific prob-
lem of detecting whether a driver is holding a cell phone in
one hand and using only one hand to control the steering
wheel of a vehicle. Our results indicate that a fairly high
level of accuracy, that is competitive with state-of-the-art
results obtained on the same problem, can be obtained us-
ing minimal training data.

The rest of this paper is organized as follows. Section
reviews some of the prior work carried out on vision and
non-vision based driver monitoring systems and algorithms.
Section [3] provides details on the data that we used in our
study and delves into the methodology that we employed in



order to determine if a driver is using a cell phone, i.e., hold-
ing it up to his/her ear and thus keeping only one hand on the
steering wheel of a car, or not. Section E| details the experi-
mental protocols that we followed and the results that were
obtained, and finally, section [3] presents some concluding
remarks and highlights some possible research directions to
pursue in future work.

2. Related Work

There has been a lot of recent work in the broad area
of driver behavior monitoring and the specific problem of
driver cell phone usage detection. Artan et al. [4] used
data captured by a highway transportation imaging sys-
tem, which was installed to manage High Occupancy Ve-
hicle (HOV) and High Occupancy Tolling (HOT) lanes, for
detecting cell phone usage by drivers. The cameras used
were situated at an elevated position pointing towards the
approaching traffic with Near Infrared (NIR) capability to
tackle night vision. After the images were acquired, the
authors adopted a series of computer vision and machine
learning techniques for detection and classification. They
first used a Deformable Part Model (DPM) [[14] to localize
the windshield region within the image and used a DPM
based simultaneous face detection, pose estimation, and
landmark localization algorithm developed by Zhu and Ra-
manan [30] to locate the facial region and crop out a region
of interest around the face to check for the presence of a cell
phone. Finally, image descriptors extracted from the crops
were aggregated to produce a vector representation which
was classified using a Support Vector Machine (SVM)
classifier to determine if the driver was using a cell phone
or not.

Zhang et al. [29] also studied a similar problem. In
their work however, the camera acquiring the video footage
was mounted above the dashboard of a car. They extracted
features from the face, mouth, and hand regions and then
passed them passed on to a Hidden Conditional Random
Fields (HCRF) model for final cell phone usage classifica-
tion. For face detection, they used a cascaded AdaBoost
classifier with Haar-like features [24]. For mouth de-
tection, a simple color-based approach was found to be suf-
ficient because the red component in the mouth region is
stronger than the rest of facial region, and the blue com-
ponent is weaker. Therefore, they operated in the Y C,C),
color space and measured the ratio of C,./C as their cue
for mouth region detection. For the detecting hand region,
they incorporated both color and motion information.

There has also been some recent research on non-vision
based approaches for detecting cell phone usage by drivers.
Bo et al. 6] leveraged various sensors integrated in today’s
smartphones, such as accelerometers, gyroscopes, and mag-
netometer sensors, to distinguish between whether a phone
was being used by a driver or a passenger. Yang et al. [28]

Figure 1: The setup of the DAS head unit and cameras that
was used for acquisition of the mask head pose validation
data. This image has been reproduced (with some modifica-
tions) from a document providing an overview of the mask
head pose validation data that was obtained after signing a
data sharing agreement. Certain portions of the image have
been covered with black patches in order to prevent the dis-
semination of any information that is not to be made public
under the terms of the data sharing agreement.

harnessed a car’s stereo system and Bluetooth network in
an acoustic based approach to estimate the distance of a cell
phone in use from the car’s center and were thus able to
determine whether the user was the driver or not. Breed et
al. [[7] monitored emissions from a cell phone by placing
three directional antennas at various locations inside a car.
A receiver was associated with each antenna and included
an amplifier and a rectifier module that converted radio fre-
quency signals to DC signals which were used to tell which
antenna provided the strongest signal. A correlation could
then be made for finding the most likely location of a cell
phone being used by an occupant in the car.

3. Our Approach for Cell Phone Usage Detec-
tion

This section provides details on our approach for auto-
mated cell phone usage detection. Our approach was de-
signed for use on data that was acquired for a study of nat-
uralistic driving behavior and in order to better understand
our approach, it is first necessary to provide details on the
setup used to acquire the data and data itself.

3.1. Details on the Data Used in Our Study

For carrying out our research, we used naturalistic driver
behavior data that was acquired to evaluate the capability of
the Virginia Tech Transportation Institute (VTTI) [3]] head
pose estimation system, referred to as mask. The platform
for collecting the data was a 2001 Saab 9 — 3 equipped with
two proprietary Data Acquisition Systems (DAS). The col-
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lected data included digital video, GPS position and head-
ing, acceleration, rotation rates, and ambient lighting col-
lected at rate that varied from varied from 1Hz to 15Hz.
The DAS units also collected data produced by the mask
system. The participant was seated in driver’s seat of the car
and an experimenter (equipped with a laptop) was present
with the participant. The experimenter supervised data col-
lection and provided guidance to the participant. A hand-
held trigger connected to one of the DAS units allowed the
experimenter to annotate the DAS data stream whenever an
event of interest occurred. In order to collect the partici-
pant’s face view videos, a camera was mounted below the
rear view mirror, as shown in Figurem

One of the DAS units collected a single channel of mini-
mally compressed (resolution of 720 x 480), full face digital
video at 15 frames per second. The other DAS unit collected
standard Strategic Highway Research Program (SHRP2) [2]
videos. The two video streams were aligned using GPS
timestamps that were recorded. The SHRP2 video com-
prised of four channels of video, forward view, face view
(resolution of 356 x 240), lap and hand view, and rearward
view, recorded at 15 frames per second and compressed into
a single quad video, as shown in Figure[2} It is the SHRP2
face view videos that we use in this work.

Some of the SHRP2 videos were acquired when the par-
ticipant was seated in a static vehicle, while others were ac-
quired when the participant was driving. The environmen-
tal conditions (time of day) also varied in the videos. In the
static vehicle trials, the data was acquired in a research lot
at VTTI with each of the 24 participants asked to perform
a series of glances to predefined locations (such as the left
window or mirror, forward windshield, center console, efc.)
or to simulate a brief cell phone conversation. Each static
vehicle participant was asked to wear four pairs of eye-
glasses (including a pair of sunglasses) and a baseball cap
and complete the glancing and cell phone simulation tasks
under these varying cases. The dynamic vehicle trials were
conducted on a predefined route (approximately 15 miles
long including a variety of road types) around Blacksburg,
Virginia. Over the course of the drive, each of the 24 par-
ticipants were asked to perform various tasks that included
reporting the vehicle’s speed, turning the radio on and off,
locating a cell phone in the center console and completing a
brief simulated cell phone conversation, efc. The prompted
tasks were completed at roughly the same location on the
route for each of the participants and were completed only
if the participant felt safe in carrying them out.

This video data as well as additional data (such as kine-
matic data, static and dynamic vehicle segments, trial data,
details (sex, skin tone, presence of facial hair, efc.) on the
participants, frame by frame manually labeled ground truth
locations for seven facial landmarks for several trip seg-
ments, etc.) is what constitutes the full data set. Out of the

Figure 2: A sample frame showing the standard SHRP2
video views recorded by the SHRP2 configured Data Ac-
quisition System (DAS). This image has been reproduced
(with some modifications) from a document providing an
overview of the mask head pose validation data that was
obtained after signing a data sharing agreement. The face
of the subject in the face view portion of the image has been
covered with black patches as this information cannot be
made public under the terms of the data sharing agreement.

48 videos, data for 2 of the static trials and 2 dynamic tri-
als are being withheld (to be possibly released at a future
date), bringing the total number of videos (and associated
data) in the clipped data set to 44. It is also to be noted that
only the data that does not contain personally identifying
information has been released publicly. Access to person-
ally identifying data, such as face view videos, is governed
by a data sharing agreement. For this reason, any figure in
this paper containing a face of a subject who participated
in the trials has been masked out using black patches. It is
also to be noted that the total number of SHRP2 face view
videos (which we work with in this paper) is 41 with 20
videos (and associated data) acquired from static trials and
21 videos (and associated data) acquired from dynamic tri-
als.

3.2. Details on Our Approach

As is the case with any vision related method, our ap-
proach requires a training stage following which the mod-
els built can be evaluated on test data. Details on these two
stages follow.

3.2.1 Training Stage

In order to build classifier models for the automatic detec-
tion of a cell phone in a supervised setting, it is necessary
to provide them with consistently labeled training data. Our
training data for cases when a cell phone was not in use
(negative class data) consisted of frames from video seg-
ments where the subject was either seated in a stationary
car and performing tasks such as checking the side view
mirrors, looking forward, looking at center console, efc. or
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Figure 3: The locations of the 49 facial landmarks that are
localized using the SDM algorithm overlaid on an image
from the CMU Multi-PIE database [17,[18]. The landmarks
were used by us to determine a crop of the region of inter-
est in a frame (image) contained (or did not contain) a cell
phone.

was driving and performing tasks such as signaling a lane
change, checking the speed of the car, turning the radio on
or off, looking forward, efc. In similar fashion, we also used
frames from video segments of the same subjects where the
subjects were using a cell phone (with one hand pressed
close to one of their ears in order to hold it) in a station-
ary or moving car. In order to build more accurate models,
frames where the subject used their right hand to hold the
cell phone were manually separated from those in which in
which the subject used their left hand to hold the phone.

We used an open source implementation [26]] of the Su-
pervised Descent Method (SDM) algorithm to extract
a crop of the region of interest (containing or not the cell
phone) in each of these frames. This implementation of the
algorithm is capable of processing video frames at real-time
or near real-time speeds on regular laptop or desktop ma-
chines and obtain a fairly high level of accuracy. The SDM
algorithm was formulated to minimize a Nonlinear Least
Squares (NLS) function using descent directions learned
from training data and without computing the Jacobian nor
the Hessian. For the task of facial alignment, consider an
image d € R™ consisting of m pixels with p facial land-
marks and with d(x) € R? indexing these landmarks. Let
h represent a nonlinear feature extraction technique or func-
tion such that h(d(x)) € R™” where n is the dimensionality
of the feature vector extracted around each facial landmark
(128 dimensional SIFT [20]] features are used in this case).
If the initial configuration of facial landmarks (generally ob-
tained using a mean shape) can be represented by xq, then
the facial alignment problem is posed as the minimization
of the function f over the variable Ax, as shown in equation

(b)

Figure 4: The process by which crops of the region of inter-
est were generated to check for the presence of a cell phone
being held in the (a) right hand of the subject, (b) left hand
of the subject. The faces of the subjects have been covered
with black patches as this information cannot be made pub-
lic under the terms of a data sharing agreement.

.
f(xo + Ax) = [|h(d(xo + Ax)) — @, 3 )

In equation (T), ®. = h(d(x.)) represents the features ex-
tracted from a manually labeled training image. ®. and
Ax are known for all training images and hence the goal
of SDM is to use this information to learn a series of de-
scent directions to produce a series of updates (xjy1 =
X1, + Axy) starting from xq and converging to x, and then
applying these update rules to minimize f when applied to
a test image.

The SDM based facial landmark tracking algorithm uti-
lizes the Viola-Jones face detection [25] algorithm in order
to detect the subject’s face in the first frame of a video and
subsequently uses facial landmarks localized in this frame
as initialization for the next frame, and so on. The 49 facial
landmarks localized by the algorithm are shown in Figure
[l We manually inspected all training data frames in order
to ensure that the localization of landmarks was correct.

The next step in our training stage involved the genera-
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Figure 5: Sample crops of the region of interest generated
to train various classifiers for cases when (a) the subject did
not have a cell phone in either hand, (b) the subject had a
cell phone in his/her right hand.

tion of crops of the region of interest for both the positive
and negative class cases using the facial alignment results.
We used 50 x 80 rectangular crops with landmark 18 as the
top right corner of the crop region in order to generate pos-
itive and negative class crops for cases where subjects were
holding (or not holding) a cell phone in their right hand. In
similar fashion, 50 x 80 rectangular crops with landmark
23 as the top left corner of the crop region were generated
for cases where subjects were holding (or not holding) a cell
phone in their left hand. Use of such crops with reference
provided by an interior facial landmark ensured more sta-
bility and less variance than crops that would be obtained
using a facial landmark along the facial boundary as a ref-
erence point as these landmarks are usually localized with
higher error and exhibit higher variance even in manually
clicked ground truth data [3]. Figure @] shows how these
crops are generated while sample crops generated for cases
where a cell phone was not being held and cases when a cell
phone was being held in the right hand are shown in Figure

The final stage in the training process was the extraction
of features from the positive class (holding a cell phone)
and negative class (not holding a cell phone) cases and the
building of classifiers using these features. We utilized two
different feature representations. When we used raw pix-
els as features, the feature vectors were 4000 dimensional
and were normalized to be unit norm vectors. We also uti-
lized Histogram of Oriented Gradients (HOG) feature
descriptors that have been proven to be quite effective in ob-
ject detection and recognition tasks [14]. We utilized HOG
descriptors generated with a spatial bin size of 10 and with 9
orientation bins resulting in a 1008 dimensional feature vec-
tor. We benchmark the performance obtained using these
two feature descriptors in conjunction with different clas-
sifiers, the first of which is the Real AdaBoost [16] frame-
work of ensemble classifiers. We chose the Real AdaBoost
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Figure 6: The process followed by us to train a classifier
that can distinguish between cases when a cell phone is be-
ing held close to the right ear of a subject and cases when no
cell phone is being held up to the right ear. A similar pro-
cess was used to train another classifier (using the same cor-
responding algorithm) that can distinguish between cases
when a cell phone was being held close to the left ear of
a subject and cases when no cell phone was being held up
to the left ear. The faces of the subjects have been covered
with black patches as this information cannot be made pub-
lic under the terms of a data sharing agreement.

Algorithm 1: Overview of the Real AdaBoost Algo-
rithm
Input: Training samples and labels
S = ((x1,91),- -, (xn,yn)) where x; € RM and
y; € {—1,+1} and initial weights for the samples
w;=1/N i=1,...,N

™=

Output: Ensemble classifier A(x) = sign[>_ f:(x)]

fort=1,...,T do
Fit the classifier to obtain a class probability estimate
pi(x) = P, (y = 1|x) € [0, 1] using weights w; on
the training data.
Set fi(x) «— %loglft;:&) eR.
Set w; «— wzexp[—y;fe(x;)] i=1,...,N and
N

t

1

re-normalize so that > (w;) = 1.
i=1
end for

™=

Output the ensemble classifier h(x) = sign|

fi(x)].

t

1

classifier due to the minimal parameters that need to be de-
termined to utilize it (only the number of boosting rounds or
number of classifiers in the ensemble need to be specified)
and its resistance to overfitting [21]]. The Real AdaBoost
framework not only allows for the classification of a feature
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Figure 7: The process followed by us to determine if the subject in a test frame was using a cell phone (holding it close to
his/her right/left ear) or not. The faces of the subjects have been covered with black patches as this information cannot be

made public under the terms of a data sharing agreement.

vector as positive or negative, but also returns a confidence
score for the prediction. This allows us to construct Re-
ceiver Operating Characteristic (ROC) curves to summarize
performance. Since the exact details of the Real AdaBoost
algorithm are slightly different from the more commonly
known discrete AdaBoost version, we provide a brief sum-
mary of the algorithm.

Let S = ((x1,91),-.-,(xn,yn)) denote a set of N
training examples where x; € R is a set of feature vectors
and y; € {—1,+1} is a set of labels for the features vec-
tors in a binary classification problem. Given these training
samples, along with a set of weights w; for each data sample
over the indices of S, i.e., over {1,..., N}, the Real Ad-
aBoost algorithm is an ensemble learning method that aims
at combining a set of weak learners or classifiers f;(x) to
form a stronger prediction rule. In the most general form
f¢(x) has the form f;(x) : RM — R. Boosting uses the
weak learners repeatedly over a set of rounds ¢t = 1,...,7T
with different weights for the training examples that are up-
dated after each round based on which samples are correctly
or incorrectly classified. It is to be noted that the sign of
f+(x) can be interpreted as the predicted label (—1 or +1)
to be assigned to instance x, and the magnitude of f;(x)
(|f(x)|) as the confidence in the prediction. When deci-
sion trees are used as the weak learners, this form of Real
AdaBoost coincides with one of the forms of the general-
ized AdaBoost algorithm outlined by Schapire and Singer
in [21]]. The Real AdaBoost algorithm is outlined in Algo-
rithm [T| which is reproduced from [16]] with minor changes
to notation.

The other classifiers we use are Support Vector Machines

(SVMs) [11]] with a Radial Basis Function (RBF) kernel and
arandom forest [8]]. These classifiers can also be configured
to return a value that can be interpreted as confidence score
of their class prediction (a probability value in the case of
SVMs and the number of trees that vote for a class label
in the case of the random forest). We built two different
sets of classifiers to better deal with the problem of the cell
phone being held in different hands. Figure [6] provides an
overview of the training process.

3.2.2 Testing Stage

During the test stage of our algorithm, a similar set of steps
to those previously described in the training stage were used
to extract region of interests in an input frame to determine
if a cell phone was present in the extracted regions or not.
Again, we utilized the SDM algorithm to localize facial
landmarks and generate two crops on the right and left sides
of the face in order to check for cell phone presence. Fea-
tures extracted from these crops were classified using the
appropriate (right or left side) side classifiers and the frame
was labeled as not having a cell phone present only if both
classifiers returned a negative result while in all other cases
it was labeled as containing a cell phone. Figure [7] illus-
trates the sequence of steps followed during the test stage
in order to determine if the subject in a test frame is using a
cell phone or not.

4. Experiments and Results

Our training data for cases when a cell phone was not in
use (negative class data) consisted of 1479 frames obtained
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Table 1: A summary of our experimental results. The speed of fitting in Frames Per Second (FPS), the Verification Rates
(VRs) at various False Accept Rates (FARs), Equal Error Rates (EER), Area Under the ROC Curve (AUC), and the classifi-
cation accuracy rates obtained are listed for each feature extraction technique and classification algorithm combination. The
best values for each evaluation measure are indicated in bold text.

Approach FPS | VR @ 0.1% FAR | VR @ 1% FAR | VR @ 10% FAR | EER | AUC | Accuracy
Pixels — Real AdaBoost | 7.5 0.262 0.414 0.773 0.142 | 0.920 0.844
HOG - Real AdaBoost 7.5 0.695 0.819 0.883 0.112 | 0.935 0.939
Pixels - SVM 3.7 0.437 0.654 0.819 0.152 | 0917 0.787
HOG - SVM 6.0 0.317 0.708 0.893 0.105 | 0.949 0.842
Pixels — Random Forest | 7.5 0.298 0.416 0.816 0.148 | 0918 0.801
HOG - Random Forest | 7.5 0.600 0.733 0.857 0.141 | 0.933 0.927
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Figure 8: ROC curves obtained using three classifiers and (a) raw pixels as features, (b) HOG features, and (c) both raw

pixels and HOG features.

from 30 video segments of 11 subjects. We also used 489
frames obtained from 20 video segments of the same 11
subjects where the subjects were using a cell phone. Only
one of the subjects (10 video segments and 137 frames)
used his/her left hand to hold the cell phone while in all
other cases the right hand was used to hold the cell phone.
This was reflection of the skew in the data collected as only
a few subjects used their left hand to hold a cell phone when
requested to do so. This data was used to extract normalized
pixel and HOG feature descriptors and build classifier mod-
els. All our training and test code was implemented using
MATLAB code and mex functions. Our Real AdaBoost en-
semble was built using 100 weak decision trees of depth 2
and implemented using an open source toolbox [13]. We
used 100 trees in our random forest classifier that was again
implemented using open source code [[19]. Finally, we used
the LIBSVM library to build an SVM classifier [9} [10].

Our test data consisted of 9288 video frames of 30 sub-
jects in which the subjects were driving a car or seated in a
stationary one and not using a cell phone and a correspond-

ing set of 3735 frames in which the same subjects were us-
ing a cell phone. Thus, the total number of test frames was
13023, making our study more comprehensive than the one
carried out in [4]. The subject held a cell phone in his/her
left hand in only 429 frames out of the 3735 frames in which
a cell phone was being used. It must be noted that this
set of frames was retained for evaluation from a larger set
of frames from which some frames were discarded due to
the fact that no face was detected in them, meaning that a
crop of the region of interest could not be generated in these
frames as the SDM algorithm could not be used to obtain the
coordinates of facial landmarks of the subject in the frames.
It must also be noted that there was no overlap of subjects,
and hence video frames, between the training and test data
used in our study.

Figure [8] shows the ROCs obtained using the various
classifiers and feature extraction techniques and Table
summarizes the key results obtained as part of our study.
As can be seen from the table, HOG features provide for
a more robust representation and result in higher classifica-
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tion accuracy rates, Area Under the Curve (AUC) values,
and higher Verification Rates (VRs) at various False Ac-
cept Rates (FARs) for all three classifiers with the combina-
tion of AdaBoost and HOG features resulting in the highest
classification rate of 93.86%. Thus, our results are promis-
ing and competitive with those obtained in similar studies
carried out by Artan et al. [4] (highest classification rate of
86.19%) and Zhang et al. [29] (highest classification rate of
91.20%), although it must be noted that each study utilized
different training and testing data. However, our study is far
more thorough than the previously mentioned ones in that
our tests are carried out over a much larger set of images
and also in the choice of data used for evaluation, which
was acquired using strict protocols by a government agency
for a specific purpose. While portions of the data (including
that used by us in our study) acquired can not be made pub-
lic under terms of a data sharing agreement, it is our hope
that presenting our findings will be of use to the research
community and further aid in the development of systems
aimed at addressing this problem.

The frame rates in Table |1| obtained by the combination
of various feature extraction techniques and classifiers were
those obtained when run on a desktop computer with an In-
tel Xeon E5530 processor with a clock rate of 2.40 GHz
running Windows 7 Enterprise. The frame rates for are
more than acceptable for post-processing of SHRP2 face
view video frames, which was the goal of our work.

5. Concluding Remarks and Future Work

The hazards associated with driver distraction due to cell
phone usage have been studied in great detail over the past
few years. This has motivated several research efforts aimed
at developing algorithms and systems capable of automati-
cally detecting when a cell phone is being used by a driver,
i.e., holding it close to one of his/her ears. We have pre-
sented a robust framework for a vision based automated cell
phone detection system and performed a thorough evalua-
tion of our approach on challenging low resolution SHRP2
face view videos from the head pose validation data that
was acquired for of a study of naturalistic driving behavior.
Our system utilizes the SDM based facial landmark track-
ing algorithm to localize a dense set of facial landmarks in
frames from a video sequence and then extract a crop of the
region of interest which can then be classified as containing
a cell phone or not. We evaluated our approach using differ-
ent combinations of feature extraction techniques and clas-
sifiers and obtained promising and accurate results using all
these combinations. This is, to the best of our knowledge,
also the first such evaluation carried out on this relatively
new data.

A limitation of the SDM based facial landmarking al-
gorithm (that can result in the generation of poor crops of
the region of interest for cell phone detection which can af-

fect the accuracy rates of all classifiers in our approach) is
that it can only track facial landmarks across faces that ex-
hibit a yaw (turning of the head) angle between —45° and
—+45°. It is also sensitive to the initialization provided by
the face detector results that in turn can be affected under
harsh illumination conditions (excessive sunlight or dark-
ness), the presence of occlusions (hair covering the face,
a cap, etc.), etc. This restricted the scope of our study to
video sequences with moderate illumination conditions in
which the subject of interest did not exhibit excessive facial
pose variation or excessive facial occlusion. One area of
future research will involve investigations into how our ap-
proach can be improved or modified using alternative com-
binations of face detection and facial alignment algorithms
that can provide highly accurate results even in the presence
of larger pose variation, larger facial occlusion levels, and
harsher illumination conditions than those the SDM based
facial landmarking algorithm can tolerate. Another area of
work that we wish to investigate regards improvements that
could be made to our system to ensure that it exploits par-
allelization of tasks and GPUs. Such a system would be of
even greater use to researchers in automatically annotating
video data sets in order to asses driver behavior, as was the
aim in this work, or could also suitably modified and de-
ployed in a real-world scenario to monitor drivers and help
in decreasing the number of car crashes due to distracted
driving.
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