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Abstract

Pedestrian detection is one of the most popular com-
puter vision challenges in the automotive, security and do-
motics industries, with several new approaches and bench-
marks proposed every year. All of them typically consider
the pedestrians in a standing pose, but this assumption is
not always applicable. It is the case of embedded camera
systems used for crowd monitoring or in driving assistance
systems for big vehicles maneuvering. Such systems are
commonly installed as higher as possible and make use of
fish-eye lenses to provide a top and wide field of view. Ac-
tually, such configurations introduce both perspective and
optical distortions in the image that, even when corrected,
still provide stretched silhouettes that can hardly be de-
tected by cutting-edge pedestrian detection algorithms. In
this paper we focus on this scenario, showing a) that one
of the most effective models for pedestrian detection, that
is the Deformable Part Model (DPM), can be efficiently
implemented in FPGA to dramatically speed up the com-
putation, and b) how it can be modified for dealing with
highly distorted pictures of humans. The resulting frame-
work, dubbed Deformable Part Model for Local Spatial De-
formations (DPM-LSD), gives convincing figure of merits in
terms of accuracy and throughput, on a new top-view fish-
eye based pedestrian dataset (dubbed Fish-Eyed Pedestri-
ans), also comparing with widely-used competitors (stan-
dard DPM and Dalal-Triggs).

1. Introduction
With approximately more than 2230 papers since 2000,

pedestrian detection is one of the hottest challenges in
computer vision, which impacts heterogeneous applicative
fields spanning from robotics to driving assistance. In addi-

a)

b)

c)

Figure 1. Some pedestrian datasets: a) Daimler http://goo.
gl/HMQFav, b) Inria http://goo.gl/EY0em5, c) PETA
http://goo.gl/5Pwi11.

tion, with more than 35 datasets (for a rough total of hun-
dred of thousands image samples) it is one of the most com-
petitive scientific topics in terms of benchmarks1. However,
by looking at the samples of these datasets (see Fig. 1), it
is to be noted that in all cases people are viewed in some
stereotypical poses, which is upright, with various orienta-
tions, captured by cameras with conventional lenses. On
one side, this witnesses that pedestrian detection is still an
open issue, in which many typical problems like different
illumination levels, occlusions, hard human poses still have
to be replicated into a dataset; on the other side, this is lim-
iting, since different camera set-ups do exist. This is the
case of cameras with fish-eye lenses installed for a top-view.
These are typically used when a wide field of view has to be
monitored by a single camera as for crowd monitoring [3],
or in driving assistance systems to support maneuvering of
big vehicles for public transport, agriculture or mining [15].

An example of scene captured with this configuration
is reported in Fig. 6, where strong distortions are easily
visible, especially on the extremal region of the field of
view; in addition, people under the camera are strongly

1See http://goo.gl/DAZVIf

http://goo.gl/HMQFav
http://goo.gl/HMQFav
http://goo.gl/EY0em5
http://goo.gl/5Pwi11
http://goo.gl/DAZVIf


Figure 2. Fish-eye imagery: a) applying a standard Deformable
Part Model [6] gives only one positive result; b) reversing the dis-
tortion does not solve the recall problem; c) our DPM-LSD gives
better results.

auto-occluded, definitely different from those on the sides.
Trying to apply a standard pedestrian detection algorithm
on such image is very ineffective, giving poor recall perfor-
mances (Fig. 6a). Correcting the lens distortion, the out-
come is still unsatisfying (Fig. 6b), because the perspective
distortion is still present.

In this paper, we fill this gap, presenting an embedded
approach for pedestrian detection using fish-eye cameras
in a top-down view. The approach considers one of the
most versatile and widely adopted detector so far: the De-
formable Part Model (DPM) [6]. DPM algorithm is a dis-
criminative classification technique which models an object
class as a mixture of components, where each component
captures a particular visual appearance of the object (e.g
the front or the side view of a car). Additionally, each com-
ponent defines a number of parts encoding salient details of
the object from a particular point of view (the tire or the
headlight of the car). HOG features are used as low-level
cue, while Latent Support Vector Machines (L-SVM) are
the mixture model learning.

The first contribution of our work is the FPGA imple-
mentation of the DPM algorithm: keeping the classifica-
tion performance unchanged, the FPGA version runs 120

times faster than the CPU-based, creating a general purpose,
valuable engine for real-time classification. DPM algorithm
is fully parallelizable and suitable to a FPGA implemen-
tation outperforming GPU-based implementations [16] by
at least one order of magnitude. As a second contribu-
tion, we modify the DPM algorithm for pedestrian detec-
tion (and its FPGA-based version) in order to deal with the
perspective and optical distortions: here the idea is to cou-
ple the classifier to the geometry of the camera set-up, en-
forcing the learning to select one particular component on
the basis of the considered part of the scene; the approach
is dubbed Deformable Part Model for Local Spatial De-
formations (DPM-LSD). As third contribution, we create a
dataset for pedestrian detection captured by a fish-eye cam-
era which is composed by 4428 positive and 16100 negative
samples, where the testing data is formed by 1395 fully an-
notated 640x480 images, named Fish-Eyed Pedestrians. On
this dataset, DPM-LSD definitely outperforms the DPM ap-
proach and other competitors, even when they are trained on
the Fish-Eyed Pedestrians dataset. An illustrative example
of DPM-LSD applied on an image of our dataset is shown
in Fig. 6 c).

The rest of the paper is organized as follows: in Sec. 2
the pedestrian detection approaches developed in FPGA are
reviewed. This will highlight that no work in the literature
deals exactly with our scenario. In Sec. 3 the DPM model
is briefly summarized. In Sec. 4 the FPGA implementation
of DPM is presented, while Sec. 5 describes the DPM-LSD
approach. Sec. 6 will show our comparative results, also
presenting the Fish-Eyed Pedestrians benchmark. Finally,
Sec. 7 will conclude the paper with some remarks and future
perspectives.

2. Related work
At the best of our knowledge, no other approaches in the

literature deal with the detection of pedestrians in top-down
distorted views. The most similar approach is the one of
[3], where detection using fish-eye cameras in an indoor en-
vironment is faced with HOG features + SVM, by spanning
radial stripes originating from the orthogonal projection on
the floor of the top-down camera. The difference with our
approach is that we are dealing with more dramatic view-
changes of the pedestrians, while in their case people are
essentially lying on a narrow circular stripe around the cen-
ter.

As for the embedded nature of our approach, several em-
bedded pedestrian algorithm frameworks exist in the liter-
ature. Most approaches are entirely FPGA-based (all the
processing is done on FPGA), with emphasis on the design
of the features – HOG-based in most of the cases [9, 11, 14]
– with simultaneous SVM classification [13], on high res-
olution images and multiple scales [7]. Other descriptors
are covariances [12] or co-occurrences of features [8]. Few



approaches perform only part of the processing on FPGA
[1, 2]: even in this case, all of them focus on pedestrians
with no strong distortions. GPU implementations of HOG-
DPM based object detectors are proposed in [16], while no
FPGA implementation of the DPM approach is available in
the literature.

3. The DPM algorithm

In the following, we summarize the DPM classifier, fully
presented in [6], highlighting those aspects which are more
related with our approach, and adopting the same formal
notation for coherence.

The DPM classifier is built over a m-component mix-
ture model M = (M1, . . . ,Mm), where Mc is the model
for the c-th component, and m is a priori defined. Each
component is designed to focus on a particular visual facet
of the modeled class (for example, an object in a particu-
lar pose). Dropping the index c for clarity, the component
model is M = (F0, P1, P2, . . . , Pn, b), where F0 encodes
the root filter defining the reference position of the object
in the image, Pi is the model for the i-th part and b is a
bias term acting as a normalizer among components. The
parts encode portions of the object of interest and the num-
ber of parts n is defined a priori. The model for each part is
Pi = (Fi, vi, di), where Fi is a filter specialized to recog-
nize a particular visual part (arm, torso, etc. in the case of a
pedestrian), vi indicates the position of the part in relation
with the root position and di identifies a cost for a particular
deformation. In the learning stage, bounding boxes around
the objects of interest in the training images initialize the
root position F0; training alternates between two steps, in
which i) the components are updated and ii) the images are
assigned to components.

As for the features, HOG-like cues are used, forming a
pyramid which essentially connects the level where the root
filter is applied to that where the parts are examined, i.e. at
double resolution wrt the root level.

Once trained, the SVM model scores each test example
x by a function of the following form,

fβ(x) = max
z∈Z(x)

β · φ(x, z)

where β is a vector of model parameters, containing the
root filter, the part filters, and deformation cost weights;
Φ(x, z) is a feature vector containing a concatenation of
sub-windows and part deformation features in relation with
the feature pyramid, specified by z. Given an example x,
all possible z configuration values are considered by adopt-
ing a distance transform approach [10], and the maximum
is taken as detection result for the component. The final de-
tection is the maximum over the components. Afterward,
a post processing step is implemented to deal with multi-

ple overlapping detection, which essentially applies a non-
maxima suppression step.

During the learning, the β parameter vector is estimated
using a latent SVM strategy.

4. FPGA implementation of DPM
The target device for DPM algorithm implementation is

Xilinx R©ZynqTM-7000 All Programmable System-on-Chip
(SoC) that combines a dual-core ARM R©CortexTM-A9 pro-
cessing system (PS) with Xilinx 28-nm programmable logic
(PL) on a single device. A key advantage of this device
is the partitioning flexibility offered through tight coupling
between PS and PL. The pixel-level, high data rate process-
ing can be accelerated in hardware and decision making
tasks implemented in the serial processor. This approach
fully offloads the serial processor (ARM Cortex), thereby
avoiding processing bottlenecks and achieving throughput
increases of up to several orders of magnitude. The adopted
development platform is the ZC706 board equipped with
a XC7Z045 device. To grab the HDMI video source we
use a DVI I/O daughter card. The FPGA fabric is respon-
sible for acquiring the video from the HDMI input port
(Video Input), generating the pyramid of images (Video
Scaler), performing the object detection algorithm (DPM)
and streaming out the video to the HDMI output augmented
with graphics/information overlay (Video Controller). The
processing system is primarily responsible for configuring
and controlling the FPGA-based processing blocks, and
performing post-processing operations such as the non-
maxima suppression.

Here we focus on the DPM core only, that is the main
functional block implementing the object detector. This im-
plementation accurately fits the original algorithm formula-
tion of [6]. In Fig. 3 the DPM core block diagram is shown.
The DPM core itself works at single image scale. For each
acquired frame, the Video Scaler provides the DPM with
a sequence of images obtained by resizing the input. The
input stream is provided by the Scaler at double resolution
so a preliminary sub-sampling stage (binning) is necessary
to generate two parallel streams, the first at input resolution
and the second one at half resolution. The two streams will
be used to compute the normalized HOG feature for respec-
tively the parts filters F0, F1, . . . , Fn and the root. DPM
processes the image in raster scan fashion. The HOG fea-
ture extraction requires to compute the image gradient, cal-
culate a 18-bins histogram of the gradient orientation of 8x8
pixels cells and normalize it. Each pixel contributes to the
feature vectors in the four cells around it using bilinear in-
terpolation. The feature dimension is 31 and each element
is represented with 18 bits. Linear SVM and distance trans-
form are processed in parallel for the root and each part of
the components. Distance transform is locally computed
9x9 window of cells. This approximation was necessary to



Figure 3. DPM core block diagram.

Table 1. DPM core FPGA resources occupation.
Zynq-7045 Used Available Percentage
Flip-Flops 78,945 437,200 18%

Look-Up Tables 58,556 218,600 27%
Block RAM 302 545 55%
DSP slices 702 900 78%

save internal memory but does not affect the accuracy from
our experiments. Each SVM is implemented using an array
of MACs (multipliers with accumulator) calculating in par-
allel the inner product between the normalized feature vec-
tor and the corresponding vector of weights. The MACs are
implemented using the DSP48 slices. The number of used
MACs is related to the maximum template size (12x16 cells
= 96x128 pixels). The partial scores of the root and the parts
are then combined to calculate the final score of each com-
ponent fβ(x). The detection window scans the entire image
and, for each position, the score is computed. If the score
is greater than a threshold, the current position, pyramid
level and score information are inserted into a shared output
buffer containing the list of detected objects. The results
of the detection are than read out by the ARM processor
that applies the post-processing stage. All DPM computa-
tion is done in fixed point precision except from the feature
normalization (L2-norm) that is done using single precision
floating point arithmetic operators. The numerical preci-
sion is accurately trimmed in order to keep the score error
smaller than 0.05 with respect to the floating point software
model.

The core can be configured at compilation time to mod-
ify the maximum image resolution, template size, number
of parts and components. This allows to optimize the area
consumption on the basis of the object model. The pro-
grammable logic resource consumption of the DPM core is
estimated with ISE Design Suite 14.7 and reported in Tab. 1.
This estimation is related to the DPM core with a general
configuration (2 components, 6 parts and a maximum tem-
plate size of 12x16 cells). The core is fully programmable
via software: it is possible to load different object models
and pyramids at run-time.

The generation of the image pyramid performed by the
scaler requires a huge external memory bandwidth and is

the actual bottleneck of the pipeline. The input pixel rate
is 120 Mhz, while the clock frequency of the core is 240
Mhz because it works at double data rate. The frame rate
depends on the number of image pyramid levels (= num-
ber of processed images for each acquired frame). With 28
levels and 640x512 input image resolution (corresponding
to 1280x1024 into the core) the frame rate is about 11.75
fps, about 120 times faster than a PC-based implementation
(Intel Xeon 2.66 GHz - 8 GB RAM). The latency is about
56 image lines. The global throughput of the core is greater
than 170 Giga MAC/sec.

5. The DPM-LSD model
The Deformable Part Model for Local Spatial Deforma-

tions classifier modifies the DPM in those cases in which
the visual variance of the objects to be detected is strictly re-
lated with the geometry of the scene and with the physical
configuration of the sensors, and when these relations are
known beforehand. This is the case of cameras in top-down
view, far from the floor. In this case, going far from the
projection of the center of the lens on the floor – where the
visual appearance of the pedestrian is dominated by head,
shoulder and feet – one can notice that the body silhouette
starts to be stretched and visible in its entirety, the direction
of stretching depending on the radial angle wrt the orthogo-
nal projection of the camera (see Fig. 6). This effect is even
more dramatic in the case of fish-eye lenses. In such a sce-
nario, one could try to apply the standard DPM, letting the
mixture learning mechanism distribute correctly the learn-
ing samples to the components depending on their position
on the floor. Unfortunately, this does not happen, and com-
ponents turn out to model not well defined compounds of
visual appearances, without any relation with the physical
scenario. For the sake of the classification, this compro-
mises the overall quality of the detection.

Our idea is simple yet effective, and consists in enforc-
ing the training samples to belong to a particular component
Mi, depending on their distance r from the projection on the
floor of the lens center, independently on the radial angle
they exhibit. Technically, this corresponds to add a com-
ponent label It = Mi to the t-th image, initializing the as-
signment to them components accordingly; therefore, these
images are segregated to stay in one particular component
during the whole training procedure. For each component,
the parts {Pi} are chosen automatically, so that the param-
eters fit the variance of the images of that component. The
number of parts per component is fixed beforehand.

6. Experiments
6.1. The Fish-Eyed Pedestrians dataset

The Fish-Eyed Pedestrians (FEP) dataset is composed
by pictures extracted from 640x480 video sequences cap-



Figure 4. Fish-Eyed Pedestrians: some sample positive images.

tured around the University of Verona campus, in indoor
and outdoor settings. The acquisition setup was formed by
a fish-eye camera, with 130◦ field of view lens. The camera
has been set 3.5 meters over the ground. We divided the
sequences into training and testing. From the training mate-
rial we extracted 2220 positive and 16100 negative samples
while the testing data is formed by 1395 frames containing
2208 positive samples. Some training images are shown in
Fig. 4: they include people walking with friends, with back-
packs, and under different illumination conditions. Besides
the training samples, we also provide the distance in meters
wrt the center of the scene, in order to allow the DPM-LSD
learning.

6.2. Comparative experiments

In the detection experiments, evaluated on the FEP test-
ing partition, as evaluation metrics we adopt the Jaccard
similarity coefficient (JSC), which is defined as the size of
the intersection divided by the size of the union of the sam-
ple sets:

J(A,B) =
|A ∩B|
|A ∪B|

where in our case A and B are the bounding boxes un-
der exam. A bounding box is considered correct if JSC is
greater than 0.5, otherwise we have a false positive detec-
tion.
As for the comparative approaches, we consider:

HOG+SVM method. We use the C++ implementation of
the Dalal & Triggs detector [4]. Size of feature cells is
8 × 8, and the box size is 16 × 16. Gradient orienta-
tions are discretized into 8 values. Template dimension
is 64× 64. We perform SVM training by using SVM-
Light, and we use the FEP training dataset.

DPM trained with PASCAL dataset. This is the method

(software based) employed in [6], which uses as train-
ing set the PASCAL dataset (the positive coming from
the “person class”, the negative coming from an uni-
form sample of the other classes) [5].

DPM trained with our samples. As above, but using the
FEP training dataset.

DPM-LSD. DPM-LSD model (FPGA-based), trained with
the FEP training dataset, using 2 components, with 6
and 3 parts. The first component covers the central
circular area with radius r = 1.80m, the second com-
ponent models the other samples.

As for the computational speed, the results discussed in
Sec. 4 still hold, with the DPM-LSD model working 120
times faster than the software DPM (the DPM-LSD exten-
sion did not bring any delay wrt the simple DPM FPGA-
based model, since it basically affects only the training pro-
cedure).

In Tab. 2 we report the quantitative results of the detec-
tion performances; in Fig. 5 we plot the related Precision
Recall curves (best viewed in colors).

Table 2. Average Precision values
Configuration Average Precision
HOG+SVM 0.45

DPM-LSD 3 parts 0.62
DPM-LSD 6 parts 0.55

Standard DPM with our dataset 0.37
Standard DPM with PASCAL dataset 0.027
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Figure 5. Precision Recall graph on the pedestrian detection task.

Intuitively, the use of the FEP dataset helps the DPM
approach to increase its performance wrt a standard train-
ing dataset. Still, it is definitely inferior to DPM-LSD.
HOG+SVM seems to set the best score at very low recall



Figure 6. Examples of detection results.

levels, with a dramatic decrease at 0.37 of recall. DPM-
LSD, on the contrary, is more constant, exhibiting the best
curve with 3 parts. Looking at the trained models (not
showed here for space reasons), the 3 parts focus on the
head (one part) and the shoulders (2 parts), while in the case
of 6 parts there is no easy interpretation.

7. Conclusions

In this paper we faced the novel problem of detecting
pedestrians with strong distortions, considering a top-down
view setting. Despite the scarce coverage in the literature,
we think that this scenario is worth to be investigated, since
many are the situations in which such configuration does
occur. Here we offered an initial embedded solution, getting
inspiration from the DPM approach, plus a novel dataset for
future comparisons. Future work includes the investigation
of an automatic procedure to discover the best number of
components and parts.
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