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Abstract

Visual sensing, such as vision based localization, nav-
igation, tracking, are crucial for intelligent robots, which
have shown great advantage in many robotic applications.
However, the market is still in lack of a powerful visual
sensing platform to deal with most of the visual processing
tasks. In this paper we introduce a powerful and efficient
platform, Guidance, which is composed of one processor
and multiple (up to five) stereo sensing units. Basic visual
tasks including visual odometry, obstacle avoidance, depth
generation, are given as built-in functions. Additionally,
with the aid of a well documented SDK, Guidance is
extremely flexible for users to develop other applications,
such as autonomous navigation, SLAM, tracking.

1. Introduction
Intelligent robots possess huge potential in bringing new

elements to people’s daily life, making it easier and better.
Drones (DJI Phantom) expands people’s vision from 2-
D to 3-D. Home robots (iRobot) become companion to
family. Intelligent robots that have small size, low cost,
high maneuverability, and high sensing abilities contribute
to various applications, such as aerial photography, aerial
inspection, precision agriculture.

To achieve intelligence, visual sensing is crucial due
to its relatively low cost and high information throughput.
There have been tremendous works discussing the usage
of visual sensing in intelligent robots. Taking localization
as an example. Visual odometry (VO) estimates the local
motion of robots based on visual features [11, 18, 22].
Simultaneously localization and mapping (SLAM) can be
treated as the extension of VO, which builds a global
map during localization [7, 14]. To handle the intrinsic
issue of unknown and unobservable scale of monocular
SLAM, fusion of inertial measurement and SLAM results
has become a trend [15, 23]. Alternatively, stereo SLAM is
developped [8,17], solving the scale problem with extrinsic
stereo calibration.
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Figure 1: (a) Sensor unit and processor unit of Guidance
and (b) a quadrotor equipped with Guidance.

Vision-based navigation is crucial to achieve collision-
free flight in a complex environment. A 3-D occupancy
map needs to be built to navigate robots through passable
areas [9, 20]. 3-D features points are updated by Extended
Kalman Filter (EKF) in [7], and improved by inverse depth
parameterization in [6]. Bundle adjustment is also used
for mapping in [14]. To reduce the data storage burden
in mapping, multi-resolution Octomap is usually used to
represent the environement map [13].

Vision-based tracking is also one of the key elements that
improve the intelligence of robots. Tracking in video has
been studied for decades [4, 30]. Recently researchers have
studied real-time tracking on robots [21, 24, 28]. However,
existing methods either require depth sensors [21] or rely
on off-board computation [24,28], which increases cost and
decreases reliability.

Despite the growing demand of intelligent control sys-
tems and the rich literature in the visual sensing technolo-
gies, the public available platforms are far from powerful
enough. PX4FLOW [12] is the only purchasable monocular
vision system currently, with a sonar range finder for scale
fusion. However its optical flow computation can only
handle a small resolution of 64 × 64, which limits the
maximum operating range and accuracy. VI-Sensor [27]
is an upcoming stereo vision system with real-time feature
detection and extraction conducted on relatively high reso-
lution. However it only works in one direction. Besides, it
tends to fail in certain circumstances, such as stereo blind
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region, glass windows, water, etc. Other entertainment
level stereo vision systems, such as Microsoft Kinect or
ASUS Xtion, are limited to indoor applications due to their
relatively large size and weight, and the infrared sensors
they use.

In this paper, Guidance, a brand new on-board vision
platform for intelligent robots is introduced. It contains
one processor and up to five Stereo Sensing Units (SSU),
as shown in Fig. 1a. In particular, to compensate for
the failure of vision-based algorithms, an ultrasonic range
finder is coupled with each SSU. The Guidance platform
provides accurate visual odometry in a very wide range, and
obstacle avoidance in almost 360 degrees. A rich categories
of data is output, and a well documented SDK is coupled
with Guidance, such that developing other applications is
extremely simplified.

The remainder of the paper is organized as follows.
Section 2 explores the built-in algorithms and function-
alities of Guidance. Section 3 introduces the detailed
SDK interface. And Section 4 demonstrates some potential
applications based on Guidance.

2. Built-in Features
A complete Guidance system consists of one core

processing module and multiple sensor modules. In par-
ticular, for each sensor module, two mono-color global
shutter cameras with VGA (640 × 480) resolution are
mounted rigidly together with an ultrasonic sensor. And
the core processing module includes a low-cost SOC FPGA
(Altera Cyclone V), inertial sensors (MPU 6050), and able
to connect up to five sensor modules (the recommend-
ed setup is forward, backward, leftward, rightward and
downward, respectively). With careful consideration, the
product definition focuses on two groups of customers: (1)
traditional remote-controlled drone players and (2) robotic
application developers. This section will introduce the
built-in features for consumer-level drones, starting from
the system overview and moving to detailed algorithms
subsequently.

2.1. System Overview

Fig. 1b shows the quadrotor equipped with Guidance,
in which case the players can enjoy GPS-denied hovering
and anti-collision features. Technically, Guidance is in
fact an upgraded version of Zhou et al.’s work [31] which
is a visual mapping solution based on four cameras and
a single processing chip - Altera’s SoC FPGA. The block
diagram of Guidance’s built-in functionalities can be
found in Fig. 2 and will be explained as follows.

The 20Hz image data will be processed by the five sepa-
rated remapping kernels, generating at most 10 undistorted
and rectified images with QVGA (320 × 240) resolution
(although the camera is capable of VGA resolution, we only

Figure 2: The block diagram of Guidance’s built-in
functionalities: the blocks with gray, blue, purple and
green colors stand for system inputs, FPGA-based hardware
kernels, ARM-based software kernels and system outputs
respectively.

capture QVGA image for real-time processing). Then, there
are two threads for image remapping: (1) visual odometer
for the localization system and (2) visual mapping for the
sense and avoid system. In the first thread, FAST [25, 26]
feature detector, BRIEF [5] feature descriptor and local
binary matching are employed for image feature extraction
and association based on the analysis in [31]. The algo-
rithms of motion estimation and multi-sensor fusion will be
discussed in detail later. In the second thread, the dense
local depth map plays the main role. Notice that the stereo-
based block matching module consumes a large amount of
FPGA resource, therefore the multiplexer is used to select
the two most essential stereo pairs for local mapping. The
selection criteria mainly relies on the moving direction of
the drone.

2.2. Algorithms

The built-in algorithms can be categorized into: visual
odometer, visual mapping and multi-sensor fusion. As a
matter of fact, the algorithms for pixel-level processing,
visual mapping and multi-sensor fusion are introduced
in [31]. Here we just want to highlight that the visual
odometer used in Guidance is a hybrid version of an
inertial-assisted stereo visual odometer discussed in [32]
and an inertial-assisted monocular visual odometer which
can contribute whenever the stereo system is invalid.

In Fig. 3, the work flow of Guidance’s built-in visual
odometer is illustrated. The improvements based on [32]
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Figure 3: The flowchart of Guidance’s built-in visual
odometer.

mainly come from the blocks of matching refinement, 2D-
2D motion estimation and metric scale filtering.

2.2.1 Matching Refinement

Unlike the stereo case which can generate depth directly
with the calibrated extrinsic parameters, the depth from
monocular vision relies on the accurate estimated camera
ego-motion, therefore more accurate feature correspon-
dences are required. Based on the matching results using
FAST feature detector and BRIEF feature descriptor, the
non-pyramids Lucas-Kanade Tracker [19] is applied for
matching refinement.

2.2.2 2D-2D Motion Estimation

The 2D-2D correspondences are used for motion estima-
tion during the initialization of monocular visual odome-
ter. Each correspondence can be represented by ci =
{ui,u

′
i}, where u = [u, v, 1]T is the pixel coordinates

in undistorted images. Recall the epipolar constraints
(K−1u′i)

T [t]×R(K−1ui) = 0 where R can be directly
obtained from the on-board inertial sensors and K is
the camera intrinsic matrix which can be calibrated in
advance. Let (K−1u′i)

T = [xi, yi, 1] and R(K−1ui) =

[ai, bi, ci]
T . Normalizing the second translational element

ty = 1 since the absolute scale can not be observed from
monocular vision, a minimal solution (with 2 correspon-
dences) to translation t can be obtained from[
tx
tz

]
=

[
b1x1 − a1y1 c1y1 − b1
b2x2 − a2y2 c2y2 − b2

]−1 [
x1c1 − a1
x2c2 − a2

]
. (1)

The case with multiple correspondences can be easily
extended by solving similar linear equations.

2.2.3 Metric Scale Filter

An extended Kalman filter (EKF) (a modified version based
on Weiss’s work [15,29]) is used to recover the metric scale
from the loosely coupled visual and inertial measurements.
Notice that there exists conditions where some of stereo
odometers are valid and some are not. Therefore the stereo
odometer results should be considered for scale recovery as
well. Let the state vector x defined as below.

x =

vwb
λ

 , (2)

where vw is the metric velocity in the world coordinate
frame, b is the bias of accelerometers and λ is the scale
factor for the monocular odometer.

The time update which comes from the inertial sensors
is written as follows.

xk =

I −∆tR 0
0 I 0
0 0 1

xk−1 +

−∆tRa
0
0


+

R −∆tR
0 I
0 0

[na

nb

]
, (3)

where ∆t is the time period between two samplings, R is
the relative rotation during this time period, a is the reading
from accelerometers with the Gaussian noise na and nb is
the Gaussian noise of accelerometer bias.

The measurement update which comes from the visual
sensors comes as follows.

z =

[
vmono

vstereo

]
=

[
1
2λR

T 0 1
2R

Tvw
RT 0 0

]
x+ nz, (4)

where vmono,vstereo are the visual odometer results and
nz stands for their Gaussian noise.

3. Software Development Kit (SDK)
With the Guidance’s SDK, both raw and processed

data from different sensors can be accessed through the
USB 2.0 interface which is compatible with popular open-
source software platforms: ROS [3], OpenCV [2] and



Table 1: Available data from Guidance’s SDK. Note that
the specifications may change in future versions.

Data Description
Image QVGA resolution
(10 channels) 8-bit grayscale

Undistorted and rectified
Up to 20 Hz

Depth map QVGA resolution
(2 channels) 16-bit depth

Algorithm: OpenCV BM
Up to 20 Hz

Obstacle distance 0.1 - 20 m static range
(5 channels) Fixed 20 Hz
Ultrasound 0.1 - 8 m static range
(5 channels) Fixed 20 Hz
Inertial sensor 3-axis gyroscope

3-axis accelerometer
Synchronized with images
Fixed 20 Hz

Visual odometer Body velocity
Fixed 10 Hz

MAVlink [1]. Meanwhile, sample codes and Guidance’s
Wiki page, which can be found at http://dev.dji.
com, allow developers to get started in a short time.

The detailed information about the available data with
Guidance’s SDK can be found in Table 1. Note that the
detailed specifications may change in future specifications.
The users are encouraged to visit the web page for up-to-
date details. Additionally, besides such rich categories of
accessible data, developers can also enjoy the following
advantages:

• customize the USB data flow within limited band-
width, implying developers can freely adjust the trade-
off between frame rate and channel numbers;

• access to low-speed data (excluding image data and
depth map) via UART, therefore it is convenient to
communicate with off-the-shelf robotic controllers;

• calibrate the camera parameters easily with either the
embedded self-calibration module or the GUI-guided
calibration software on PC;

• change the exposure time of the camera sensors to
either AEC (automatic exposure control) or constant.

4. Applications
In this section, several practical experiments are shown

to demonstrate how drone users and robotic developers can
benefit from Guidance.

Figure 4: The large-scale performance of Guidance’s
built-in visual odometer: the trajectories with blue, red and
pink colors stand for the positional observation from GPS,
stereo visual odometer and monocular visual odometer
respectively. Notice that monocular method is only used
at extremely low and extremely high altitude, therefore the
pink color is only seen in part of the trajectory.

4.1. Autonomous Navigation

With the built-in hybrid stereo/monocular vision odome-
ter and multi-directional observations, Guidance enables
the reliable positional control and anti-collision functional-
ities which are the fundamentals of autonomous navigation.

Fig. 4 illustrates the performance of Guidance’s
odometer in large-scale outdoor environment. The flight
duration is in total 109s and the flight distance is around
300 m with more than 20 m height. The monocular method
is used in both extremely low and extremely high altitude, in
which case stereo method does not have appropriate base-
line, while in the middle stereo method is used. Compared
to the ground truth provided by GPS, the expectation and
standard deviation of the velocity estimation errors using
our algorithm areme = [0.0785, 0.0767, 0.0822]T m/s and
σe = [0.0722, 0.0699, 0.0773]T m/s, respectively. The
detailed rum-time of algorithm blocks are listed in Table
2.

4.2. Visual SLAM

Regarding to SLAM, one of the most important tasks for
intelligent robots [7, 10, 14], Guidance provides accurate
VO results, which is one of the central parts of SLAM, as
well as rectified images of all cameras. The local maps of
VO can be easily accumulated to construct a global map
using either Kalman filter [7] or bundle adjustment [14],
leading to practically visual SLAM results. Alternatively,
a monocular SLAM method can be directly implemented

http://dev.dji.com
http://dev.dji.com


Table 2: Runtime of algorithm blocks.

Block Runtime
Re-mapping N/A

FAST N/A
BRIEF N/A

Pixel-wise Pipeline 2.56ms
Block-based Stereo Match 11.14ms

Feature Matching 2.73ms
Matching Refinement 4.44ms

3D-2D Motion Estimation 1.61ms
2D-2D Motion Estimation 1.09ms

Triangulation 2.11ms
Multi-sensor Fusion 1.27ms

Visual Mapping 8.38ms
Total Runtime 47.34ms

(a) global map

(b) a local map (c) corresponding left view image

Figure 5: RGBD SLAM result generated via Guidance
on a representative scene in outdoor environment.

based on rectified images. Followed by global pose graph
optimization such as g2o [16], a globally consistent map can
be constructed.

Additionally, Guidance is able to provide more reli-
able and precise RGBD SLAM [8,9], due to the availability
of depth map from block matching procedure. As illustrated
in Fig. 5, where RGBD SLAM is performed on a repre-
sentative scene in outdoor environment, the SLAM result
(Fig. 5b) is visually pleasant in reflecting the structure of
real scene in Fig. 5c.

depth map grayscale image

Figure 6: Results of depth based tracking.

4.3. Depth Based Tracking

Recall that Guidance can provide dense depth map
generated by stereo matching, which offers extra useful
information for many implementations. Without loss of
generality, we explore the possibility of depth based track-
ing by Guidance in the following contents.

For ease of implementation, a sample tracking algorithm,
CAMshift [4], is adopted, which uses color histogram to
model the object, and continuously searches for the mode
of the distribution with respect to the color histogram. Due
to the lack of color information in the camera output, a two-
channel pseudo color image is artificially generated using
the grayscale image and its corresponding depth map. Then
a 2-D histogram of the object over the pseudo color image
is computed, followed by the standard CAMshift algorithm.

We evaluate our depth based tracking via Guidance
on a challenging indoor sequence, i.e., the saturated lights
in ceiling have exactly the same pixel intensity as the
object, which tends to induce the failure of traditional pure
grayscale image based tracking. As illustrated in Fig. 6,
with the help of dense depth map, an accurate and robust
tracking becomes possible under the tough case that pixel
intensities are hardly distinguished with each other.

5. Conclusion
Guidance, a brand new powerful visual sensing plat-

form for robotic applications, is introduced in this paper.
In specific, it owns up to five stereo sensing units and one
central processor. The ARM+FPGA architecture ensures
real-time precessing of built-in functions, including visual
odometry, obstacle avoidance, and depth map generation. In
addition, a coupled SDK is developed, providing a flexible
development platform for users exploring various applica-



tions, such as autonomous navigation, SLAM, tracking,
etc. Our implementations show that the complicated vision
based tasks of robots are significantly simplified and eased
with Guidance.
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