
On-board real-time tracking of pedestrians on a UAV

Floris De Smedt, Dries Hulens, and Toon Goedemé

ESAT-PSI-VISICS, KU Leuven, Belgium

firstname.lastname@kuleuven.be

Abstract

Recent technical advances in Unmanned Aerial Vehicles

(UAV) made a realm of applications possible. In this paper

we focus on the application of following a walking pedes-

trian in real-time, using optimised pedestrian detection and

object tracking. For this we use an on-board embedded sys-

tem, offering an optimal ratio of computational power and

weight. We extend the commonly used ground plane estima-

tion technique, used to reduce the search space, based on

the sensor data off the UAV. The integration of the ground

plane constraint obtains a significant speed-up over the al-

ready optimised Aggregate Channel Feature (ACF) detec-

tor. To compensate for the frames without detections, we

use a particle tracker based on color information. We suc-

cessfully validated our system on a flying UAV.

1. Introduction

During the past years, UAVs have gained the attention

for many applications, both for industrial and consumer

use, such as aerial photography, surveying, cinematography,

surveillance applications and rescue operations. Commonly

the UAV is manually controlled using a remote control. In

this paper we focus on the application of automatically fol-

lowing pedestrians using a camera connected to an on-board

embedded system, which is selected based on its compu-

tational power and weight criteria. To obtain an accurate

pedestrian location in each frame, we combine a pedestrian

detector with a particle tracker based on color information.

Since these algorithms are executed on an on-board embed-

ded system, the results can directly be used to steer the UAV

without human intervention. To improve both accuracy and

processing speed of our pedestrian detection algorithm, we

extend the commonly used ground plane estimation tech-

nique to a more generalised form based on the UAV sensor

data, which is used as a search constraint. The technique

described in this paper can be used in a lot of applications

such as: cinematography (automatic filming of e.g. extreme

outdoor sports), automatic patrolling for intruder detection,

following in surveillance applications and guardian angel or

outdoor monitoring of elderly and children.

In this paper we propose three contributions to the state-

of-the-art. Firstly, we selected an optimal embedded system

based on both required computational power and weight

criteria to execute our optimised state-of-the-art algorithms

in real-time, on-board on a UAV. On the second hand we

propose a reformulation of the ground plane assumption

such that it elegantly takes into account constraints and is

parametrisable with instantly measured altitude and rota-

tion values of the UAV. Finally, by combining our optimised

and constrained pedestrian detection algorithm with a color

based particle filter, we allow a continuous PID-controlled

steering of a real drone, which we validated with real-life

experiments.

This paper is structured as follows. In section 2 we

discuss the current state-of-the-art on pedestrian detection,

ground plane estimation and UAV applications. In section 3

we describe the pedestrian detection algorithm we use, and

our approach to integrate a ground constraint to improve

accuracy and detection speed. Next to this, we describe the

extension of it to the 6 DoF we are dealing with when the

video is taken from a UAV. In section 4 we describe the im-

plementation of the particle filter we use. In section 5 we

describe both the hardware and the software construction

for our application. In section 6 we validate both the im-

pact of using a ground constraint on the Caltech dataset [9]

and our complete system to automatically follow pedestri-

ans on real-life experiments. Finally we conclude our work

in section 7.

2. Related work

Pedestrian detection receives a lot of attention in current

literature, concerning both improvements in speed and ac-

curacy. In 2004, Viola and Jones [15] proposed a technique

of using Haar wavelets to detect faces in real time. The

use of Integral Images made the processing speed indepen-

dent of the wavelet-size. In 2005, Dalal and Triggs [4] pro-

posed a technique where pedestrians where modelled based

on contrast information in the images. The two latter tech-

niques are still used as a reference for accuracy comparison.

In 2009, Dollár et al. [8] published their work on Integral

1



Channel Features which extends the gradient features with

color information. In this work, the features are represented

by Channels. From a pool of randomly generated rectangles

from inside the model size, the best features are selected us-

ing AdaBoost. To improve the speed of this detector, they

proposed to approximate features at multiple sizes from fea-

tures at other sizes instead of calculated from image data

[7]. In 2012, R. Benenson et al. proposed a technique [2]

where instead of evaluating a single model on multiple fea-

ture layers, a set of models is created which are evaluated on

the same features, hereby using the approximation approach

of [7] for model approximation instead of feature approxi-

mation. This multi-model approach was combined with the

use of stixels, indicating possible positions of pedestrians

in the image based on ground plane estimation. Using GPU

hardware to exploit the created parallellisation opportuni-

ties leaded to pedestrian detection at 100 frames per second.

In 2013, the training process of Integral Channel Features

was optimised with the focus on accuracy by [3], leading to

state-of-the-art detection results. Recently, Dollár proposed

his Aggregate Channel Feature (ACF) approach [6], which

was a combination of a generalised feature approximation

technique based on [7] and using all possible rectangles of

a rigid grid instead of a randomly generated pool of rect-

angles. The reduction of the amount of features, combined

with the improved AdaBoost training method described in

[1] resulted in a detector which was both accurate and fast

in both evaluation and training, even on single core hard-

ware. Complementary to the pedestrian detection approach

used, multiple techniques can be used to improve evaluation

speed, including the use of GPU hardware, which exploits

data parallellisation opportunities, and on the other hand

limiting the search space. As mentioned before, the tech-

nique described in [2] uses both GPU hardware and ground

plane estimation based on stereo images. In 2013, De Smedt

et al. proposed an approach [5] where the pedestrian detec-

tion was optimised by using both GPU and CPU together as

a hybrid system. By combining this with the warping win-

dow approach [14] as a generalised ground plane estimation

approach and object tracking, they reduced the searching

process to only a minimum, obtaining 500 detections per

second. In 2011, Sudowe and Leibe proposed a technique in

[13] to generalise the use of a ground plane in combination

with a sliding-window object detector. Based on the ho-

mograpy of the ground plane and the real-world size of the

object, the area in the image where the object can be found

is selected, and used as the input for the object detector.

They validate this approach by using a CUDA implementa-

tion of the HOG algorithm. In this paper we use a similar

approach of exploiting the ground plane information as a

constraint. Hulens et al. [10] designed a tool to determine

the best suited hardware platform for an algorithm at a spec-

ified evaluation speed. Next to that, the tool estimates the

maximum possible activity of an embedded system, taking

into account the battery and power consumption. The re-

quirement of minimum weight and power usage hinders the

use of GPU-platforms. Therefore we focus on CPU-based

embedded systems and suitable algorithms in this paper. In

[11], Naseer et al. describe a system to follow pedestrians

using a quadrocopter. They use two cameras, one for de-

termining the 3D position of the UAV based on markers on

the ceiling. The second camera is a depth camera, which

is used to detect a person in 3D. The image from the depth

camera is warped based on the calculated 3D position. Part

of the calculations are performed on a ground station. Re-

cently Pestana et al. [12] proposed a system similar to ours

where a UAV is used to track and follow objects of various

kinds (pedestrians, cars, ...). They still use a wirelessly con-

nected computer to do the necessary calculations to perform

the steering of the UAV, and also require an online learning

stage. In our system, the UAV is fully autonomous, since all

processing is performed on an on-board embedded system

using a single camera. Next to that we use a general appli-

cable pedestrian model (although models for other objects

could be used) such that we do not require a learning stage.

Our system is not restricted to labo environment.

3. Pedestrian detection

In this section we describe how we optimise the pedes-

trian detection algorithm. In subsection 3.1 we give a more

detailed overview of the ACF algorithm we use. In sub-

section 3.2 we describe how ground plane information can

be exploited by restricting the search space based on the

scale the searched object can appear on each location. This

general applicable approach will be extended in subsec-

tion 3.3 where we reformulate the calibrated approach by

parametrizing it with measured sensor data from the UAV,

making calibration superfluous.

3.1. Aggregate Channel Features

As described in section 2, the Aggregated Channel

Features approach proposed in [6] reaches high detection

speed, even with a limited amount of computational re-

sources. Therefore it forms a suitable starting point for our

application. A matlab implementation of this algorithm is

publicly available as part of Piotr’s Computer Vision Mat-

lab Toolbox1.

For our application we ported this implementation to

C++ for performance considerations. Hereby we reused

the mex-implementations of the different channel features

as used in the original implementation. Since ACF uses a

rigid grid to select the feature locations, it avoids the need

for integral image calculations. The features are formed by

single pixel lookups from the channels.

1http://vision.ucsd.edu/˜pdollar/toolbox/doc/

index.html

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html


Below we describe how a ground plane constraint can

be integrated with this algorithm. Take in mind that our

approach is independent of the pedestrian detector used.

3.2. Exploiting ground plane constraint

Ground plane estimation is the technique to approximate

the orientation of the ground plane in 3D relative to the po-

sition of the camera. This allows to approximate the height

of an object for each position in the image and thus enables

a restriction on the search space. In [13] is described how

the object height in an image can be predicted based on the

homography of the ground plane and the real world size of

the object to detect. Based on the desired variance on the

real world size, e.g. detecting pedestrians between 160cm

and 185cm, rectangular regions are cut from the image and

transformed to a standard size, where each region should be

evaluated at the same scale.

As a first approximation, we model the ground plane

constraint of the Caltech dataset [9] by a first order lin-

ear relationship between the y-position of the feet of the

pedestrian in the image and their height, instead of using a

homography of the ground plane. Figure 1 visualises the

ground plane estimation function in black, which is ob-

tained by fitting a curve through the annotations from the

Caltech training set (blue circles). As can be observed, a

lot of annotations do not comply exactly with this function.

This is due to two main reasons: the variation in object

height and the tilt movement of the camera relative to the

ground plane (pitch angle around the y-axis in figure 3). For

small angles, this can be compensated by using an offset of

our calibrated function (visualised as the cyan lines). The

red lines visualise the compensation of the pedestrian height

variation on top of the compensation for camera movement.

As can be seen in figure 1, we now can determine the

image region each specific scale should be searched in. The

boundaries of this region are defined by the intersection of

the object height with the red lines, which indicate the com-

bination of both compensations (the height variation and

camera movement). Take in mind that these y-values in-

dicate the location on the ground plane, and so this region

is extended with the object size at that location. This is vi-

sualised in figure 2 for an object size of 150px. Since this

process reduces the search space from a full feature layer to

only a limited area, this evidently leads to improved speed

results.

The use of a ground plane constraint benefits both the

detection speed, by reducing the search space, and the ac-

curacy of the detection process, since false detections that

do not fall within the searching space for that scale, are

avoided. In section 6 we validate this using the Caltech

dataset (see figure 9).

150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

groundplane constraint on Caltech

y−position (px)

p
e

d
e

s
tr

ia
n

 h
e

ig
h

t 
a

 (
p

x
)

Horizon

Figure 1: The ground plane estimation as used in our Cal-

tech experiment. The black line is our estimation function,

while the red lines indicate the variance allowed on the scal-

ing.

Figure 2: The region we crop to search for a pedestrian

size of 150px. The blue lines indicate the boundaries on

the ground plane, while the red line takes the object size

itself also into account. An example detection is indicated

with a green bounding box.

3.3. Using a ground plane constraint with 6 DoF

In our application we perform pedestrian detection on

images taken from a flying UAV. The 6 degrees of freedom

(DoF), visualised in figure 3, make it impossible to apply

a pre-calibrated ground plane estimation function. Hap-

pily enough the ground plane function is only influenced

by 3 DoF: rotation around the x- and y-axis (called the roll

and pitch respectively) and translating along the z-axis (al-

titude). Translating along the x- and y-axis and rotation

around the z-axis do not influence the ground plane esti-

mation function and so they can be ignored. The IMU of

the autopilot measures the values corresponding to these

DoF, enabling us to compensate for them and derive a linear



Figure 3: Our UAV system with the degrees of freedom

shown, translating and rotating over the 3 axes.

ground plane constraint function.

We will first reformulate the ground plane constraint

such that the UAV’s altitude can be used as an input pa-

rameter. Figure 4 visualises the scenario of a flying UAV

with a forward looking camera based on the pinhole model.

The further away the pedestrian is located, the smaller, and

the closer to the horizon, it will appear in the image. Figure

5 shows the corresponding frame as captured by the camera

on the drone. The y-position of the pedestrian’s feet (posi-

tion on the ground plane) can be calculated by:

y =
him

2
+

a

A
B (1)

where him is the height (in pixels) on the image. Hereby the

assumption of a flat ground plane is made, which imposes

the y-position of the horizon in the middle of the image.

For this equation, we know all parameters up front ex-

cept for the real-world flying height (B) of the UAV. By

measuring the altitude of the UAV, we can obtain the pa-

rameters of the first order function and reuse the approach

we described in subsection 3.2.

Figure 4: Side view of the scene with a forward looking

camera.

Figure 5: The image content as captured by the camera

The roll of the UAV is easy to compensate for, since

this only requires rotating the image with the inverse an-

gle, making the horizon to lie horizontally again. The last

degree of freedom we have to compensate for is the pitch,

with the camera looking slightly upwards (or downwards)

instead of straight forward. The equations of the two red

lines in figure 1 become now:

a = y
AMIN

B
− hhor,MAX (2)

a = y
AMAX

B
− hhor,MIN (3)

, where B is the measured altitude of the UAV, AMIN and

AMAX the minimum and maximum real-world height of

the pedestrians to be detected, and hhor,MIN and hhor,MAX

the y-position of the horizon in the image, deviating from

the ideal hhor = him

2
value due to pitch angle effects.

When the pitch angle (α) can be measured, as in our

UAV application, another solution to cope with this devi-

ation is transforming the image back to a zero-pitch image.

Again using the pinhole camera model (as shown in figure

6), this transformation boils down to:

y2 = f
f.sin(α) + y1.cos(α)

f.cos(α)− y1.sin(α)
(4)

Figure 6: Compensate for the pitch by projecting a point to

the forward looking view.



Based on the previous equations, we extended our

ground plane constraint from subsection 3.2 to cope with

the extra degrees of freedom of a UAV. In section 6 we will

evaluate this approach for our application.

4. Particle tracker

Although the pedestrian detection methodology we de-

scribed in the previous section obtains good results, it does

not form a reliable methodology on its own. Due to the vari-

ations in appearance a pedestrian can have, it is impossible

to obtain a 100% reliable detection in each frame. Lowering

the threshold will increase the recall and thereby the chance

of detecting the pedestrian to follow, but will also increase

the amount of false detections. Moreover, detecting at low

thresholds requires a less strict rejection threshold used for

the cascade, which implies less pruning during the detec-

tion pipeline, with an increased evaluation time as a con-

sequence. Evidently this is to be avoided for time-critical

applications such as ours. Therefore we use a tracker to

compensate for the missed detections.

The implementation we created is based on the public

available implementation of Kevin Schluff2. Each particle

represents a state: S = {x, y, vx, vy , s}, where x and y

represent the position of the particle, vx and vy represents

the moving speed of the particle, and s represent the relative

scaling from the initial object size.

A state-update is performed on each frame. The state

of each particle is updated using a constant velocity tran-

sition matrix as given by equation 5. The new position of

the object is determined by taking the weighted mean of

the particles. The confidence (C) of each particle is calcu-

lated using equation 6, which uses the Bhattacharyya dis-

tance (D) between the color histogram of the model and the

color histogram of the particle’s position.

A =













1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(5)

C = exp(−20.D2) (6)

To avoid the influence of background noise while track-

ing, we initialise the tracker not on the full detection rect-

angle, but on the chest. The chest does only move a little

compared to for example the legs, and it is fairly easy to se-

lect an area on the chest which contains almost solely pixels

belonging to the detected pedestrian.

2https://bitbucket.org/kschluff/particle_

tracker

5. Integration

5.1. System overview

Figure 8 gives an overview of the hardware we use. To

demonstrate our framework we used the F550 hexa-copter

from DJI with the Pixhawk as stability controller. We

equipped the F550 with the Brix computing module (Intel-

I7 processor, 8G RAM and 100G HD with 172g of weight)

to run our framework on. The choice of using the Brix is

based on the tool developed by Hulens et al. [10]. For our

application, the flight-time is estimated on 12 minutes when

the algorithm runs at 15fps. As seen in figure 8, the Brix is

communicating with the Pixhawk using the Mavlink pro-

tocol. By this communication protocol the sensor data in-

cluding pitch, roll and yaw-angles as well as the altitude are

retrieved from the Pixhawk. To control the F550 from the

Brix, several changes in the Pixhawks firmware were made

to receive Mavlink control messages from the Brix instead

of from the remote control.

To combine all previous steps we developed a software

framework, of which an overview is shown in figure 7. Each

of these blocks is executed in a separate thread. The Cap-

ture Frames retrieves the frames from the camera. When the

frame is retrieved, this thread requests the measured sensor-

data from Read Sensordata UAV, which maintains commu-

nication with the Pixhawk using Mavlink messages which

can be seen in figure 8. The roll is corrected by rotating the

retrieved frame based on the measured sensor-data. Both

the roll-corrected image and the sensor-data are passed to

Person Detection and Person tracking using a queue.

The Person Detection performs the detection of pedestri-

ans, using the ground constraint based on the sensor-data, as

described in subsection 3.3. At the same time, the Person

Tracking performs a state-update to obtain the most prob-

able position of the person using color-information based

on 150 particles, as described in section 4. The results of

both the person tracker and the person detector are passed

to Combine Results Control UAV, which combines them to

a single location. This is described in more detail in subsec-

tion 5.2.

The task of our UAV demonstrator is to steer the UAV

such that a tracked pedestrian is kept in view, and therefore

in the center of the camera image.

The difference between the desired position and the cal-

culated position of Combine Results Control UAV is used

to steer the UAV using a PID control loop. This latter cal-

culates a smooth control value to steer the UAV, depending

on the size of the error and the speed the errors changed in

time. PID control loop maintains a continuous communica-

tion with the Pixhawk, which on his turn controls the motors

of the UAV.

https://bitbucket.org/kschluff/particle_tracker
https://bitbucket.org/kschluff/particle_tracker


Figure 7: Overview of framework. Oval=queue, Dia-

mond=mutex

Figure 8: Overview of UAV.

5.2. Combination of pedestrian detection and object
tracking

We combine the detections of the pedestrian detector and

the particle filter into a single hypothesis of the pedestrian’s

location. The tracker is controlled from Combine Results

Control UAV. After the UAV takes off, the tracker is ini-

tialised on the strongest detection found. Hereby, the target

pedestrian to follow is selected. From then on, the tracker

is reinitialised using the pedestrian detections found by the

pedestrian detector, which is performed in two cases:

1. When the tracking confidence drops below a 50% con-

fidence, we search for detections with an overlap of

at least 50% with the current tracking rectangle. The

confidence score is calculated using the same method

as for the particles, given by equation 6.

2. When the confidence of the tracker becomes very low

we suspect the tracker to be drifted away. Therefore we

calculate the confidence on all detections in the image.

The tracker is reinitialised on the detection with the

highest similarity between the detection box and the

model.

In both cases, when no detection is found matching the

criteria, no reinitialisation of the tracker is performed. Take

in mind we are currently focussing on tracking just one

pedestrian, and this approach should be altered slightly to

cope when multiple pedestrians are walking through the

scene.

As we described in section 4 we do not use the original

dimensions of a detections to initialise the tracker, but only

a small rectangle focussing on the chest of the pedestrian

for improved detection results. To perform the overlap cri-

terion, we invert this operation to obtain the dimensions of

the tracking rectangle as it would be for a full body tracking

rectangle.

6. Experiments

In this section we discuss the experiments we have

performed. First, in subsection 6.1 we validate the use

of a ground plane constraint using the Caltech pedestrian

dataset. In subsection 6.2 we present the results we obtained

when using the framework described in section 5 on a flying

UAV. All speed results are obtained using the Brix embed-

ded system.

6.1. Ground plane constraint validation

In subsection 3.2 we described how ground plane con-

straints can be integrated with an object detector to improve

both detection accuracy and model evaluation. Figure 9 vi-

sualises the accuracy improvement of using a ground plane

constraint as compared to an evaluation using all scales on

the whole image. These experiments are performed using a

model which is trained on the Caltech training set.

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

Accuracy improvement using a groundplane constraint

 

 

95% VJ

68% HOG

57% FPDW

48% Roerei

43% Ours−ACF

40% Ours−ACF−groundconstraint−approximation

36% Ours−ACF−groundconstraint

Figure 9: Accuracy improvement on the Caltech dataset by

using a ground plane constraint.

In table 1 we compare the detection speed of our imple-

mentations. As we can observe, the ground plane constraint

brings a significant improvement in evaluation speed con-

sidering the combined accuracy improvement. The choice



Technique Evaluation speed Speed-up

Matlab-ACF 5.8 fps 0.72×
Ours-ACF 8.1 fps 1×

Ours-ACF-groundconstraint-approximation 31.1 fps 3.9×
Ours-ACF-groundconstraint 27.2 fps 3.4×

Table 1: Comparison of detection speed of the algorithms

we provide evaluated on Caltech.

Technique Evaluation speed Speed-up

Ours-ACF 14.9 fps 1×
Ours-ACF-groundconstraint-approximation 33 fps 2.2×

Ours-ACF-groundconstraint 21.9 fps 1.47×

Table 2: Comparison of detection speed with the different

implementations used for the UAV application. The ground

plane constraint is calculated based on he measured sensor

data.

of using approximation of features, which is one of the

speed improvements of ACF, is dependent on the impor-

tance of speed versus accuracy.

6.2. UAV application

To evaluate the system we described in section 5, we per-

formed a number of test flights. For two sequences, we will

show detailed results. Example frames of these are shown in

figure 10. The first sequence of 751 images shows the per-

formance of our system while following a walking pedes-

trian from behind. The second sequence of 823 images

keeps the UAV more or less at the same spot while follow-

ing a pedestrian walking in front of the UAV. All the data

(the frames, the tracked position and the detections) where

saved to disk to allow comparison of different approaches.

All the frames where manually annotated. Based on these

sequences we will discuss the evaluation speed of the differ-

ent detection options, as described in section 3, and the ac-

curacy of the position determination of our system. We used

a pedestrian detection model trained on the INRIA training

set.

In table 2 we present the detection speed of our detector

implementations. As can be seen we reach decently high

processing speeds on the on-board embedded system we

use. Since we are using a 15fps camera, we chose the most

accurate implementation, which uses the ground plane con-

straint without the approximation of features.

By adding the roll-angle to rotate the image, we make

sure the frame can be processed while the pedestrians are

straight up instead of rotated. This is visualised in figure

11. The use of roll-correction has a high impact on the

amount of correct detections. To determine the infuence

of roll-correction, we annotated a dedicated experiment of

(a) Before roll-correction (b) After roll-correction

Figure 11: The visual effect of applying roll-correction on

the captured frames.

Sequence 1 Sequence 2

Detection 4.05% 4.59%

Tracking 10.47% 7.51%

Table 3: Comparison of percentage center x-position error

w.r.t. the width of the person. Less as 50% means we are

still tracking inside the annotation bounding box.

1367 frames. The amount of times the target pedestrian

could correctly be detected without roll-correction is 115

times, or 8.4% of the images in the sequence. This is dras-

tically increased to 692 times, or 50% of the images in the

sequence when applying the correction. Since the detec-

tions are used to improve the tracking, and thus the steering

of the UAV, this has a big influence on the resulting tracking

performance.

In table 3 we give the accuracy of our system. The accu-

racy is measured using the deviation of the tracked person’s

center coordinate with respect to the corresponding annota-

tion, but relative to the width of the annotation, which gives

a normalised accuracy measure of how accurately the posi-

tion of the pedestrian is passed to the PID-loop to steer the

UAV.

During processing, the Brix embedded system has a

workload of 95% and has a 22W power use.

7. Conclusion

In this paper we described a system to automatically fol-

low pedestrians with a UAV using an on-board embedded

system. The location of the pedestrian is determined with

a combination of a pedestrian detector and a color based

particle filter. The pedestrian detector is used to help the

particle filter remain on target. The detection speed and ac-

curacy are improved by using a ground constraint, which

we reformulate to be fully parametrisable by the sensor data

measured by the IMU of the UAV. Our complete system is

successfully validated using a real flying UAV. Hereby we

reach real-time processing on the on-board embedded sys-

tem, while obtaining a normalised accuracy of 10.47%.



Figure 10: Example images from the two sequences we use to validate our system, black: annotation, cyan: detection, green:

tracked position. Top row: sequence 1, bottom row sequence 2.

Acknowledgements

This work is partly funded by KU Leuven via the

CAMETRON project.

References

[1] R. Appel, T. Fuchs, P. Dollár, and P. Perona. Quickly boost-

ing decision trees-pruning underachieving features early. In

JMLR Workshop and Conference Proceedings, volume 28,

pages 594–602. JMLR, 2013.

[2] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool.

Pedestrian detection at 100 frames per second. In CVPR,

2012 IEEE Conference on, pages 2903–2910. IEEE, 2012.

[3] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool.

Seeking the strongest rigid detector. In CVPR, 2013 IEEE

Conference on, pages 3666–3673. IEEE, 2013.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In CVPR, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893.

IEEE, 2005.

[5] F. De Smedt, K. Van Beeck, T. Tuytelaars, and T. Goedemé.

Pedestrian detection at warp speed: Exceeding 500 detec-

tions per second. In CVPRW, 2013 IEEE Conference on,

pages 622–628. IEEE, 2013.

[6] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. PAMI, IEEE Transactions on,

36(8):1532–1545, 2014.

[7] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian

detector in the west. In BMVC, volume 2, page 7. Citeseer,

2010.

[8] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel

features. In BMVC, volume 2, page 5, 2009.

[9] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: A benchmark. In Proc. of CVPR, June 2009.

[10] D. Hulens, J. Verbeke, and T. Goedemé. How to choose the

best embedded processing platform for on-board uav image

processing ? In International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Appli-

cations. IEEE, 2015.

[11] T. Naseer, J. Sturm, and D. Cremers. Followme: Person fol-

lowing and gesture recognition with a quadrocopter. In In-

telligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-

national Conference on, pages 624–630. IEEE, 2013.

[12] J. Pestana, J. L. Sanchez-Lopez, S. Saripalli, and P. Cam-

poy. Computer vision based general object following for gps-

denied multirotor unmanned vehicles. In American Control

Conference (ACC), 2014, pages 1886–1891. IEEE, 2014.

[13] P. Sudowe and B. Leibe. Efficient use of geometric con-

straints for sliding-window object detection in video. In

Computer Vision Systems, pages 11–20. Springer, 2011.

[14] K. Van Beeck, T. Goedemé, and T. Tuytelaars. A warping

window approach to real-time vision-based pedestrian detec-

tion in a trucks blind spot zone. In Proceedings of the ninth

international conference on informatics in control, automa-

tion and robotics, volume 2, pages 561–568, 2012.

[15] P. Viola and M. J. Jones. Robust real-time face detection.

International journal of computer vision, 57(2):137–154,

2004.


