

1

Abstract

Feature based vision applications rely on highly
efficient extraction and analysis of features from images to
reach satisfactory levels of performance and latency. In
this paper, we describe the implementation of an
algorithm that combines distributed feature detector (D-
HCD) with a rotational invariant feature descriptor (R-
HOG). Based on an algorithmic comparison with other
feature detectors and descriptors, we show that our
algorithms have the lowest error rate for 3D aerial scene
matching. We present implementation on a low-cost Zynq
FPGA that achieves 15x speedup, 5x reduction in latency
over a quad core CPU. Our results show the considerable
promise of our proposed implementation for fast and
efficient robotic and aerial drone / UAV applications.

1. Introduction
Embedded platforms that are powered by computer

vision capabilities are becoming prevalent. In these
systems, size, weight, power, and computational latency
are key constraints, especially for small battery powered
devices as smartphone, robots, and aerial drones. They use
image features to detect and track objects, maintain
camera pose and estimate motion, and classify and
recognize objects – and thus, feature extraction and
analysis must be efficient and effective.

In this paper, we propose an embedded algorithm for
feature based processing that is optimized for multi-modal
sensor (e.g. LWIR to Visible) alignment, 3D aerial scene
matching, and robust tracking of objects. Our algorithm
combines distributed feature detector (D-HCD) with a
rotational invariant feature descriptor (R-HOG) followed
by exhaustive-search matching to better process aerial
imagery. As shown in Figure 1, aerial imagery for
persistent surveillance often has sparse features that rotate
in the scene. Our algorithm leverages these characteristics
to arrive at an efficient descriptor impervious to the
camera motion on aerial drones. We further improve
robustness with distributed sampling of features across the
aerial camera view. In a detail comparison of algorithmic
performance against other feature descriptors, we show
that our approach has the highest algorithmic performance.

This paper also provides details and results of an
FPGA-based implementation of our algorithm with
embedded sensor/processor board that can be mounted on

aerial drones. On the Zynq FPGA, we show acceleration
of key computations in the FPGA fabric with ARM
software support for serial elements. We aim to enable
more capable vision applications by improving
computation latency and processing rate for on board
aerial drone processing.

Figure 1. Feature Based Analysis using proposed distributed
feature detector and rotational invariant descriptors for on-board
UAV processing.

We make the following contributions in this paper:
• A feature based vision algorithm for spare feature and

rotational invariance characteristics (D-HCD and R-
HOG).

• A FPGA implementation on Zynq platform, with
service-based API for flexibility in using the hardware
accelerators: Harris Corner Detector (HCD),
Histogram of Oriented Gradient (HOG), and full-
search symmetric-descriptor matching.

• A small-embedded sensor-processor board with
integrated sensors and cameras for on board processing
on aerial drones.

This paper represents a complete body of work for our
proposed algorithm as we describe the research from
algorithm analysis, to FPGA implementation, to embedded
hardware design. We provide detailed comparisons for the
design choices with experimentally measured results from
our physical implementation. We advocate this level of
depth in embedded vision design as there are many
tradeoffs between algorithmic and hardware performance.

The rest of this paper is organized as follows: Section 2
describes proposed algorithm with brief descriptions of a
selected group of feature detectors and descriptors. We
provide our evaluations of the algorithms on analysis of

FPGA Acceleration for Feature Based Processing Applications

Gooitzen van der Wal, David Zhang, Indu Kandaswamy,
James Marakowitz, Kevin Kaighn, Joe Zhang, Sek Chai,

SRI International, Princeton, NJ

2

3D tracking using aerial videos. In Section 3, we describe
the FPGA implementation of the algorithm, with details
on the data flow and service-based API. Section 4
provides embedded sensor-processor hardware and
analysis of implementation results. We offer a summary of
our work in Section 5, with insights for future work.

2. Feature based processing
We consider a number of feature detectors and

descriptors. Feature detectors (e.g. HCD, STAR, FAST,
SIFT, SURF, ORB, BRISK, MSER, GITT [1,2]) are
developed to select localized salient features from 2D
images. Feature descriptors (e.g. HOG, BRIEF, FREAK)
describe the selected features as representative feature
vectors. Some feature detectors, such as SIFT, SURF and
ORB are also feature descriptors.

In this section, we provide our evaluations to these
feature based algorithms based on 3D reconstruction
analysis of a set of aerial videos.[3] Performance of most
feature functions is based on the OpenCV library (single-
threaded, quadcore, IPP and MKL support[4]) running on
a 2.8GHz CPU.

2.1. Feature detection algorithms
Performance evaluations of the selected feature

detectors are listed in Table 1 as average processing time
per frame. The input sources are multiple 640x480 aerial
videos with 580 frames. Figure 1 illustrates an example
aerial imagery that is processed. The maximum number of
features per frame is set to be 2000.

Table 1. Selected feature detectors for evaluation

Detector Descriptions Avg
Time(s)

SIFT Local multi-scale level features, histogram of
weighted gradient locations and orientations
in blocks; Slow but robust.

0.172

FAST Corner feature encoded by the contrast of the
circle of surrounded pixels. Fast but sensitive
to noise.

0.015

STAR A variant of CenSurE detector, is a center-
surround extrema by bi-level LoG Operator
and Harris measure.

0.016

SURF Approximate SIFT, integral of images and
determinants of Hessian matrix are used for
detection of key points.

0.265

ORB The combination of oriented FAST and
rotated BRIEF features. Fast and efficient
alternative of SIFT.

0.045

HCD Local corner detector based on the
determinant of Harris matrix.

0.030

D-HCD HCD features, computed in tiles and evenly
distributed.

0.032

SIFT and its variant SURF are stable but slow. Since

they are multi-scale (either subsampled or of full spatial
resolutions), higher latency and more buffer allocation in
hardware is less favorable. FAST and STAR are speedy
detectors, but less features detected and sensitive to noise

is a disadvantage. HCD is a relative speedy detector. It has
stable performance on a pre-filtered or subsampled image,
and is relatively easy to implement in hardware. We found
that using HCD, modified to select a well distributed set of
features across the image works well in conjunction with
the feature descriptors we tested. This evenly distributed
HCD, a variant of the original HCD detector, is called the
D-HCD in this paper. Its performance is listed in the last
row of Table 1.

D-HCD first finds all features with strength above a
threshold, and then divides the image into tiles (e.g.
10x10), and selects the best N features in each tile, with
maximum number of features of N x #tiles (< maximum
number of features). The best N features in each tile may
not be the highest salient features in the entire image, but
well distributed and strong enough to represent spatial
information of the scene.

2.2. Feature description algorithms
We have used the same video sequences to evaluate

feature descriptors. The descriptor time includes descriptor
generation based on the same number of detection points,
and descriptor matching. The simulation sets 20% of the
image width as the distance threshold in both directions.
For example, if 1000 descriptor points are used and each
point will match with 40 points, totally 40,000 matches are
executed. For symmetric matching, this number is further
doubled. Performance evaluations of the selected feature
descriptors are listed in Table 2. The average time for each
descriptor is the descriptor time based on the same number
of feature points per frame from the entire aerial video
sequence.

Table 2. Selected feature descriptors for evaluation

Descriptor Descriptions Avg
Time(s)

SIFT Local multi-scale level features, histogram
of weighted gradient locations and
orientations in blocks; Scale and rotation
invariant.

0.561

FREAK A cascade of binary strings computed by
comparing image intensities over a retinal
sampling pattern. Scale and rotation
invariant.

0.181

BRIEF Binary string descriptor using simple
intensity difference tests. Scale invariant.

0.015

SURF Approximate SIFT, faster and scale and
rotation invariant.

0.031

ORB The oriented BRIEF features; Scale and
rotation invariant.

0.083

HOG Cell based histogram of oriented gradients. 0.068
R-HOG HOG variant; rotation invariant 0.203

SIFT takes the longest time. FREAK and R-HOG takes

less than half of the time. FREAK, BRIEF, SURF and
HOG descriptors take the least amount. However, since R-
HOG is the OpenCV HOG in addition of finding the peak
angle in the histogram of gradient orientation to make it
rotation invariant, its source code in C is not optimized as

3

the OpenCV HOG that runs 1/3 of time, but similar when
the R-HOG is optimized.

R-HOG first computes the gradients of image at both x
and y directions to obtain orientation and magnitude. The
gradient magnitude is then multiplied by a weight that is a
function of distance from the center point (key point).
After smoothing of the histogram it computes and
interpolates the dominant gradient angle. With a
normalized angle where 0 is the dominant orientation by
subtracting the dominance angle, a 128 bin histogram is
generated with respect to 16 cells, and 8 gradient
orientations. The floating point 128 bin histogram is then
clipped and normalized/quantized to a 128-byte unsigned
vector.

We did not consider other algorithms, such as optical
flow based Kanade–Lucas–Tomasi (KLT) [9]. This is
because KLT makes use of spatial intensity information,
which is not suitable for multi-modal aerial imagery, and
not robust for low light scenarios.

2.3. Performance evaluation
To select a robust feature detector and descriptor for

hardware acceleration, we have run simulations of
tracking of features on these video sequences using a
combination of detectors and descriptors. The tracking
algorithm generates temporal feature tracks from each
matched point. A minimal valid track must be valid for at
least 3 consecutive frames. This is possible because the
camera loiters around the interested region due to the
persistent surveillance flight patterns. The number of
tracks is an index of the robustness of the feature tracking.
Another one is the reprojection error [5]. After bundle
adjustment, the distance between the mapped 3D points
from the same track would reflect the reprojected error.
The last index is the alignment of the warped feature
points from all images with respect to a reference image.
There are cases that the reprojection error is small enough,
but the warped points slowly drift.

Table 3 lists the tracking results of a few combinations
of feature functions. MSER-HOG 3D tracking has high
projection error (4.22) and its 2D alignments of key points
are bad. HCD-BRIEF has low reprojection error.
However, since its track numbers are far less, the
alignments have shown drift over time. Only SURF-
SURF, SIFT-SIFT and D-HCD-R-HOG have good track
numbers, less reprojection errors and good performance.
D-HCD takes 15ms and selects 1280 points while SIFT
takes 124ms on 2350 points.

SURF is a variant of SIFT, and both need to generate
multiple scales or full resolution images. For reduced
latency and complexity, D-HCD-R-HOG is a better
candidate. Table 4 lists the 3D tracking performance using
various descriptors on features detected by D-HCD. The
good tracking comes from either R-HOG or SIFT.

Table 3. Evaluation of feature functions based on 3D
reconstruction results

Detector
(s/pixels)

Descriptor
(s/pixels)

L2-
norm

(s)

of
tracks

Reproj
Error

SURF SURF good
0.124/2350 0.265/2300 0.171 288459 0.79

SIFT SIFT good
0.219/1100 0.281/1100 0.063 128972 1.68

STAR HOG bad
0.016/130 0.015/130 0.015 46270 1.50

ORB ORB bad
0.015/2000 0.024/2000 0.031 233550 0.92

MSER HOG bad
0.156/250 0.031/250 0.015 11004 4.22

HCD BRIEF drift
0.015/200 0.015/200 0.015 49763 1.11

GFTT BRIEF drift
0.031/1200 0.015/1200 0.046 112400 1.03

FAST HOG drift
0.015/10000 0.234/10000 2.56 199317 1.10

D-HCD R-HOG good
0.015/1280 0.343/1280 0.125 352159 0.78

Table 4. Evaluation of feature descriptors based on 3D
reconstruction results

Detector
(s/pixels)

Descriptor
(s/pixels)

L2-
norm

(s)

of
tracks

Reproj
Error

D-HCD SIFT(s) good
0.016/1280 0.1/1280 0.085 399989 0.83

D-HCD ORB bad
0.016/1280 0.015/1100 0.047 249860 1.15

D-HCD HOG drift
0.016/1280 0.055/1280 0.085 198912 1.07

D-HCD FREAK bad
0.015/1280 0.078/1180 0.078 229909 1.03

D-HCD BRIEF drift
0.015/1280 0.015/1130 0.047 324758 0.697

D-HCD SURF bad
0.015/1280 0.031/1280 0.063 367 54

D-HCD R-HOG good
0.015/1280 0.343/1280 0.125 352159 0.78

Based on the above analysis, we selected D-HCD as

feature detector, and R-HOG as feature descriptor in the
FPGA acceleration. SIFT as a descriptor performed well
also, but was much more computationally expensive.
BRIEF is less complex but may not always work as well.

3. FPGA Acceleration platform
The FPGA provides an excellent acceleration platform,

because of the inherent parallelism that can be achieved,
access to local memory, and can be reconfigured to the
computational need of application. The challenge is to
take advantage of this parallelism efficiently and provide
the data from memory when needed at the bandwidth
required. In addition, the new FPGA SoC architecture,
incorporating dual ARM processors and sharing its
memory, provides an excellent architecture for efficient
acceleration mixing FPGA acceleration fabric and low

4

power CPU based processing.
Figure 2 shows the generic FGPA vision acceleration

architecture we use. The base architecture includes the
dual ARM processing section, video input, video pre-
processing, video crosspoint, filters, multi-port access to
the shared DDR port, and a video output driver for HDMI.
The Feature processing modules described below were
added to the “Vision Devices” with access to video
crosspoint and/or DMA ports to DDR[6].

Figure 2. FPGA block diagram showing video devices in the
FPGA fabric that accelerates vision algorithms

The hybrid FPGA/ARM architecture also provides the

capability to perform integrated algorithm verification,
since the full baseline software algorithm can be executed
on the ARM.

3.1. Feature processing acceleration
There are a variety of articles on feature processing

implementations in FPGAs such as [7,8]. But most of
them are related to feature matching, and not the
applications mentioned in this paper. The D-HCD, R-
HOG feature detector and descriptor and a feature
matching function were implemented in a Zynq FPGA to
provide acceleration for a range of applications that
require large amount of rotation invariant feature matches
on a low power platform.

The diagram below shows the sequence of processing
steps, and the use of shared memory between FPGA and
ARM processing. The video input is processed in-line for
image enhancement, filtering (or multi-resolution image
generation), and HCD. The HCD also computes an
angle/magnitude image that is used by the feature
descriptor (HOG). The HOG and MATCH functions
perform a sequence of accelerations based on a list of
features (Key Points) to process. Both of these types of
accelerations require a different data buffering/caching
mechanism that enables the efficient computations in the
FPGA. In this implementation, the ARM is also used for
the HCD tile sorting and Match list generation.

Figure 3. Feature Processing Pipeline. Shared memory facilitates
acceleration between software and hardware components.

3.2. Feature Detector
The feature detector described here is a standard Harris

Corner Detector (HCD) followed by a tile sort to provide
an evenly spaced set of features across the image and
provides target for the maximum number of features used
for the application.

The HCD takes as input a video stream and compute
3x3 gradients for every pixel in-line. This is followed by
the computation of the corner strength for each pixel, and
a local maximum suppression function over a 5x5 region,
and a threshold function. All the features found and then
stored in memory as a list with image location and
strength. Note that the 5x5 max-suppress function would
also require a 4-line buffer with Strength values stored.
Instead of implementing such a large line buffer, we used
a 6 line buffer at the input, used multiple gradient, and
corner strength computations, to provide a 5-line strength
stream to the 5x5 max detector.

 Figure 4. Functional diagram of the HCD feature detector and
Angle & Magnitude generator for the feature descriptor.

For our current implementation, the tile sorting is done
on the embedded ARM without significant loss of time,
and can be implemented in-line with the HCD output.

Since the Feature Descriptor requires the Angle and
Magnitude for the feature region, it is most efficient to
compute this from the output of the gradient filters and
store the data in memory for easy retrieval by the feature
descriptor. It therefor does not require any additional
processing time for the application.

3.3. Feature Descriptor
The feature descriptor implemented is a rotation

invariant HoG (Histogram of Gradients). The rotation
invariance is achieved by first computing an angle
histogram around a selected feature, determining the

5

dominant angle. The feature histogram that follows is then
normalized for the dominant angle. In this implementation
we used a 27x27 window to determine the dominant angle,
and we use a 45x45 window for computing the feature
vector. These sizes are configurable. The feature vector in
our case is defined as an angle of 8 bins for 4x4 cells
around the feature location, generating a vector descriptor
of size 128. The feature vector is then normalized to 8 bit.

Since the feature descriptor is computed only for the
feature list from the detector, the limiting factor is
accessing the data needed to compute each feature vector.
We optimized this by using an Angle and Magnitude
buffer, which is then accessed by the histogram
computations. The buffer implemented is fast enough to
implement four parallel angle and feature histogram
modules with a single buffer. For large images, the
processing can be performed in vertical image strips.

Figure 5. Feature Descriptor diagram. The feature descriptor is
normalized for the dominant angle computed by the angle
histogram. The buffer optimizes DRAM access and can support
four sets of angle and feature histogram modules (4x speed up).

3.4. Feature Matching
The feature matching uses L2-norm, with symmetric

matching, meaning that if the feature A in the reference
image has a best match to feature B in the inspection
image, then the best match for feature B in the inspection
image shall be feature A.

The amount of feature matches to be computed can
grow rapidly when the number of keypoints and match
window increase. For large match sets, the FPGA
implementation provides a very significant increase in
processing speed. The example for R-HOG in Section 2
requires about 100,000 matches per frame. This
processing speed is mostly limited by data access, and so
is optimized using efficient pre-fetch. The match sequence
is either predetermined for optimum performance, or can
be implemented as part of the matching module by
providing the keypoint list for each into the data buffer
with a selected search window size.

Figure 6. Feature Matching module, using buffers for the
descriptor list and match sequence to provide data fast enough to
the matching computations.

3.5. Software architecture
A key to rapid development of vision applications is the

leveraging of a software stack to develop robust real-time
applications. We have implemented a Vision Service
Architecture for efficient low-latency and/or highly
parallelized implementation of vision algorithm
acceleration. A vision service is a C++ class that
implements a defined image-process function. A Vision
Service I/O is an image buffer in shared memory, and use
one or more video devices to accelerate its function.

BaseService

StabService

PyrService MeService WarpService

FeatureServiceVinService VoutService

HCDService HOGService MatchService

Figure 7. Vision software stack with service based API

The main objective of a vision service is to provide
reusable building blocks for rapid development of image
applications using the common infrastructure shown in
Figure 7 above. Vision services are parameterized to
easily support different requirements. For example,
without changing code, a vision service can support
different image sizes and formats by setting its parameters
properly. Parameters may be set via XML configuration
files at initialization or API functions at run-time.

As shown in Figure 7, all vision services are derived
from the BaseService and must implement the common set
of API functions defined therein. A vision service can
enclose other vision services. For example the StabService
in Figure 7 is only a container class providing
Stabilization interfaces; the actual work is done by
PyrService (generates image pyramids), MeService
(estimate motion), and WarpService (warps image). For
the Feature acceleration we implemented FeatureService.

6

Vision services provide for flexibility. For applications
that have dedicated video devices for all functions, vision
services can be set to keep the obtained video devices for
the entire time. Some applications share video devices
between functions. In this case vision services can be set
to obtain and release devices when needed.

In addition to flexibility, the services architecture
provides for optimized streaming based processing,
minimizing memory accesses, parallelization of video
functions, and minimization of latency with inline buffers.
More details are provided in [6].

4. Results and application
The feature processing was implemented and tested on

a Xilinx Zynq platform, with the FPGA clock at 140 MHz,
and the ARM clock at 866 MHz. The performance for this
implementation can achieve 30 Hz throughput for 1080p
images, > 1000 feature points, and > 100,000 feature
matches per frame with less than 3 frames latency

In software implementation on a high-end quad-core
laptop (Intel core i7, 2.8GHz. 8 cores, ~100W) listed in
Section 2, achieved about 2Hz for similar parameters
using the D-HCD and R-HOG (Table 4). So the FPGA
provides a speedup of 15x and 5x reduction in latency
using a Z7020 running at < 4W. Latency can be further
optimized.

The FPGA utilization for the 7020 and 7045 are shown
in Table 5 below. The “Infrastructure” represents the
FPGA acceleration framework shown in Figure 2 above.

Table 5. FPGA utilization
Zynq FF LUTS DSPs RAMB16

7020
Feature Modules 21% 45% 64% 54%
+ Infrastructure 33% 71% 72% 72%

7045
Feature Modules 5% 11% 16% 14%
+ Infrastructure 8% 17% 18% 19%

Figure 8. System Block diagram showing camera board stack
and wireless/wired interface to smartphone device

We build a complete sensor and processor system,
leveraging a commercial Zynq Z7020 board (4 x 5 cm,
< 1 lbs) from Trenz Electronic. Our system also includes a
sensor and camera board, and a custom carrier board. The
small form factor facilitates mounting on small aerial
drones. A smartphone or tablet can be connected
wirelessly to visualize processed outputs on the ground.
We have tested the system on actual flight data.

5. Conclusion
An efficient FPGA implementation of an algorithm (D-

HCD, R-HOG, matching) for feature-based analysis is
presented. The approach was found to perform very well
for 3D scene tracking, multi-modal image registration (e.g.
LWIR to Visible), object tracking in 3D space, camera
pose estimation, and 3D structure from motion. The
algorithms using distributed sampling of feature points
and rotational invariant descriptors compared favorably
over a set of common feature detector/descriptor
algorithms for registering a large sequence of aerial
imagery. Our hardware implementation achieves 15x
speedup and 5x reduction in latency over quad core CPU.
A service-based software layer provides a flexible
programmer API to use the hardware accelerators. A
complete hardware system integrating sensor and FPGA
processors is also presented. The work demonstrates that
our approach and implementation is highly effective and
efficient for use in embedded applications. Our
architecture is designed, verified, and evaluated over real
aerial data.

References
[1] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature
detectors: a survey”, J. Foundations and Trends in Computer
Graphics and Vision, Vol3, Issue 3, pp177-280, Jan 2008.
[2] Y. Li, S. Wang, Q. Tian, and X. Ding, “A survey of recent
advances in visual feature detection”, Neurocomputing,
149(2015), pp736-751.
[3] http://computer-vision-talks.com/articles/2011-01-04-
comparison-of-the-opencv-feature-detection-algorithms/
[4] https://software.intel.com/en-us/articles/signal-processing-
usage-for-intel-system-studio-intel-mkl-vs-intel-ipp
[5] http://en.wikipedia.org/wiki/Reprojection_error
[6] E. Gudis, et al. "An embedded vision services framework
for heterogeneous accelerators." Embedded Vision Workshop,
CVPR 2013, pp.598-603.
[7] Jin Zhao, Sichao Zhu, and Xinming Huang, “Real-Time
Traffic Sign Detection Using SURF Features on FPGA,” IEEE
HPEC, 2013
[8] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro
Izumi, Hiroshi Kawaguchi and Masahiko Yoshimoto,
“Architectural Study of HOG feature Extraction processor for
real-time object detection,” IEEE Workshop on Signal
Processing Systems, 2012
[9] Jianbo Shi and Carlo Tomasi. Good Features to Track.
IEEE Conference on Computer Vision and Pattern Recognition,
pages 593–600, 1994.

4cm$

5cm$

Sensor$Board$
Z7020$
Processor$
Board$

Carrier$Board$
withUSB

