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Abstract

Due to their role in certain essential forest processes,
dead trees are an interesting object of study within the envi-
ronmental and forest sciences. This paper describes an ac-
tive learning-based approach to detecting individual stand-
ing dead trees, known as snags, from ALS point clouds and
aerial color infrared imagery. We first segment individual
trees within the 3D point cloud and subsequently find an
approximate bounding polygon for each tree within the im-
age. We utilize these polygons to extract features based on
the pixel intensity values in the visible and infrared bands,
which forms the basis for classifying the associated trees as
either dead or living. We define a two-step scheme of select-
ing a small subset of training examples from a large initially
unlabeled set of objects. In the first step, a greedy approxi-
mation of the kernelized feature matrix is conducted, yield-
ing a smaller pool of the most representative objects. We
then perform active learning on this moderate-sized pool,
using expected error reduction as the basic method. We ex-
plore how the use of semi-supervised classifiers with mini-
mum entropy regularizers can benefit the learning process.
Based on validation with reference data manually labeled
on images from the Bavarian Forest National Park, our
method attains an overall accuracy of up to 89% with less
than 100 training examples, which corresponds to 10% of
the pre-selected data pool.

1. Introduction

Dead wood is known to sustain biodiversity in forest
environments through providing habitat for plants and an-
imals [4]. It also contributes to forest carbon stocks [26]
and serves as a source of coarse woody debris, a factor in
stand succession [6]. For these reasons, carrying out forest
maintenance and management tasks as well as performing
carbon dynamics and biodiversity investigations relies on
the knowledge of the spatial distribution of dead wood, in-

cluding standing dead trees referred to as snags.
Several approaches to the automatic detection of individ-

ual snags from remote sensing data have been proposed. In
[27], the authors first perform a 3D segmentation within the
ALS point cloud in order to produce individual tree clus-
ters. Each cluster is then classified as either dead or liv-
ing using radiometric and geometric features derived purely
from ALS data. An alternative approach [1] relies entirely
on multispectral imagery. An active contour method [10]
is applied to delineate individual tree crowns (ITC) within
the image. They are subsequently classified via features ob-
tained from the available spectral bands (including infrared
channels). Approaches for delineating ITCs specialized for
hyperspectral imagery are also available, e.g. [22]. In a re-
cent study [15], a segmentation of infrared images is con-
ducted with prior information about the specific shape and
appearance of dead trees. A potential problem is associ-
ated with the lack of 3D height information, which leads to
confusing dead trees with patches of roads or open ground
areas having a similar pixel intensity representation within
the image.

The approach presented in this paper is based on a com-
bination of the ALS point clouds with aerial infrared im-
agery. We integrate the good discriminative capabilities of
the infrared channels for distinguishing dead and living veg-
etation [9] with a segmentation procedure that takes advan-
tage of 3D information. We propose a two-step strategy for
detecting individual dead trees. In the first step, similarly
to [27] we segment the 3D point cloud into individual trees.
For each tree segment, we find the corresponding patch in
the georeferenced aerial image. We then extract features
from the patch based on the spectral channel values and per-
form classification into dead or living trees.

In order to efficiently select examples for training the
classifier while taking into account the limited resources
of the human expert, we make use of the active learning
paradigm. In pool-based active learning, the system is given
a pool of unlabeled examples, a small initial training set,
and a classifier family capable of producing a continuous



measure of confidence alongside the class label. The goal
is for the system to iteratively select training examples from
the pool, ask an external ’oracle’ to label them, and retrain
the classifier on the augmented training set. The chosen ex-
amples should be representative of the entire object pool
and carry information which helps the classifier attain a
higher generalization capability. The various active learn-
ing algorithms differ mostly by how they assess the utility,
or ’informativeness’ of the unlabeled samples. For a re-
view of existing methods, see [19]. Active learning methods
have also received much attention within the remote sens-
ing community in recent years. Approaches tailored to the
specific properties of remote sensing data have been devel-
oped. Pasolli et al. [13] propose to combine spectral and
spatial information in a sample selection framework based
on SVMs. Persello et al. [14] consider the cost of labeling
a sample in addition to its informative value, resulting in
a cost-sensitive selection scheme. Tuia et al. [23] perform
a comparative study of active learning methods applied to
remote sensing imagery. In this work, we utilize the algo-
rithm known as expected error reduction [18], which is built
around the idea to pick the sample which mostly reduces the
estimated generalization error on the rest of the unlabeled
pool. The error is approximated by the total entropy of the
posterior class probabilities output by the classifier.

A technique related and somewhat complementary to ac-
tive learning is semi-supervised learning, which attempts
to make use of the unlabeled pool directly (without label-
ing). In this case, standard supervised learning methods are
modified to integrate information about the unlabeled ex-
amples. A number of diverse methodologies exist within
this broad category [2]. In the field of remote sensing,
semi-supervised learning has been explored mainly for op-
tical and multi/hyperspectral image classification (e.g. [8])
as well as segmentation (e.g. [12]). We turn our attention to
entropy regularization methods [5]. This framework allows
to enrich any discriminative classification model with an
entropy term that encodes a preference for decision bound-
aries with classes that overlap as little as possible. The max-
imized function which yields the optimal classifier under
these assumptions is a weighted difference of the likelihood

on the labeled data and the total entropy over the unlabeled
data. The relationship between expected error reduction and
the entropy regularization framework is that the former se-
lects examples based on the minimum total entropy over
posterior distributions, while the latter actively minimizes
this same entropy on the unlabeled set. Therefore, we hy-
pothesize that using an entropy-regularized classifier within
the error reduction framework may lead to faster conver-
gence of the learning process and can thus be seen as a
way of combining the semi-supervised and active learn-
ing paradigms. Note that the idea of combining these two
frameworks is not new (e.g. [24], [29]). In particular, [3]
describes a strategy similar to ours in the setting of learning
the grasping motion of a robot. The authors also employ a
logistic classifier with an entropy regularization term, how-
ever they apply an uncertainty sampling scheme as opposed
to the expected error reduction framework.

We consider the main contributions of this paper (i) the
entire processing pipeline for detecting standing dead trees
from ALS point clouds and aerial infrared imagery as well
as (ii) the idea to use the entropy-regularized logistic regres-
sion classifier with the expected error reduction algorithm
for active learning along with the investigation of its perfor-
mance on this real-life problem. The rest of this paper is
structured as follows: in Section 2 we explain the technical
details of our approach. Section 3 describes the study area,
experiments and evaluation strategy. The results are pre-
sented and discussed in Section 4. Finally, the conclusions
are stated in Section 5.

2. Methodology
The input data for the presented method consists of an

ALS point cloud and a set of corresponding georeferenced
aerial multispectral images resulting from a standard flight.
The spectral bands should contain information which fa-
cilitates distinguishing between living and dead vegetation,
such as the near infrared band. The ALS data can be ob-
tained from either a discrete return or a full waveform sys-
tem. Note that while the radiometric information such as
point intensities and pulse widths is not required, the tree
segmentation algorithm is able to make use of it if available.

Figure 1: Overview of snag detection strategy.



For the aerial images, it is assumed that the exterior cam-
era orientation as well as the camera parameters are known.
The snag detection strategy is composed of two stages. In
the first stage, point clusters associated with individual trees
are found solely based on the 3D point cloud. The next stage
uses the obtained tree segments to calculate approximate
bounding polygons on the image plane and extract features
from the corresponding image patches, thus enabling clas-
sification. The selection of examples for training the classi-
fier is part of our method and is achieved in two steps. First,
an unsupervised pre-selection of training set candidates is
performed based on a greedy approximation of the feature
matrix. Then, we carry out an active learning procedure.
The resulting classifier can be reused for processing new
test plots providing they have similar properties to the orig-
inal input plot. The output of the entire pipeline is the set
of bounding polygons (and associated 3D segments) along
with their classification as either dead or living trees. The
entire processing pipeline is visualized in Fig. 1.

2.1. Dead tree detection pipeline

2.1.1 Individual tree segmentation. In the first step of
the strategy, we start with the raw ALS point cloud. We ap-
ply the single tree segmentation approach by Reitberger et
al. [17]. We chose this method based on our prior investiga-
tions which revealed that performing a segmentation on the
3D point cloud can significantly increase the tree detection
rate in all canopy layers compared to using only the Canopy
Height Model (CHM). This method first determines the lo-
cal maxima of the CHM and regards them as the initial tree
positions. The point cloud is then segmented using the Nor-
malized Cut clustering algorithm [20], based on a point sim-
ilarity function which incorporates spatial proximity, prior
knowledge about tree positions from the CHM and radio-
metric information (if available). As a result of this step,
we obtain subsets of the original point cloud which corre-
spond to individual segmented trees.

Calculating bounding polygons. For each 3D tree seg-
ment, we calculate a corresponding region on the aerial im-
age plane. Since there is usually a large margin of overlap
between neighboring aerial photographs, the same area is
represented in more than one image. To minimize perspec-
tive distortion, we pick the image whose center is closest to
the planimetric centroid of the segment’s points. The con-
vex hull of the points projected onto the image is then cal-
culated, yielding an approximate bounding polygon for the
tree. An example 3D segment and its associated polygon
are depicted in Fig. 2.

2.1.2 Feature extraction. The availability of the bound-
ing polygon makes it possible to define features at the object
(tree) level, as opposed to only the pixel level. Specifically,

(a) (b) (c)

Figure 2: Projecting 3D points onto image. (a) Tree point
cloud - side view, (b) Tree point cloud - top view, (c) Pro-
jected points and bounding polygon.

we utilize the per-channel intensity means of pixels inside
the polygon as well as their cross-channel covariance ma-
trix. At this stage, it is also possible to include LiDAR-
derived features such as the ones used in [27], e.g. mean
point intensity/pulse width, tree geometry, and gap frac-
tion, as well as properties associated with the shape of the
bounding polygon itself. However, our preliminary inves-
tigations indicated that introducing these auxiliary features
does not significantly bolster the discriminative capabilities
compared to pure image features.

2.1.3 Classification. We apply logistic regression [7] to
classify the bounding polygons as either dead or living trees
based on the features discussed in Sec. 2.1.2. This choice is
motivated by several factors. First, the active learning ap-
proach which is used in this work relies on retraining the
classifier a vast number of times. Fortunately, the opti-
mization objective associated with training a logistic regres-
sion model is convex in the model weights and amenable to
solving via the iteratively reweighted least squares method,
which results in feasible computation times. Furthermore,
the aforementioned convexity makes it easier to optimize
the entropy-regularized variation of the classifier through
deterministic annealing (see Sec. 2.3.2). Finally, although
we deliberately perform the investigation using ordinary lo-
gistic regression on a small feature set for performance rea-
sons, the methods presented in this work are easily gen-
eralizable to a kernelized model, which is known to pro-
duce classification performance on par with state-of-the-art
methods such as the Support Vector Machine (see [28]).

Logistic regression. Let xi ∈ X , i = 1..N denote N d-
dimensional feature vectors of training examples and yi ∈
{0, 1} their corresponding binary labels. The conditional
mean E(Yi|xi) of the decision variable given the features
is equal to the probability that object i has the label 1. The



logistic regression model relates the conditional mean to a
linear regressor of the features through the logistic function:

E(Yi|xi) = P (Yi = 1|xi) = (1 + exp(−(β0 + βxi)))
−1

(1)
Training the model amounts to maximizing the joint log-
likelihood of the training examples with respect to the
weights θ = (β0, β). Let gθ(xi) = P (Yi = 1|xi; θ):

`(θ) =

N∑
i=1

lnP (Y = yi|xi; θ)

=

N∑
i=1

yiln[gθ(xi)] + (1− yi)ln[1− gθ(xi)]

(2)

The log-likelihood function in Eq. 2 can be optimized using
iteratively reweighted least squares (IRLS) updates:

θk+1 ← θk + (XTWX)−1XT (y − p) (3)

In the above, p denotes the vector of probabilities from the
previous iterations: pi = gθk(xi), X is the row-wise ma-
trix of object feature vectors xi with a prepended column
of ones to account for the intercept term β0, and W is a
diagonal matrix with Wii = pi(1− pi).

2.2. Pre-selecting training candidates

In a large area application of our method, we expect a
vast number of initial unlabeled objects. Our active learn-
ing method of choice (Sec. 2.3.1) requires significant com-
putational effort and cannot be realistically applied to the
unfiltered data pool. Therefore, we introduce the candi-
date pre-selection step for the purpose of reducing the in-
put object set for the active learning procedure to a feasi-
ble size from a computational complexity perspective. The
authors list random sampling as a possible pre-selection
method [18]. However, our target class (dead trees) is quite
rare in the data (below 10%) and hence random sampling
could potentially fail to capture its entire variability. In-
stead, we apply a greedy and unsupervised method for se-
lecting the most representative objects based solely on their
properties in the feature space. Specifically, we make use
of the sparse greedy matrix approximation technique devel-
oped by Smola and Schölkopf [21]. This method starts with
the design matrix K = (K)ij = k(xi, xj)i,j∈1..N . The
elements of K are essentially the distances between fea-
ture vectors measured by the semi positive-definite kernel
k which itself defines a reproducing kernel Hilbert space.
The objective is to find a matrix K̄ of lower rank such that
K̄ = KPS is similar to K, where PS is a matrix that
projects K into the subspace S defined by the m largest
eigenvalues of K. It is possible to obtain a good approxi-
mation if the m � N largest eigenvalues account for the
vast majority of the variance present in the data. This cor-
responds to the situation where a small subset of examples

from the dataset contains almost all information about the
entire pool. More formally, we are interested in finding a
matrix K̄ such that the Frobenius norm of the residual ma-
trix is minimized:

||K̄ −K||2Frob =

N∑
i,j=1

(K̄ −K)2ij (4)

This approximation will be done in a greedy fashion, where
we iteratively pick a column Ki from K according to an
evaluation criterion, orthogonalize the remaining columns
on Ki, and check for convergence in the residual sum
(Eq. 4). These ideas are formalized by Alg. 1.

Algorithm 1 Greedy matrix approximation

1: function GREEDYAPPROX(K, ε)
2: n← 0, I← {},T← 0
3: repeat
4: n← n+1
5: M← random sample of m columns 6∈ I
6: in← PickBestColumn(M,K,T)
7: I ← I ∪ in
8: T ← ProjectOutColumn(K,T,in)
9: res← BoundResiduals(K,T)

10: until res < ε
11: return n,T,I,res

Let K̄i denote the approximation of the ith column ofK.
Using the expansion coefficient matrix T , we can write:

K̄i =

n∑
j=1

Ki(j)Tji (5)

The Frobenius norm (Eq. 4) can be expressed in terms of
the column residuals:

||K̄ −K||2Frob =

N∑
i=1

||Ki − K̄i||2 (6)

At each step n, the evaluation criterion of a column j corre-
sponds to the reduction in residuals which takes place when
we pick j: Q(j) = ||K − K̄I ||2frob − ||K − K̄I∪{j}||2frob
Because we are removing the contribution of every picked
column by projecting it out of all remaining columns, we
are effectively working with column residuals. Therefore,
we can write the optimal new residuals sum (when choosing
column j) as:

N∑
i=1

||Ki − K̄I∪{j}
i ||2 =

N∑
i=1

||Ki − K̄I
i − ti(Kj − K̄I

j )||2

(7)



The coefficient ti in the above can be determined using the
fact that in Hilbert spaces, orthogonal projections are opti-
mal. It follows that (< ·, · > denotes the inner product):

ti = ||Kj − K̄I
j ||−2 < Ki − K̄I

i ,Kj − K̄I
j > (8)

Putting Eqs. 7 and 8 together, we can write the final form of
the evaluation criterion Q(j):

Q(j) = ||Kj − K̄I
j ||−2

N∑
i=1

< Ki− K̄I
i ,Kj − K̄I

j >
2 (9)

We execute Algorithm 1, iteratively picking the column
which attains the highest value on the criterion given by
Eq. 9 and calculating the residuals using Eq. 6. We use a
standard Gaussian kernel with bandwidth parameter σ equal
to the mean inter-sample distance to transform our input
feature vectors into the design matrix. As an output of the
algorithm, we obtain a list of the indices of the most repre-
sentative objects in the unlabeled pool.

2.3. Active learning

2.3.1 Expected error reduction. As previously stated,
the principal role of an active learning system is to itera-
tively select the most informative example from an input
data pool for labeling by the oracle. An appealing and theo-
retically well-founded strategy for performing this selection
is the expected error reduction (EER) criterion, introduced
by Roy and McCallum [18]. To specify this method, we
first assume a probabilistic setting in which the classifier
must learn an unknown conditional probability distribution
P (Y |x) of the class labels given the object features. To this
end, the classifier is given an initial labeled training pool T
and a large pool U of unlabeled examples. Let P̂T (Y |x) de-
note the learned distribution. Moreover, define the expected
error of the classifier:

E(P̂T ) =

∫
L(P (Y |x), P̂T (Y |x))P (x)dx (10)

In Eq. 10, L indicates a loss function which quantifies the
cost or loss associated with the discrepancy between the
true and learned distributions. One of the more popular loss
functions is the log-loss (assuming binary classification):

L(x) = −[P 1(x)ln(P̂ 1
T (x)) + (1−P 1(x))ln(1− P̂ 1

T (x))]
(11)

In the above, P 1(x) = P (Y = 1|x). The log-loss is thus
equivalent to the cross entropy between distributions P and
P̂T . Note that average cross entropy is the effective log-
likelihood function for logistic regression (cf. Eqs. 2, 11).
In order to calculate the classifier error (Eq. 10), the knowl-
edge of the true probability distribution P is necessary. Evi-
dently, this information is usually not available during train-
ing. The EER algorithm circumvents this problem by mak-
ing two simplifying assumptions. First, it only estimates

the expected error on the pool U as opposed to the entire
domain X . Also, it approximates the true distribution P
with the currently trained classifier’s estimation P̂T . In this
setting, the estimated expected error can be written as:

E(P̂T ) = − 1

|U |
∑
x∈U

∑
y∈{0,1}

P̂T (y|x)ln(P̂T (y|x)) (12)

Therefore, the expected error is effectively approximated
using the entropy of the posterior class label probability of
the classifier. The EER method proceeds in a greedy iter-
ative fashion, at each iteration picking the example x∗ for
which the error estimate P̂T∪(x∗,y∗) is the smallest. Since
the actual label y∗ is not known, EER takes the expecta-
tion of the estimated error weighted according to the current
classifier’s posterior (Eq. 13). The entire EER procedure is
detailed by Alg. 2.

e(x) = P̂T (1|x)E(P̂T∪(x,1))+P̂T (0|x)E(P̂T∪(x,0)) (13)

Algorithm 2 Expected Error Reduction

1: procedure EER(T, P, U)
2: while |T | < nmax do
3: (c, P̂T )← trainClassifier(T)
4: for x ∈ U do
5: for y ∈ {0, 1} do
6: (c′, P̂ )← trainClassifier(T ∪ (x, y))
7: e(x)← e(x) + P̂T (y|x)E(P̂ )

8: x∗ ← argmin e(x)
9: T ← T ∪ (x∗, y∗), U ← U \ {x∗}

Entropy can be seen as a measure of uncertainty in the
posterior, therefore EER tends to select examples which in-
crease the classifier’s confidence in its decisions, i.e. shift
the posterior probabilities towards the extreme values of
0 and 1. The considerable effort of constantly retraining
the classifier is mitigated by our example pre-selection step
(Sec. 2.2) as well as the choice of using logistic regression.
Finally, note that we used bagging to reduce the variance
of the posterior probability estimates as suggested by the
authors.

2.3.2 Entropy regularization. The entropy regulariza-
tion framework, introduced by Grandvalet and Bengio
[5], is an implementation of the semi-supervised learning
paradigm which allows to include unlabeled data into a dis-
criminative classification model. The core idea is to bias
the model to favor a decision boundary within a low-density
area of the feature space, thus resulting in a possibly clear
class separation. This is motivated by the fact that the in-
formation content of unlabeled samples decreases with an
increasing overlap between the classes. The authors employ



the standard Shannon entropy conditioned on the features x
as a measure of class overlap:

H(Y |X) = −
∫ ∑

i∈{0,1}

ln[P (Y = i|x)]P (Y = i, x)dx

(14)
To avoid explicit modeling of the joint probability P (y, x),
the sample average over objects in the unlabeled pool is
plugged into Eq. 14, resulting in an ’empirical’ entropy:

Hemp(Y |X) = − 1

|U |
∑
x∈U

∑
i∈{0,1}

P (i|x)ln[P (i|x)] (15)

The entropy term defined by Eq. 15 may be applied as a
regularizer to any posterior distribution model:

C(θ, λ;T,U) = `(θ;T )− λHemp(Y |X;U) (16)

The new optimization objective is therefore a sum of the
original model’s log-likelihood function on the (labeled)
training set and the negated entropy on the unlabeled pool.
The coefficient λ controls the influence of the entropy term
and is usually determined empirically. We use the afore-
mentioned logistic regression classifier (Sec. 2.1.3) as the
basic model. Unfortunately, the function C is no longer
convex in θ, therefore local maxima may occur. To remedy
this, we follow the authors’ suggestion and apply the de-
terministic annealing expectation-maximization algorithm
[25]. This approach implements an annealing process us-
ing an analogue of temperature T = 1− λ. The function C
is made convex by assigning soft labels (probabilities) to all
objects in the unlabeled pool. These probabilities are influ-
enced by the inverse of the current temperature β = 1/T :

ysoft(xi; θ) =
gθ(xi)

β

gθ(xi)β + (1− gθ(xi))β
(17)

Starting at a high temperature T = 1, the log-likelihood
term dominates in the function C. As the temperature is
gradually decreased, the entropy term gains influence until
the desired tradeoff (λ coefficient) is achieved. This final
state corresponds to a local minimum of C(θ, λ). At every
temperature level, the convex logistic regression subprob-
lem is solved iteratively by updating the weights θ accord-
ing to the IRLS algorithm (Eq. 3) until convergence.

2.3.3 Error Reduction with Entropy Regularization.
Comparing Eqs. 12 and 15, we see that both expected error
reduction and entropy regularization rely on entropy of the
classifier’s posterior on the unlabeled data pool. Although
the former uses it as an estimate of the expected error, and
the latter perceives it as a measure of class overlap, both
framework seek to minimize this quantity. We hypothesize
that using an entropy regularized classifier, which actively
attempts to minimize the unlabeled pool entropy, with the
EER framework could benefit the learning process.

3. Experiments

3.1. Material

The basis for testing our approach was a 1x1 km plot
located in the Bavarian Forest National Park (49◦3′19′′ N,
13◦12′9′′ E), which is situated in South-Eastern Germany
along the border to the Czech Republic. The study was
performed in the mountain mixed forests zone consisting
mostly of Norway spruce (Picea abies) and European beech
(Fagus sylvatica). The dead wood originated from an out-
break of the spruce bark beetle (Ips typographus) in re-
cent years [11]. Color infrared images were acquired in
the leaf-on state during a flight campaign carried out in Au-
gust 2012 using a DMC camera. The mean above-ground
flight height was 1900 m, corresponding to a pixel resolu-
tion of 20 cm on the ground. The images contain 3 spec-
tral bands: near infrared, red and green. The airborne full
waveform ALS data were acquired using a Riegl LMS-680i
scanner in July 2012 with a nominal point density of 30-40
points/m2. The pulse rate was 266 kHz. The flying altitude
of 650 m resulted in a footprint size of 32 cm. The collected
full waveforms were decomposed according to a mixture-
of-Gaussians model [16] to obtain a 3D point cloud.

3.2. Preparation of data

To mimic a real-world application in which the selection
of training data is part of the problem, we did not pick an
explicit test and training set. Instead, we first segmented
the entire 1x1 km plot and extracted the image features for
all polygons as described in Secs. 2.1.1-2.1.2. This resulted
in ca. 44000 unlabeled polygons corresponding to single
trees. We then performed two independent runs of the infor-
mative example selection strategy (Sec. 2.2), obtaining two
subsets of polygons, referred to as dataset A and dataset B.
Finally, for comparison purposes, we also created dataset
C through random sampling. Each of the 3 datasets con-
tains 1000 polygons. Fig. 3 depicts an aerial photograph
with sample marked projected polygons.

(a) (b)

Figure 3: Polygons obtained from projecting 3D segments
onto color infrared aerial image - (a) snag, (b) living tree.



3.3. Reference data and evaluation

We manually labeled all of the polygons in datasets A,B,
and C using visual interpretation. To evaluate classification
performance, we use the standard measure of overall accu-
racy, defined as the ratio of correctly classified objects to
the size of the test set.

3.4. Detailed experiments

Effect of pre-selection. We investigate the effect of ap-
plying the informative training candidate strategy (Sec. 2.2).
To do this, we train the classifier on subsets of each dataset
and test it on the other two. We are interested in observ-
ing whether the classifier trained on the randomly sampled
dataset C will prove inferior.

Semi-supervised learning performance. Here we con-
cern ourselves with the classification performance of the
entropy-regularized logistic classifier (Sec. 2.3.2). In par-
ticular, we want to find out if the semi-supervised version
offers an improvement over the standard classifier. We re-
port the classification accuracies on the entire dataset at var-
ious counts of the labeled instances which the classifier has
access to, averaged over 100 random initializations.

Active learning performance. Finally, we examine the
active learning performance for the proposed method
(Sec. 2.3.3), compared to the original EER method as well
as random sampling (RS). The algorithm starts with an ini-
tial training set of 4 positive and 4 negative examples and
is given dataset A as the unlabeled pool. The active learn-
ing is performed for all methods up to a training sample
count of 100, with dataset B used for testing. The results
are averaged over 30 random initializations of the training
set. In this experiment, in order to avoid biasing the results
by class imbalance, the counts of positive and negative ex-
amples were made equal in each pool by removing excess
negative examples.

4. Results and discussion
We address the performance of the pre-selection method.

First, it should be noted that the pre-selection procedure
significantly altered the class proportions in the datasets.
While the randomly selected set C contained 7.6% dead
trees, sets A and B nearly tripled this value to respectively
21.4% and 22.2%. This indicates that although the dead
trees occur less frequently, they are more diverse in appear-
ance than the living vegetation. For each dataset, we trained
the logistic regression model on 50 random samples of 100
objects, and tested the classifiers on the other two datasets.
The averaged results are shown in Table 1. We see that when
the classifier is trained using datasets A and B, a loss of
only 1-3 percentage points (pp) with respect to the baseline

PPPPPPPPTrain
Test

Dataset A Dataset B Dataset C

Dataset A 0.88 0.86 0.95
Dataset B 0.87 0.89 0.96
Dataset C 0.76 0.80 0.97

Table 1: Cross-dataset classification accuracy after pre-
selection filter. Rows correspond to the training, columns
to the test dataset (diagonal values from cross-validation).

cross-validation performance on the test set is observed. On
the other hand, when training on dataset C, the deviations
are now within 9-12 pp. This suggests that compared to the
pre-selection method, RS extracted less information from
the unlabeled pool about the variability of the target class’s
appearance. We drop dataset C from further analyses.

We now turn to the semi-supervised learning experiment.
Fig. 4 depicts the averaged classification accuracy of the
baseline LR and entropy-regularized LR models as a func-
tion of labeled training set size. The accuracy is always
computed on the part of the dataset which is not labeled at
the given step. For each size on the horizontal axis, a new
training set is randomly sampled. Since the results are sim-
ilar for both test sets, we only present the curve for dataset
A. As expected, the impact of the unlabeled examples is
greatest for small training set sizes, providing up to 10 pp
gain over LR with 6 training examples. As the system ob-
tains more labeled objects, the significance of the entropy
term gradually vanishes since the classifier is able to gen-
eralize better using the newly added training items. The
semi-supervised approach outperforms the baseline method
for training set sizes of 5-20 elements, and therefore we hy-
pothesize that it could also benefit the active learning dur-
ing the first few iterations. Regarding the active learning
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Figure 4: Average performance of logistic regression (LR)
and its semi-supervised variation (ER-LR) on dataset A.

experiment, we considered two versions of integrating en-
tropy regularization with error reduction (ER-ER). On the
’deep’ level, the regularized classifier was used in Alg. 2
both in the external loop (line 3) and for the internal re-



training when assessing the expected errors (line 6). On the
’shallow’ level, it was used only in line 3, while the inter-
nal loop employed the standard LR model. Fig. 5 shows the
learning curves for all tested active learning methods. Both
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Figure 5: Average performance of active learning. ER refers
to error reduction, while ER-ER denotes error reduction
with entropy regularization: (d)eep and (s)hallow version.
Semi-supervised ER-LR curve provided for comparison.

ER-ER methods outperform standard ER and RS for up to
23 training examples. This agrees with our expectations ac-
quired from the semi-supervised experiment, because this
is the training set size for which the influence of the unla-
beled data term is strongest in the regularized classifier. For
larger training sets, the performance of the ER-ER methods
diverges: the s variant’s becomes virtually identical to that
of standard ER, while d’s degenerates to RS levels. This in-
dicates that the gain is mostly due to the improvement of the
classifier through introduction of the unlabeled data, but the
entropy-based selection criterion does not benefit from the
classifier minimizing its entropy. For two classifiers c1, c2,
the fact that c1 was able to attain a lower entropy than c2 on
the unlabeled set U at its local maximum of the entropy and
likelihood sum with fixed λ (Eq. 16) is not a good predictor
for c1 actually having a better accuracy than c2 on U . This
could be due to the fact that for a fixed λ, the resulting so-
lutions of Eq. 16 for different training sets may not be com-
parable since they are trading off different log-likelihood
values for reducing the entropy. In other words, the points
of equilibrium between log-likelihood and entropy are not
’objective’ in the sense that we can always adjust the λ coef-
ficient to trade a little bit more of one for the other. A strat-
egy which could help alleviate this problem is to instead
try to minimize the entropy with a hard constraint stating
that the log-likelihood may not decrease by more than ε%
with respect to the original value obtained from the pure
LR classifier (without the entropy term). On the whole, the
gain of the ER methods over RS is moderate (2-4 pp), per-
haps because the unlabeled pool was already biased towards
informative examples through the greedy pre-selection step.

Finally, we compare the performance of our entire de-
tection pipeline to existing methods. Yao et al. [27] used

the same approach for segmenting trees in the ALS data,
therefore comparing their reported classification accuracy
of 73% to our rate of 89% indicates that features derived
from infrared imagery are more discriminative for this task
than pure LiDAR features. In light of Bhattarai et al.’s result
of 81% [1], the gain of 8 pp. can perhaps be attributed to the
used classifier and additional image channel covariance fea-
tures. Comparison to Polewski et al. [15] is more difficult,
because in that work reference polygons independent of
the detection procedure were used. In contrast, our perfor-
mance metrics are with respect to the polygons delineated
by the tree segmentation algorithm. Therefore, errors intro-
duced by over/undersegmentation carried over from the tree
delineation step are not reflected in the accuracy. We were
not able to quantify this erroneous segmentation influence
due to lack of objective ground truth data.

5. Conclusions
We presented a method for detecting standing dead trees

using ALS point clouds combined with aerial infrared im-
agery. This two-step approach first segments individual
trees in the 3D point cloud, and subsequently projects each
individual tree’s points onto an infrared image. The convex
hull of the projected points serves to extract the relevant
image region and derive features for classification. We then
proposed a two-tiered scheme for selecting training sam-
ples. The first stage is based on the greedy approximation of
the kernelized feature matrix and does not require user inter-
action. We found that this method was able to identify infor-
mative examples more reliably than random sampling (RS),
accounting for up to 12 percentage points (pp) of difference
in performance. We observed that for kernel bandwidth val-
ues σ in the range between the average inter-sample dis-
tance µ and the average nearest-neighbor distance, the class
distribution of the selected examples was stable. The farther
the distance between σ and µ, the less snag examples were
selected. In the second stage, we proposed an active learn-
ing procedure based on expected error reduction (ER), en-
riched with a semi-supervised classifier model. The overall
gain from standard ER over RS was between 2-4 pp, how-
ever the introduction of the semi-supervised classifier re-
sulted in enhancing the classification rate by up to 10 pp for
small training sets. Our dead tree detection pipeline is able
to achieve an overall accuracy of 89% using fewer than 100
training examples, which constitutes 10% of the data pool.
As a future direction, we would like to evaluate the method
using reference data independent of the 3D segmentation
algorithm. Also, it would be interesting to find better ways
to exploit the interaction of entropy minimization between
ER and the entropy-regularized semi-supervised model. Fi-
nally, an assessment of the proposed active learning strategy
on other types of remote sensing data could shed more light
on its utility.
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