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Fraunhofer IOSB, Karlsruhe, Germany
{michael.teutsch, wolfgang.krueger}@iosb.fraunhofer.de

Abstract
The detection of vehicles driving on busy urban streets

in videos acquired by airborne cameras is challenging due
to the large distance between camera and vehicles, simulta-
neous vehicle and camera motion, shadows, or low contrast
due to weak illumination. However, it is an important pro-
cessing step for applications such as automatic traffic moni-
toring, detection of abnormal behaviour, border protection,
or surveillance of restricted areas. In contrast to commonly
applied object segmentation methods based on background
subtraction or frame differencing, we detect moving vehi-
cles using the combination of a track-before-detect (TBD)
approach and machine learning: an AdaBoost classifier
learns the appearance of vehicles in low resolution and is
applied within a sliding window algorithm to detect vehicles
inside a region of interest determined by the TBD approach.
Our main contribution lies in the identification, optimiza-
tion, and evaluation of the most important parameters to
achieve both high detection rates and real-time processing.

1. Introduction

Cameras mounted on airplanes or Unmanned Aerial Ve-
hicles (UAVs) are able to observe the ground area and
collect video data in a highly effective and efficient way.
Among the vast amount of potential applications are auto-
matic traffic monitoring, detection of abnormal behaviour,
border protection, or surveillance of restricted areas. These
applications share the need for accurate detection and track-
ing of all moving objects inside the camera’s field of view
before the scene can be analyzed and interpreted. There are
several aspects that complicate the automation of moving
object detection such as the large distance between cam-
era and objects leading to small-sized objects in the im-
age, simultaneous object and camera motion, shadows, or
low contrast due to weak illumination. Although many ap-
proaches for moving object detection in aerial video surveil-
lance data exist in the literature, those methods are often
lacking reliability, robustness, or real-time capability.

In this paper, we focus on the application of sliding win-
dows [21] for vehicle detection in aerial videos. Originally
developed for face and human detection [28, 5], this is a
brute force or exhaustive search method used to localize
objects of a certain class across the entire image. A clas-
sifier learns an object appearance model to reports its confi-
dence about object existence at each search step. Several
authors [2, 20, 26, 27] demonstrated the applicability of
sliding windows for vehicle detection in aerial videos. We,
however, aim to identify parameters that contribute most to
both the detection performance and the runtime and opti-
mize them to achieve high detection rates (reliability), few
false positive (FP) detections (robustness), and real-time
processing. Multiple object tracking can use these detec-
tions as input, but this is beyond the scope of this paper.

A track-before-detect (TBD) algorithm [24] is used in
order to detect motion that is independent of the camera mo-
tion. As shown in Fig. 1, this independent motion is given
by clustered motion vectors and does not represent vehicles,
yet. As an alternative to TBD, difference images as applied
in wide area surveillance with low frame rates of about 1 Hz
can be used [22, 23, 30], but we process videos with high
frame rates of 15–30 Hz, where difference images produce
more noise compared to TBD [25]. Furthermore, difference
images do not provide information about motion direction
and velocity that we particularly use to reduce the search
space of the sliding window. Not only can a large amount
of FP detections be avoided this way, but also the processing
time is reduced. Then, we discuss, evaluate, and optimize
the most important sliding window parameters such as the
choice of the vehicle appearance model, handling of vari-
able object size, or optimization strategies. In urban scenes
with up to 20 vehicles in the camera’s field of view, we
achieve detection rates of 88 % with only 2 % FP detections
and processing times less than 40 ms per frame.

This paper is organized as follows: related work is dis-
cussed in Section 2. The processing chain for vehicle detec-
tion is described in Section 3. Parameters are evaluated and
results are presented in Section 4. We conclude in Section 5.
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Figure 1. The processing chain for moving vehicle detection. A detailed description is given in Section 3.

2. Related Work

The sliding window approach is a popular method to
combine object detection (localization) and recognition
(classification) [21, 29]. A search window is shifted pixel
by pixel in both horizontal and vertical direction across the
entire image. At each window position, appearance features
are extracted and a classifier returns a confidence value rep-
resenting its certainty that the image region inside the win-
dow contains an object. The window size is fixed and, thus,
only one classifier model is trained and used at M differ-
ent image scales [5, 8] to detect objects of different sizes,
where M is usually around 50 for human detection [1]. Af-
ter the calculation of all confidence values, objects are de-
tected by applying a Non-Maximum Suppression (NMS) to
the confidence values and using a minimum classifier cer-
tainty threshold. In contrast to part based models [9, 19]
which search for object parts and combine them to whole
objects, the sliding window is a holistic object representa-
tion which models the object in its entirety. Holistic repre-
sentation is usually better for small objects in the image as
it is difficult to detect even smaller object parts reliably.

2.1. Vehicle Detection in Aerial Videos

Similar to Dalal’s method [5], Türmer et al. [27] apply
the sliding window approach with Histogram of Oriented
Gradients (HOG) features and a Support Vector Machine
(SVM) classifier to find stationary and moving vehicles. FP
detections are rejected by using depth maps. Gaszczak et
al. [12] detect vehicles using sliding windows with Haar
features und cascaded AdaBoost which is very similar to
the approach proposed by Viola and Jones [28]. Since ve-
hicle orientation may vary, four discretized orientations are
specified and one classifier is trained for each orientation.
Nguyen et al. [20] use sliding windows with Haar features,
orientation histograms, and Local Binary Patterns (LBP) as
vehicle decriptors and AdaBoost for classification. Since
multiple detections appear for each object due to the sliding

window shift, mean-shift clustering is applied for a NMS.
Cao et al. [2] propose a boosting light and pyramid sam-
pling histogram of oriented gradients (bLPS-HOG) feature
extraction method together with a linear SVM. Teutsch et
al. [26] use Integral Channel Features (ChnFtrs) [8] and an
AdaBoost classifier to detect vehicles in predetermined ar-
eas of independent motion.

2.2. Runtime Optimization

In order to achieve a high speed-up of sliding windows
with stable object detection performance, several runtime
optimization strategies have been proposed so far. A rather
new approach is fast pre-scanning of the image in order to
detect prominent edges and thus reduce the search space
for the subsequent sliding window algorithm [4, 34]. An-
other idea is to speed up image rescaling by approximation:
either nearby image scales are approximated while using
one classifier model [7] or classifier decisions can be ap-
proximated across scales using few classifier models and
only one image scale [1]. In order to avoid an exhaus-
tive search, Gualdi et al. [13] propose to initialize sliding
windows at random positions and follow the gradient of the
classifier confidence values. Finally, a promising optimiza-
tion for the AdaBoost classifier is achieved by using soft
cascades [1, 7]. AdaBoost is a meta-algorithm for classifi-
cation consisting of a cascade of weak classifiers. In a soft
cascade, only few of the weak classifiers contributing most
to the final decision are evaluated and the process stops as
soon as a clear decision tendency emerges.

3. Moving Vehicle Detection

The processing chain for moving vehicle detection is vi-
sualized in Fig. 1. A small image region of 108 × 210 pix-
els is considered for this example. Separate modules are
applied for independent motion detection and vehicle de-
tection. These modules are described in more detail in the
remainder of this section.



3.1. Independent Motion Detection

In order to detect independent motion, it is crucial to
compensate the videos for camera motion first. We detect
Harris corners [14] with sub-pixel accuracy and track them
over time by a gradient based search in a local image re-
gion [24]. Corresponding corners between subsequent im-
ages are used to estimate homographies as global image
transformations for image registration [15]. RANSAC is
applied to remove outliers. We do not perform image align-
ment. Instead, velocities of tracks relative to the static back-
ground that exceed a threshold are assumed to originate
from moving objects and are referred to as (independent)
motion vectors. This is a TBD approach since we track
objects in an environment where the entire scene seems to
move and object motion is only a minor part [6, 10]. The
motion vectors are clustered based on position, direction,
and velocity. In Fig. 1, motion vectors are depicted in yel-
low color and motion clusters are represented by cyan rect-
angles. Vehicles that overtake each other or drive one be-
hind the other often cause merged clusters while split clus-
ters can be produced by large vehicles (trucks, busses) with
weakly textured areas [26]. This raises the need for meth-
ods that are able to detect individual vehicles. As a first
step, the motion vector clusters are extended in horizontal
and vertical direction as shown in Fig. 1 in order to com-
pletely include even split clusters. These extended motion
clusters define the search space (dashed cyan rectangle) for
the sliding window.

3.2. Vehicle Detection

Extended motion clusters are rotated upright based on
the direction of the related motion vectors. The assumption
is that the orientation of a vehicle corresponds to its mo-
tion direction. This way, we achieve rotation invariance and
need to apply the sliding window for only one orientation
which is an important search space reduction. The scale of
the entire scene can be normalized using the Ground Sam-
pling Distance (GSD) that gives us the image resolution in
meters. So, image rescaling is necessary only for different
vehicle sizes and not for the distance between camera and
scene.

3.2.1 Sliding Window Approach

In Fig. 1, the green rectangle represents the sliding window
that is shifted pixel by pixel in both horizontal and vertical
direction across the extended motion cluster. As the width
of vehicles is usually smaller than their length, the window
size is set to 16×32 pixels. At each window position, a clas-
sifier returns a confidence value representing its certainty
that the current window contains a vehicle or not. This con-
fidence value is stored at the center point of each sliding
window position and depicted in Fig. 1. The light red color

original scale (standard cars)

mid scale (large cars, small trucks)

small scale (busses, trucks)

Figure 2. Instead of image rescaling with about 50 different scales
for human detection using sliding windows [1], we use 3 scales
inspired by typical vehicle sizes and GSD based normalization.

indicates a high certainty. Based on these confidence values,
the first NMS rejects all positions of windows with lower
certainty compared to their neighbors. Each remaining lo-
cal maximum stands for one object hypothesis represented
by a rectangle with size and position of the search window.
If there is sufficient overlap with another local maximum, it
is likely that these hypotheses originate from the same ob-
ject. Then, a second NMS is applied to keep the hypothesis
with the highest certainty and reject the others. Finally, a
decision threshold Td is used to reject weak local maxima.
This process flow is inspired by the work of Dollár et al. [8].
The optimal value for Td is derived from the precision-recall
curves in Section 4.2.1 and thus determined experimentally.

Usually, about 50 different image scales are used for hu-
man detection in ground level images [1]. This is due to the
highly variable size of persons in the image depending on
the distance to the camera. As the scale of the scene in our
aerial video data is normalized using the GSD, the number
of different image scales can be significantly reduced. How-
ever, it has to be considered that the vehicle size can vary
strongly: while the width of different vehicles is nearly con-
stant, the length ranges between 4–5 m for a standard car
and 15–20 m for busses or trucks. So, three different scales
are introduced to the sliding window approach by keeping
image width stable and varying image length as shown in
Fig. 2. This is different compared to human detection where
the ratio of width and length is fixed during image rescal-
ing. By using only three different image scales, the search
space for the sliding window is reduced. This is necessary
since a vehicle model in top view and at low resolution of
16 × 32 pixels does not have the discriminative power of a
person model in side view and at high resolution of 64×128
pixels. Since gradients are the most important information
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Figure 3. Mean gradient magnitudes: persons in side view at high
resolution provide shape features for a classifier model of higher
discriminative power than vehicles in top view at low resolution.

for modelling an object’s shape, the average gradient mag-
nitude images for persons [5] and our dataset VEH-01 (cf.
Section 4.1) of vehicle samples for classifier training are de-
picted in Fig. 3. While head, shoulders, torso, and legs pro-
vide good features for a person model of high discriminative
power, vehicles can be described only by their rectangular
shape. The influence of such a weakly discriminative clas-
sifier model, image rescaling, and NMS thresholds to the
robustness of the sliding window approach is discussed in
Section 4.2.

3.2.2 Duplicate and Static Vehicle Removal

Extended motion clusters can overlap each other and thus
cause the occurrence of duplicate detections after the ap-
plication of the sliding window approach. Usually, dupli-
cate detections significantly overlap each other and can be
handled by keeping only the detection with the highest con-
fidence value. Static vehicles inside the extended motion
clusters are detected by the sliding window approach, too.
As visualized in Fig. 1, they can be rejected by introduc-
ing a minimum threshold for the number of motion vectors
inside each detection rectangle.

3.3. Runtime Optimization

Boosting is an attractive classifier for object detection
with sliding windows for a number of reasons: (1) it of-
fers good generalization performance [11], (2) it is able to
perform feature selection during training [1], and (3) it is
possible to achieve high frame rates during detection [1, 7]
by using soft cascades [31].

During AdaBoost training a number of N weak classi-
fiers cn and weights αn with n ∈ {1, . . . , N} are selected to
build a strong classifier. The confidence value of the strong
classifier for a sample xk is computed as the weighted sum

sk(N) =

N∑
n=1

αncn(xk). (1)

300

-300
0 500

pa
rt

ia
l s

um
 v

al
ue

200

100

0

-100

-200

100 400300200
number of evaluated weak classifiers

300

-300

pa
rt

ia
l s

um
 v

al
ue

200

100

0

-100

-200

0 500100 400300200
number of evaluated weak classifiers

(b) partial sums of dataset

(a) partial sums of dataset

Figure 4. Partial sum values for positive (red) and negative (blue)
samples of AdaBoost training dataset VEH-02 (a) and indepen-
dent dataset VEH-01 (b). Choosing T (n) (black) based on the
training dataset [31] rejects too many positive samples in VEH-01.

The idea of runtime optimization by using soft cascades
is to prune the search space for negative samples, i.e. detec-
tion windows containing no vehicles. Therefore, the com-
putation of the classifier confidence value in Eq. 1 is termi-
nated as soon as the value of the partial sum falls below a
rejection threshold T (n).

In order to find rejection thresholds T (n), we use the di-
rect backward pruning algorithm (DBP) proposed by Zhang
and Viola [31]. First, a selection threshold T (N) for the
full sum is used to select positive samples (xk, yk) from the
training set with yk = 1 for positive samples and yk = −1
for negative samples. Then, the rejection threshold T (n) for
each weak classifier index n is set to the minimum value of
the corresponding partial sums for the previously selected
positive samples:

T (n) = min
{k|sk(N)>T (N), yk=1}

sk(n), (2)

with n ∈ {1, . . . , N}. (3)



Figure 5. Example images taken from the three datasets SEQ1, SEQ2, and SEQ3 used for our experiments. The ground truth (GT) for
vehicles is visualized by red rectangles while other moving objects such as motorcycles or pedestrians are depicted in orange color.

Figure 4 (a) shows the partial sum values after AdaBoost
training for dataset VEH-02 with N = 500 weak classi-
fiers. Positive training samples (vehicle in detection win-
dow, red curve) were well separated from negative samples
(no vehicle, blue curve). Applying DBP yields the mini-
mum of the red curves as rejection thresholds T (n) for each
weak classifier index n. However, for our application we
found that this approach leads to inferior results (cf. Sec-
tion 4.2.3). The reason can be seen in Fig. 4 (b) which
shows the partial sum values for the trained classifier on
a different dataset VEH-01. The rejection thresholds deter-
mined with the original training data are too optimistic and
will reject too many positive samples when applied to other
datasets (overfitting).

As a consequence, we propose to use two training
datasets: the first dataset is used to train the weak classifiers
cn and their weights αn. The second dataset is then used to
compute the partial sum curves for the trained classifier and
to find the rejection thresholds with the DBP-algorithm.

In addition to pruning by soft cascades we also consid-
ered subsampling of sliding window positions in order to
speed up the detection process. Finally, the number of weak
classifiers used during training was reduced. The trade-off
between detection quality and those runtime optimizations
is investigated in Section 4.2.

4. Experiments and Results
In this section, we present the datasets used for our ex-

periments, the parameter optimization, and the final results
compared to other methods taken from the literature. Stan-
dard evaluation measures are considered such as false pos-
itives (FP), false negatives (FN), precision, recall, f-score,
precision-recall curves [17] and Normalized Multiple Ob-
ject Detection Precision (N-MODP) [18].

4.1. Datasets

Vehicle models, i.e. classifiers have to be trained be-
fore the sliding window can be applied. Therefore, negative
samples of non-vehicles and positive samples of vehicles

are necessary. The vehicles in two different wide area aerial
images are manually labeled in order to generate the two
training datasets. Each vehicle sample is cut out, rotated in
upright position, and scaled to 16×32 pixels. Negative sam-
ples are generated in the same way at random positions in
the background where no vehicles are visible. Each train-
ing dataset consists of a balanced number of positive and
negative samples (approx. 1,300 samples per dataset). The
two resulting datasets are denoted by VEH-01, VEH-02
and some samples of VEH-01 are depicted in Fig. 3.

The sliding window approach is evaluated with the three
sequences SEQ1, SEQ2, and SEQ3 that are shown in
Fig. 5. They are coming from our own non-public data in
top (nadir) view with a frame size of 720 × 576 pixels, a
frame rate of 25 Hz, and a GSD around 0.3 m/pixel. A stan-
dard car covers about 7 × 15 pixels. The three sequences
consist of 400, 200, and 450 gray-value frames with 4,731,
1,373, and 3,490 annotated moving vehicle samples. The
ground truth (GT) was generated manually by tagging all
moving objects with bounding rectangles rotated in motion
direction. We only use GT for vehicles such as cars and
trucks depicted in red color in Fig. 5 and skip other moving
objects such as motorcycles or pedestrians (orange color).
The reason is that we focus on moving vehicle detection
and thus train the classifier for vehicle appearances only. It
is possible to train separate models for persons or motorcy-
cles in addition to the vehicle model, but since there is only
little information available about the appearance of persons
and motorcycles, the sliding window approach is prone to
produce FP detections. The extraction of motion patterns
is more promising in order to detect moving pedestrians at
very low resolution [33].

4.2. Parameter Optimization

Sequence SEQ1 is used in order to optimize the choice
of the vehicle model, image rescaling, and runtime.
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Figure 6. Optimization of the overlap threshold Tov of the second NMS (a-c) and the choice of the vehicle model (d). The classifier decision
threshold Td is varied in order to present the results as precision-recall curves. ChnFtrs + AdaBoost with Tov = 0.1 performs best.

4.2.1 Vehicle Model

A vehicle model in the context of this paper is the combina-
tion of a vehicle appearance descriptor and a classifier that
exploits the descriptor and returns a confidence value. In
order to find a well-fitting model for our data, we evaluate
three models taken from the literature:

• ChnFtrs + AdaBoost [8]: Gradient magnitudes are
subdivided in several orientation channels (we use 7).
Each feature is a local sum of magnitudes in an area of
random position and size in a random channel. These
local sums are called first-order features [8] and give
us better results compared to conventional Haar fea-
tures. 2,000 of these features generate a feature pool
for the AdaBoost feature selection.

• HOG + SVM [5]: HOGs extract edge information to
decribe the object’s shape. Best results are achieved
with the parameters 8×8 blocks, 4 pixels block stride,
and 9 histogram bins. The descriptor dimension is 756.

• Multi-LBP + AdaBoost [16]: LBPs are used to de-
scribe the object’s texture. In four different quantiza-
tions, 8,192 LBPs are calculated to generate a large
feature pool. We choose the parameters 8 × 8 pixels
block size and 8 pixel block stride.

We consider these models as promising since both Chn-
Ftrs + AdaBoost [20, 12, 26] and HOG + SVM [2, 27] have
been successfully applied by other authors. Furthermore,
since we do not want to focus on shape features only, tex-
ture features are analyzed by using Multi-LBP + AdaBoost.
This approach performed well on low resolution gray-value
images for human classification [16] and thus may be appli-
cable to our data as well.

Classifier training is fully supervised using the datasets
VEH-01 and VEH-02. The parameters for optimization
are (1) the choice of the vehicle model and (2) the overlap
threshold Tov of the second NMS (cf. Fig. 1) for each vehi-
cle model. If the overlap of the rectangles of two detection
hypotheses exceeds Tov , then both detections are assumed
to come from the same object and the weaker hypothesis is

Table 1. Impact of image rescaling to the sliding window. The
different rescaling strategies are described in Section 4.2.2.

vehicle model rescaling evaluation measures
strategy FP FN f-score

HOG + strategy 1 889 245 0.888

SVM strategy 2 780 258 0.896
strategy 3 190 606 0.912

ChnFtrs + strategy 1 357 230 0.939

AdaBoost strategy 2 283 244 0.945
strategy 3 83 268 0.962

rejected. The choice of Tov is crucial to prevent FP detec-
tions at vehicle shadows.

Each classifier returns different confidence values and
a comparison between classifiers is difficult as range and
scale of these values usually do not fit. Variation of the de-
cision threshold Td and plotting the resulting values for pre-
cision and recall to common graphs as seen in Fig. 6 is a way
to overcome this problem. The graphs (a-c) show the opti-
mization of Tov for the three vehicle models individually.
Each model achieves the best performance for Tov = 0.1.
In Fig. 6 (d), the three vehicle models are compared to each
other. ChnFtrs + AdaBoost clearly outperforms HOG +
SVM and MultiLBP + AdaBoost. One explanation for this
performance difference is given by Benenson et al. [1]: the
automatic feature selection of AdaBoost applied to the ran-
domly positioned ChnFtrs is superior compared to hand de-
signed descriptors such as HOG and Multi-LBP. While all
HOG and Multi-LBP blocks are located at fixed positions
with fixed size, the AdaBoost classifier chooses features
with largest discriminative power without such limitations.
These features can be located between blocks and do not
have fixed size. So, ChnFtrs may be more tolerant to small
shift, deformation, and size variation of vehicles inside the
sliding window.

4.2.2 Image Rescaling

In this experiment, the influence of image rescaling to the
performance of the sliding window approach is analyzed.
As already mentioned in Section 3.2.1, the classifier model



Table 2. Optimization of soft cascade parameters T (n) and T (N)
as well as sliding window subsampling with 2 by 4 pixel shifts.

dataset used
T (N) FP FN f-score n̄eto find T (n)

- - 91 262 0.962 500.0
VEH-02 0 15 992 0.881 18.5
VEH-01 0 91 263 0.962 70.3
VEH-01 20 90 265 0.960 61.5
VEH-01 50 80 292 0.950 46.2

subsampling with 2 by 4 pixel shifts
VEH-01 0 94 251 0.963 73.4
VEH-01 20 80 303 0.959 64.2
VEH-01 50 46 441 0.946 48.1

for vehicles in top view does not have high discriminative
power and, thus, the number of FP can increase faster than
the decrease of FN when using many image scales. This is
demonstrated in Table 1. For both HOG + SVM and Chn-
Ftrs + AdaBoost, three different cases of image rescaling
are evaluated. Strategy 1 is the baseline approach as it is
inspired by image rescaling for human detection: eleven
different scale factors si are used to rescale the extended,
upright motion cluster of width w0 and height h0. For
the i-th rescaled motion cluster, width wi = si · w0 and
height hi = si · h0 are rescaled jointly. In strategy 2, width
wi = w0 is constant while only height hi = si · h0 is
rescaled by eleven scale factors si. Finally, strategy 3 is the
proposed approach visualized in Fig. 2 and similar to strat-
egy 2 but with three scale factors instead of eleven. Rescal-
ing only the height of the motion cluster outperforms the
baseline approach, but even larger improvement is achieved
by using only three different scales. This is visible for both
HOG + SVM and ChnFtrs + AdaBoost. The application of
more scale levels reduces the number of FN but increases
the number of FP much more at the same time since more
shadows or other rectangular non-vehicle appearances are
detected.

4.2.3 Runtime Optimization

Our first step in order to speed up the detection process
is to train an AdaBoost soft cascade (cf. 3.3). We aim
to reduce the average number of evaluated weak classi-
fiers n̄e. Table 2 shows the detection performance of dif-
ferent soft cascades on test sequence SEQ1. In all vari-
ants, dataset VEH-02 is used to train the weak classifiers
and their weights. The first row in Table 2 shows the re-
sults for the full cascade. The DBP-algorithm is used to
find the rejection thresholds T (n) for pruning. Using the
original training set VEH-02 for DBP gives inferior results
(row 2). This was already demonstrated in Fig. 4 for the ve-
hicle datasets VEH-01 and VEH-02 and is confirmed here
for the sliding window approach after motion detection ap-

Table 3. Optimization by reducing the number of weak classifiers
N for the soft cascade highlighted in red color in Table 2.

N FP FN f-score n̄e

500 94 251 0.963 73.4
200 98 289 0.958 37.5
100 79 376 0.950 22.3

Table 4. Overall runtime evaluation.
method runtime

independent motion detection
24.2 msand clustering

(∼ 22,000 motion vectors per image)
sliding window approach 11.0 ms(∼ 10–15 motion clusters per image)

duplicate and static vehicles removal 1.5 ms
entire processing chain 36.7 ms

plied to SEQ1. Using a second training set VEH-01 for
DBP leads to much better detection results (row 3 to 5) at
the cost of less pruning (larger n̄e compared to row 2).

The next step is to consider subsampling of sliding win-
dow positions. Instead of shifting the sliding window pixel
by pixel across the image, we found that shifting in steps of
2 pixels horizontally and 4 pixels vertically is still able to
achieve good detection performance as seen in the second
part of Table 2. The row highlighted in red color represents
the set of parameters that we propose: T (N) = 0 and sub-
sampling with 2 by 4 pixel shifts.

With this choice of parameters, we finally aim to reduce
the number of weak classifiers N used during initial Ada-
Boost training. Table 3 shows the results for three different
soft cascades trained on datasets VEH-02 (AdaBoost) and
VEH-01 (DBP). A good trade-off between detection per-
formance and runtime optimization is given with a number
of 200 weak classifiers.

In Table 4, we present the runtime for the selected soft
cascade (marked red in Table 3). Independent motion de-
tection takes about 24.2 ms per frame on average and pro-
duces about 22,000 motion vectors. This process is already
optimized, but the optimization strategy is not discussed in
this paper. The sliding window approach runs 11 ms per
frame where the ChnFtrs descriptor is calculated in about
5.3 ms and the classification process needs 5.7 ms. Without
optimization, classification takes around 712 ms per frame.
So, we achieved a speedup by factor 125 while the detec-
tion rate deteriorates only slighty. Overall, the runtime is
36.7 ms per frame for the most crowded sequence SEQ1 us-
ing a standard PC with a 3.4 GHz Intel Quad Core i7 CPU.
However, so far we did not consider parallel processing of
the motion clusters which can achieve further reduction of
the runtime.
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methods for blob [32] and contour based [3] object segmentation.

4.3. Final Results

In order to demonstrate the effectiveness of the sliding
window approach compared to methods taken from the lit-
erature, we evaluate detection approaches based on object
segmentation. We use the same TBD algorithm with ex-
tended motion clusters as search space and apply one algo-
rithm for blob extraction based on the tophat transform [32]
and one algorithm for edge based contour extraction based
on clustering of Canny edges and Harris corners [3]. Each
blob or cluster is considered as one detected vehicle. The
authors of the second method also propose to perform color
segmentation and fuse the information in a Bayesian net-
work. As we do not have color information in our sequences
SEQ1, SEQ2, and SEQ3, we skip these processing steps
in our evaluation. The detection performance is compared
using the f-score as visualized in Fig. 7. Motion vector clus-
tering is considered as baseline approach and is clearly im-
proved by all three methods. Inner vehicle structures such
as trunks or engine hoods cause split detections (i.e. FP de-
tections) for blob and contour based segmentation. Merged
detections (i.e. FN detections) often occur in SEQ1 and
cause the large gap between the sliding window approach
and the segmentation methods. We also evaluate the av-
erage overlap between detection and ground truth rectan-
gles. This is given by the N-MODP that lies between 0.6
and 0.7 for the sliding window and between 0.5 and 0.6 for
the segmentation methods which suffer from undersegmen-
tation due to street texture or sidewalk edges.

5. Conclusions

The sliding window approach is a well suited method
for vehicle detection in aerial videos. In our experiments,
we show that it is able to outperform detection algorithms
based on object segmentation especially in urban scenes
with many vehicles driving on busy streets. Parameters of
the sliding window approach that contribute most to the de-
tection and processing performance are identified and opti-

mized: we propose (1) to use ChnFtrs + AdaBoost as vehi-
cle model, (2) to rescale the image with only three differ-
ent scales and only in width direction with fixed height, and
(3) to optimize the runtime with soft cascades, subsampling,
and reducing the number of weak classifers in the AdaBoost
model. In this way, we achieve detection rates of 88 % with
only 2 % of FP detections across different datasets and an
average processing time less than 40 ms per frame on stan-
dard hardware in scenes with up to 20 moving vehicles. The
low FP rate together with detection confidences provided by
the classifier make sliding window based object detection
suitable for a combination with multiple object tracking ap-
proaches that rely on initial detections.
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