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Abstract 
 

Feature based vision applications rely on highly 
efficient extraction and analysis of features from images to 
reach satisfactory levels of performance and latency. In 
this paper, we describe the implementation of an 
algorithm that combines distributed feature detector (D-
HCD) with a rotational invariant feature descriptor (R-
HOG). Based on an algorithmic comparison with other 
feature detectors and descriptors, we show that our 
algorithms have the lowest error rate for 3D aerial scene 
matching. We present implementation on a low-cost Zynq 
FPGA that achieves 15x speedup, 5x reduction in latency 
over a quad core CPU. Our results show the considerable 
promise of our proposed implementation for fast and 
efficient robotic and aerial drone / UAV applications. 

1. Introduction 
Embedded platforms that are powered by computer 

vision capabilities are becoming prevalent. In these 
systems, size, weight, power, and computational latency 
are key constraints, especially for small battery powered 
devices as smartphone, robots, and aerial drones. They use 
image features to detect and track objects, maintain 
camera pose and estimate motion, and classify and 
recognize objects – and thus, feature extraction and 
analysis must be efficient and effective. 

In this paper, we propose an embedded algorithm for 
feature based processing that is optimized for multi-modal 
sensor (e.g. LWIR to Visible) alignment, 3D aerial scene 
matching, and robust tracking of objects. Our algorithm 
combines distributed feature detector (D-HCD) with a 
rotational invariant feature descriptor (R-HOG) followed 
by exhaustive-search matching to better process aerial 
imagery. As shown in Figure 1, aerial imagery for 
persistent surveillance often has sparse features that rotate 
in the scene. Our algorithm leverages these characteristics 
to arrive at an efficient descriptor impervious to the 
camera motion on aerial drones. We further improve 
robustness with distributed sampling of features across the 
aerial camera view. In a detail comparison of algorithmic 
performance against other feature descriptors, we show 
that our approach has the highest algorithmic performance. 

This paper also provides details and results of an 
FPGA-based implementation of our algorithm with 
embedded sensor/processor board that can be mounted on 

aerial drones. On the Zynq FPGA, we show acceleration 
of key computations in the FPGA fabric with ARM 
software support for serial elements. We aim to enable 
more capable vision applications by improving 
computation latency and processing rate for on board 
aerial drone processing. 

 

 
 
Figure 1. Feature Based Analysis using proposed distributed 
feature detector and rotational invariant descriptors for on-board 
UAV processing. 
 

We make the following contributions in this paper: 
• A feature based vision algorithm for spare feature and 

rotational invariance characteristics (D-HCD and R-
HOG).  

• A FPGA implementation on Zynq platform, with 
service-based API for flexibility in using the hardware 
accelerators: Harris Corner Detector (HCD), 
Histogram of Oriented Gradient (HOG), and full-
search symmetric-descriptor matching.  

• A small-embedded sensor-processor board with 
integrated sensors and cameras for on board processing 
on aerial drones. 

This paper represents a complete body of work for our 
proposed algorithm as we describe the research from 
algorithm analysis, to FPGA implementation, to embedded 
hardware design. We provide detailed comparisons for the 
design choices with experimentally measured results from 
our physical implementation. We advocate this level of 
depth in embedded vision design as there are many 
tradeoffs between algorithmic and hardware performance. 

The rest of this paper is organized as follows: Section 2 
describes proposed algorithm with brief descriptions of a 
selected group of feature detectors and descriptors. We 
provide our evaluations of the algorithms on analysis of 
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3D tracking using aerial videos. In Section 3, we describe 
the FPGA implementation of the algorithm, with details 
on the data flow and service-based API. Section 4 
provides embedded sensor-processor hardware and 
analysis of implementation results. We offer a summary of 
our work in Section 5, with insights for future work. 

2. Feature based processing  
We consider a number of feature detectors and 

descriptors. Feature detectors (e.g. HCD, STAR, FAST, 
SIFT, SURF, ORB, BRISK, MSER, GITT [1,2]) are 
developed to select localized salient features from 2D 
images. Feature descriptors (e.g. HOG, BRIEF, FREAK) 
describe the selected features as representative feature 
vectors. Some feature detectors, such as SIFT, SURF and 
ORB are also feature descriptors.  

In this section, we provide our evaluations to these 
feature based algorithms based on 3D reconstruction 
analysis of a set of aerial videos.[3] Performance of most 
feature functions is based on the OpenCV library (single-
threaded, quadcore, IPP and MKL support[4]) running on 
a 2.8GHz CPU.  

2.1. Feature detection algorithms 
Performance evaluations of the selected feature 

detectors are listed in Table 1 as average processing time 
per frame. The input sources are multiple 640x480 aerial 
videos with 580 frames. Figure 1 illustrates an example 
aerial imagery that is processed. The maximum number of 
features per frame is set to be 2000.  

 
Table 1. Selected feature detectors for evaluation 

Detector Descriptions Avg 
Time(s) 

SIFT Local multi-scale level features, histogram of 
weighted gradient locations and orientations 
in blocks; Slow but robust. 

0.172 

FAST Corner feature encoded by the contrast of the 
circle of surrounded pixels. Fast but sensitive 
to noise. 

0.015 

STAR A variant of CenSurE detector, is a center-
surround extrema by bi-level LoG Operator 
and Harris measure. 

0.016 

SURF Approximate SIFT, integral of images and 
determinants of Hessian matrix are used for 
detection of key points.  

0.265 

ORB The combination of oriented FAST and 
rotated BRIEF features. Fast and efficient 
alternative of SIFT. 

0.045 

HCD Local corner detector based on the 
determinant of Harris matrix.  

0.030 

D-HCD HCD features, computed in tiles and evenly 
distributed.  

0.032 

 
SIFT and its variant SURF are stable but slow. Since 

they are multi-scale (either subsampled or of full spatial 
resolutions), higher latency and more buffer allocation in 
hardware is less favorable. FAST and STAR are speedy 
detectors, but less features detected and sensitive to noise 

is a disadvantage. HCD is a relative speedy detector. It has 
stable performance on a pre-filtered or subsampled image, 
and is relatively easy to implement in hardware. We found 
that using HCD, modified to select a well distributed set of 
features across the image works well in conjunction with 
the feature descriptors we tested. This evenly distributed 
HCD, a variant of the original HCD detector, is called the 
D-HCD in this paper. Its performance is listed in the last 
row of Table 1. 

D-HCD first finds all features with strength above a 
threshold, and then divides the image into tiles (e.g. 
10x10), and selects the best N features in each tile, with 
maximum number of features of N x #tiles (< maximum 
number of features). The best N features in each tile may 
not be the highest salient features in the entire image, but 
well distributed and strong enough to represent spatial 
information of the scene. 

2.2. Feature description algorithms 
We have used the same video sequences to evaluate 

feature descriptors. The descriptor time includes descriptor 
generation based on the same number of detection points, 
and descriptor matching. The simulation sets 20% of the 
image width as the distance threshold in both directions. 
For example, if 1000 descriptor points are used and each 
point will match with 40 points, totally 40,000 matches are 
executed. For symmetric matching, this number is further 
doubled. Performance evaluations of the selected feature 
descriptors are listed in Table 2. The average time for each 
descriptor is the descriptor time based on the same number 
of feature points per frame from the entire aerial video 
sequence. 

 
Table 2. Selected feature descriptors for evaluation 

Descriptor Descriptions Avg 
Time(s) 

SIFT Local multi-scale level features, histogram 
of weighted gradient locations and 
orientations in blocks; Scale and rotation 
invariant.  

0.561 

FREAK A cascade of binary strings computed by 
comparing image intensities over a retinal 
sampling pattern. Scale and rotation 
invariant. 

0.181 

BRIEF Binary string descriptor using simple 
intensity difference tests. Scale invariant. 

0.015 

SURF Approximate SIFT, faster and scale and 
rotation invariant. 

0.031 

ORB The oriented BRIEF features; Scale and 
rotation invariant. 

0.083 

HOG Cell based histogram of oriented gradients.  0.068 
R-HOG HOG variant; rotation invariant 0.203 

 
SIFT takes the longest time. FREAK and R-HOG takes 

less than half of the time. FREAK, BRIEF, SURF and 
HOG descriptors take the least amount. However, since R-
HOG is the OpenCV HOG in addition of finding the peak 
angle in the histogram of gradient orientation to make it 
rotation invariant, its source code in C is not optimized as 
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the OpenCV HOG that runs 1/3 of time, but similar when 
the R-HOG is optimized.    

R-HOG first computes the gradients of image at both x 
and y directions to obtain orientation and magnitude. The 
gradient magnitude is then multiplied by a weight that is a 
function of distance from the center point (key point). 
After smoothing of the histogram it computes and 
interpolates the dominant gradient angle. With a 
normalized angle where 0 is the dominant orientation by 
subtracting the dominance angle, a 128 bin histogram is 
generated with respect to 16 cells, and 8 gradient 
orientations. The floating point 128 bin histogram is then 
clipped and normalized/quantized to a 128-byte unsigned 
vector.  

We did not consider other algorithms, such as optical 
flow based Kanade–Lucas–Tomasi (KLT) [9]. This is 
because KLT makes use of spatial intensity information, 
which is not suitable for multi-modal aerial imagery, and 
not robust for low light scenarios. 

2.3. Performance evaluation 
To select a robust feature detector and descriptor for 

hardware acceleration, we have run simulations of 
tracking of features on these video sequences using a 
combination of detectors and descriptors. The tracking 
algorithm generates temporal feature tracks from each 
matched point. A minimal valid track must be valid for at 
least 3 consecutive frames. This is possible because the 
camera loiters around the interested region due to the 
persistent surveillance flight patterns. The number of 
tracks is an index of the robustness of the feature tracking. 
Another one is the reprojection error [5]. After bundle 
adjustment, the distance between the mapped 3D points 
from the same track would reflect the reprojected error. 
The last index is the alignment of the warped feature 
points from all images with respect to a reference image. 
There are cases that the reprojection error is small enough, 
but the warped points slowly drift.  

Table 3 lists the tracking results of a few combinations 
of feature functions. MSER-HOG 3D tracking has high 
projection error (4.22) and its 2D alignments of key points 
are bad. HCD-BRIEF has low reprojection error. 
However, since its track numbers are far less, the 
alignments have shown drift over time. Only SURF-
SURF, SIFT-SIFT and D-HCD-R-HOG have good track 
numbers, less reprojection errors and good performance. 
D-HCD takes 15ms and selects 1280 points while SIFT 
takes 124ms on 2350 points.     

SURF is a variant of SIFT, and both need to generate 
multiple scales or full resolution images. For reduced 
latency and complexity, D-HCD-R-HOG is a better 
candidate. Table 4 lists the 3D tracking performance using 
various descriptors on features detected by D-HCD. The 
good tracking comes from either R-HOG or SIFT.  

 

Table 3. Evaluation of feature functions based on 3D 
reconstruction results 

Detector 
(s/pixels) 

Descriptor 
(s/pixels) 

L2-
norm 

(s) 

# of 
tracks 

Reproj 
Error 

SURF SURF   good 
0.124/2350 0.265/2300 0.171 288459 0.79 

SIFT SIFT   good 
0.219/1100 0.281/1100 0.063 128972 1.68 

STAR HOG   bad 
0.016/130 0.015/130 0.015 46270 1.50 

ORB ORB   bad 
0.015/2000 0.024/2000 0.031 233550 0.92 

MSER HOG   bad 
0.156/250 0.031/250 0.015 11004 4.22 

HCD BRIEF   drift 
0.015/200 0.015/200 0.015 49763 1.11 

GFTT BRIEF   drift 
0.031/1200 0.015/1200 0.046 112400 1.03 

FAST HOG   drift 
0.015/10000 0.234/10000 2.56 199317 1.10 

D-HCD R-HOG   good 
0.015/1280 0.343/1280 0.125 352159 0.78 

 
Table 4. Evaluation of feature descriptors based on 3D 
reconstruction results 

Detector 
(s/pixels) 

Descriptor 
(s/pixels) 

L2-
norm 

(s) 

# of 
tracks 

Reproj 
Error 

D-HCD SIFT(s)   good 
0.016/1280 0.1/1280 0.085 399989 0.83 

D-HCD ORB   bad 
0.016/1280 0.015/1100 0.047 249860 1.15 

D-HCD HOG   drift 
0.016/1280 0.055/1280 0.085 198912 1.07 

D-HCD FREAK   bad 
0.015/1280 0.078/1180 0.078 229909 1.03 

D-HCD BRIEF   drift 
0.015/1280 0.015/1130 0.047 324758 0.697 

D-HCD SURF   bad 
0.015/1280 0.031/1280 0.063 367 54 

D-HCD R-HOG   good 
0.015/1280 0.343/1280 0.125 352159 0.78 

 
Based on the above analysis, we selected D-HCD as 

feature detector, and R-HOG as feature descriptor in the 
FPGA acceleration. SIFT as a descriptor performed well 
also, but was much more computationally expensive. 
BRIEF is less complex but may not always work as well. 

3. FPGA Acceleration platform 
The FPGA provides an excellent acceleration platform, 

because of the inherent parallelism that can be achieved, 
access to local memory, and can be reconfigured to the 
computational need of application. The challenge is to 
take advantage of this parallelism efficiently and provide 
the data from memory when needed at the bandwidth 
required. In addition, the new FPGA SoC architecture, 
incorporating dual ARM processors and sharing its 
memory, provides an excellent architecture for efficient 
acceleration mixing FPGA acceleration fabric and low 
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power CPU based processing. 
Figure 2 shows the generic FGPA vision acceleration 

architecture we use. The base architecture includes the 
dual ARM processing section, video input, video pre-
processing, video crosspoint, filters, multi-port access to 
the shared DDR port, and a video output driver for HDMI. 
The Feature processing modules described below were 
added to the “Vision Devices” with access to video 
crosspoint and/or DMA ports to DDR[6]. 

 

 
Figure 2. FPGA block diagram showing video devices in the 
FPGA fabric that accelerates vision algorithms 

 
The hybrid FPGA/ARM architecture also provides the 

capability to perform integrated algorithm verification, 
since the full baseline software algorithm can be executed 
on the ARM. 

3.1. Feature processing acceleration 
There are a variety of articles on feature processing 

implementations in FPGAs such as [7,8]. But most of 
them are related to feature matching, and not the 
applications mentioned in this paper. The D-HCD, R-
HOG feature detector and descriptor and a feature 
matching function were implemented in a Zynq FPGA to 
provide acceleration for a range of applications that 
require large amount of rotation invariant feature matches 
on a low power platform. 

The diagram below shows the sequence of processing 
steps, and the use of shared memory between FPGA and 
ARM processing. The video input is processed in-line for 
image enhancement, filtering (or multi-resolution image 
generation), and HCD. The HCD also computes an 
angle/magnitude image that is used by the feature 
descriptor (HOG). The HOG and MATCH functions 
perform a sequence of accelerations based on a list of 
features (Key Points) to process. Both of these types of 
accelerations require a different data buffering/caching 
mechanism that enables the efficient computations in the 
FPGA. In this implementation, the ARM is also used for 
the HCD tile sorting and Match list generation. 

 
Figure 3. Feature Processing Pipeline. Shared memory facilitates 
acceleration between software and hardware components. 

3.2. Feature Detector 
The feature detector described here is a standard Harris 

Corner Detector (HCD) followed by a tile sort to provide 
an evenly spaced set of features across the image and 
provides target for the maximum number of features used 
for the application. 

The HCD takes as input a video stream and compute 
3x3 gradients for every pixel in-line. This is followed by 
the computation of the corner strength for each pixel, and 
a local maximum suppression function over a 5x5 region, 
and a threshold function. All the features found and then 
stored in memory as a list with image location and 
strength. Note that the 5x5 max-suppress function would 
also require a 4-line buffer with Strength values stored. 
Instead of implementing such a large line buffer, we used 
a 6 line buffer at the input, used multiple gradient, and 
corner strength computations, to provide a 5-line strength 
stream to the 5x5 max detector. 

 

 Figure 4. Functional diagram of the HCD feature detector and 
Angle & Magnitude generator for the feature descriptor. 
 

For our current implementation, the tile sorting is done 
on the embedded ARM without significant loss of time, 
and can be implemented in-line with the HCD output. 

Since the Feature Descriptor requires the Angle and 
Magnitude for the feature region, it is most efficient to 
compute this from the output of the gradient filters and 
store the data in memory for easy retrieval by the feature 
descriptor. It therefor does not require any additional 
processing time for the application.  

3.3. Feature Descriptor 
The feature descriptor implemented is a rotation 

invariant HoG (Histogram of Gradients). The rotation 
invariance is achieved by first computing an angle 
histogram around a selected feature, determining the 
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dominant angle. The feature histogram that follows is then 
normalized for the dominant angle. In this implementation 
we used a 27x27 window to determine the dominant angle, 
and we use a 45x45 window for computing the feature 
vector. These sizes are configurable. The feature vector in 
our case is defined as an angle of 8 bins for 4x4 cells 
around the feature location, generating a vector descriptor 
of size 128. The feature vector is then normalized to 8 bit. 

Since the feature descriptor is computed only for the 
feature list from the detector, the limiting factor is 
accessing the data needed to compute each feature vector. 
We optimized this by using an Angle and Magnitude 
buffer, which is then accessed by the histogram 
computations. The buffer implemented is fast enough to 
implement four parallel angle and feature histogram 
modules with a single buffer. For large images, the 
processing can be performed in vertical image strips. 

 

 
Figure 5. Feature Descriptor diagram. The feature descriptor is 
normalized for the dominant angle computed by the angle 
histogram. The buffer optimizes DRAM access and can support 
four sets of angle and feature histogram modules (4x speed up). 

3.4. Feature Matching 
The feature matching uses L2-norm, with symmetric 

matching, meaning that if the feature A in the reference 
image has a best match to feature B in the inspection 
image, then the best match for feature B in the inspection 
image shall be feature A.  

The amount of feature matches to be computed can 
grow rapidly when the number of keypoints and match 
window increase. For large match sets, the FPGA 
implementation provides a very significant increase in 
processing speed. The example for R-HOG in Section 2 
requires about 100,000 matches per frame. This 
processing speed is mostly limited by data access, and so 
is optimized using efficient pre-fetch. The match sequence 
is either predetermined for optimum performance, or can 
be implemented as part of the matching module by 
providing the keypoint list for each into the data buffer 
with a selected search window size. 

 
Figure 6. Feature Matching module, using buffers for the 
descriptor list and match sequence to provide data fast enough to 
the matching computations. 

3.5. Software architecture 
A key to rapid development of vision applications is the 

leveraging of a software stack to develop robust real-time 
applications. We have implemented a Vision Service 
Architecture for efficient low-latency and/or highly 
parallelized implementation of vision algorithm 
acceleration. A vision service is a C++ class that 
implements a defined image-process function. A Vision 
Service I/O is an image buffer in shared memory, and use 
one or more video devices to accelerate its function. 

 
 

BaseService

StabService

PyrService MeService WarpService

FeatureServiceVinService VoutService

HCDService HOGService MatchService

Figure 7. Vision software stack with service based API 
 

The main objective of a vision service is to provide 
reusable building blocks for rapid development of image 
applications using the common infrastructure shown in 
Figure 7 above. Vision services are parameterized to 
easily support different requirements. For example, 
without changing code, a vision service can support 
different image sizes and formats by setting its parameters 
properly. Parameters may be set via XML configuration 
files at initialization or API functions at run-time. 

As shown in Figure 7, all vision services are derived 
from the BaseService and must implement the common set 
of API functions defined therein. A vision service can 
enclose other vision services. For example the StabService 
in Figure 7 is only a container class providing 
Stabilization interfaces; the actual work is done by 
PyrService (generates image pyramids), MeService 
(estimate motion), and WarpService (warps image). For 
the Feature acceleration we implemented FeatureService. 
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Vision services provide for flexibility.  For applications 
that have dedicated video devices for all functions, vision 
services can be set to keep the obtained video devices for 
the entire time. Some applications share video devices 
between functions. In this case vision services can be set 
to obtain and release devices when needed. 

In addition to flexibility, the services architecture 
provides for optimized streaming based processing, 
minimizing memory accesses, parallelization of video 
functions, and minimization of latency with inline buffers. 
More details are provided in [6]. 

4. Results and application 
The feature processing was implemented and tested on 

a Xilinx Zynq platform, with the FPGA clock at 140 MHz, 
and the ARM clock at 866 MHz. The performance for this 
implementation can achieve 30 Hz throughput for 1080p 
images, > 1000 feature points, and > 100,000 feature 
matches per frame with less than 3 frames latency 

In software implementation on a high-end quad-core 
laptop (Intel core i7, 2.8GHz. 8 cores, ~100W) listed in 
Section 2, achieved about 2Hz for similar parameters 
using the D-HCD and R-HOG (Table 4). So the FPGA 
provides a speedup of 15x and 5x reduction in latency 
using a Z7020 running at < 4W. Latency can be further 
optimized. 

The FPGA utilization for the 7020 and 7045 are shown 
in Table 5 below. The “Infrastructure” represents the 
FPGA acceleration framework shown in Figure 2 above. 

Table 5. FPGA utilization 
Zynq  FF LUTS DSPs RAMB16 

7020 
Feature Modules 21% 45% 64% 54% 
+ Infrastructure 33% 71% 72% 72% 

7045 
Feature Modules 5% 11% 16% 14% 
+ Infrastructure 8% 17% 18% 19% 

 

 
Figure 8. System Block diagram showing camera board stack 
and wireless/wired interface to smartphone device  

We build a complete sensor and processor system, 
leveraging a commercial Zynq Z7020 board (4 x 5 cm,  
< 1 lbs) from Trenz Electronic. Our system also includes a 
sensor and camera board, and a custom carrier board. The 
small form factor facilitates mounting on small aerial 
drones. A smartphone or tablet can be connected 
wirelessly to visualize processed outputs on the ground. 
We have tested the system on actual flight data. 

5. Conclusion 
An efficient FPGA implementation of an algorithm (D-

HCD, R-HOG, matching) for feature-based analysis is 
presented. The approach was found to perform very well 
for 3D scene tracking, multi-modal image registration (e.g. 
LWIR to Visible), object tracking in 3D space, camera 
pose estimation, and 3D structure from motion. The 
algorithms using distributed sampling of feature points 
and rotational invariant descriptors compared favorably 
over a set of common feature detector/descriptor 
algorithms for registering a large sequence of aerial 
imagery. Our hardware implementation achieves 15x 
speedup and 5x reduction in latency over quad core CPU. 
A service-based software layer provides a flexible 
programmer API to use the hardware accelerators. A 
complete hardware system integrating sensor and FPGA 
processors is also presented. The work demonstrates that 
our approach and implementation is highly effective and 
efficient for use in embedded applications. Our 
architecture is designed, verified, and evaluated over real 
aerial data. 
 
References 
[1] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature 
detectors: a survey”, J. Foundations and Trends in Computer 
Graphics and Vision, Vol3, Issue 3, pp177-280, Jan 2008. 
[2] Y. Li, S. Wang, Q. Tian, and X. Ding, “A survey of recent 
advances in visual feature detection”, Neurocomputing, 
149(2015), pp736-751.  
[3] http://computer-vision-talks.com/articles/2011-01-04-
comparison-of-the-opencv-feature-detection-algorithms/ 
[4] https://software.intel.com/en-us/articles/signal-processing-
usage-for-intel-system-studio-intel-mkl-vs-intel-ipp 
[5] http://en.wikipedia.org/wiki/Reprojection_error 
[6] E. Gudis, et al. "An embedded vision services framework 
for heterogeneous accelerators." Embedded Vision Workshop, 
CVPR 2013, pp.598-603. 
[7] Jin Zhao, Sichao Zhu, and Xinming Huang, “Real-Time 
Traffic Sign Detection Using SURF Features on FPGA,” IEEE 
HPEC, 2013 
[8] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro 
Izumi, Hiroshi Kawaguchi and Masahiko Yoshimoto, 
“Architectural Study of HOG feature Extraction processor for 
real-time object detection,” IEEE Workshop on Signal 
Processing Systems, 2012 
[9] Jianbo Shi and Carlo Tomasi. Good Features to Track. 
IEEE Conference on Computer Vision and Pattern Recognition, 
pages 593–600, 1994. 

4cm$

5cm$

Sensor$Board$
Z7020$
Processor$
Board$

Carrier$Board$
with$USB$


