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Abstract

Persistent Scatterer Interferometry is a well established
method for subsidence monitoring of buildings especially
in urban areas. Even though the very high resolution of
current SAR missions allow for ground resolutions of some
decimeters, the assignment of Persistent Scatterers to single
parts of buildings is not well investigated yet. We present a
new approach how to incorporate optical oblique imagery
to assign Persistent Scatterers to their presumed correspon-
dences in the optical data in order to establish a link be-
tween Persistent Scatterers and single structures of build-
ings. This is a crucial step for advanced subsidence moni-
toring in urban ares. The centerpiece of the presented work
is a measure which quantifies the quality of the bipartite
matching between single Persistent Scatterers and their cor-
respondences at a regular lattice in the optical data. The
applicability of our approach is presented in two exemplary
case studies.

1. Introduction
Synthetic Aperture Radar (SAR) is the principal source

for weather and sunlight independent remotely sensed infor-

mation about the earth. Especially the analysis of time se-

ries offer indispensable insights into the movement charac-

teristics of urban areas and provide the basis for monitoring

tasks at the scale of some mm per year. Persistent Scatterer

Interferometry (PSI) considers only temporally stable and

dominant scatterers which are often induced by man made

structures like window corners or balconies [6]. Those

structures form trihedral corners which directly retroreflect

the signal back to the sensor. For modern SAR sensors

like TerraSAR-X a side length of some cm of such trihe-

dral reflectors is sufficient to induce very strong and easily

to detect Persistent Scatterers [3]. Even though the reflec-

tion properties for simple geometric forms are understood in

satisfying detail and can also be simulated [1], the PSI pro-

cessing is still an opportunistic method. To use it system-

atically for reliable applications like, for instance, building

monitoring in subsidence areas, the scattering mechanisms

have to be understood in more detail.

In this paper, we present a method how to incorporate an

additional source of information to gain more knowledge

about Persistent Scatteres (PS) at facades. Since the assign-

ment of single PS to their correspondences in optical im-

agery is very complicated due to the quite different sensing

characteristics, we exploit the regular alignment of windows

at facades and establish the link to optical oblique imagery

of the same buildings on the basis of lattices representing

the facade. Since the imaging geometry of optical oblique

imagery is also capturing the facades of buildings it lends

itself as a reference to find correspondences of Persistent

Scatterers. In contrast to point-wise targets as the result of

PSI, the image offers two-dimensional extensive informa-

tion about the direct neighborhood of a Persistent Scatterer

which can easily be analyzed. Our aim in this paper is rather

to establish this relationship than performing an exhaustive

interpretation of the behavior of PS at facades. We formu-

late the assignment of PS to the equivalent parts of the im-

age as finding an maximal bipartite matching considering a

problem specific matching distance measure. A quantified

measure of the matching quality is derived and allows for

a qualified interpretation of the fused result. We also give

two examples for the applicability and interpretability of the

presented approach.

To make a reliable statement about the localization ac-

curacy of PS in optical images one has to take into account

the anisotropic error budget of the SAR sensor. While the

range and azimuth direction can be determined within cm

accuracy, the third coordinate, i.e. elevation direction, can

only be determined within some decimeter accuracy for typ-

ical sensing configurations [2]. This leads to strong correla-

tions between the coordinates when transferred to a global

reference coordinate system. We also show how the con-

sequences of this anisotropic behavior can be mitigated by

incorporating prior knowledge about the distribution of PS

at facades.
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1.1. Related Work

An overview over applications of PSI with a focus on

subsidence monitoring of urban areas is given in [5]. There

are many approaches to fuse SAR data with optical im-

agery. The joint data analysis is mostly done using time

series to classify land cover, e.g. [4], [17]. [16] uses line

features in SAR and optical nadir images to establish the

correspondence. First investigations regarding the regular-

ity of Persistent Scatterers at building facades are presented

in [15]. Instead of lattices only horizontal lines of PS were

considered. The benefit of grouping PS for their common

height is derived. We continue this approach and expand

it to group all three coordinate directions instead of only

one. The approach proposed in [8] incorporates three di-

mensional building models which are derived by densely

matched images from an UAV to evaluate the localization

accuracy of PS at facades. Our approach aims at a similar

direction but explicitly exploits the regular alignment of PS

at facades.

1.2. Model based data matching

To jointly describe data originating from two physically

and geometrically different sensors a common reference

system and data representation is necessary. We apply a

model which can be implicitly described by four fundamen-

tal assumptions which are stated in the following.

1. All PS at a facade are situated in a plane. We exploit

the every day experience that facades can usually be

approximated by planes. This holds for the majority of

facades in densely developed city centers with many

office and other high-rise buildings.

2. The optical image and the projection into it is seen
as accurate reference. We assume the optical imagery

as free from errors. Also the projection from three-

dimensional object coordinates into the image is mod-

eled to be errorless. The accuracy of a projected point

is therefore governed solely by the positioning error of

the PS in object space.

3. PS at the facade are induced by the same, repetitive
geometric structure and their appearance in an op-
tical image is the same. The appearance of the neigh-

borhood in the optical image is the same for every PS

belonging to this regular pattern at the facade.

4. The geometrical structure causing the PS is visible
in the image. To adduce the image as an additional

source of information in the process of understand-

ing the physical nature of PS, the part of the facade

structure causing the PS has to be visible in the image.

More precisely, the structure has to be distinguishable

from the background in terms of a high contrast or a

specific outline. Since oblique imagery is usually cap-

tured with a camera system pointing at all four cardinal

directions, the facade should be depicted in at least one

image.

Instead of dealing with every PS separately we consider

sets of PS as representations of facades objects. According

to our model the set of PS belonging to one facade can be

described as a lattice

L := {a · t1 + b · t2 + t3}
with: [0, aU ] := {a ∈ N|a ≤ aU}

[0, bU ] := {b ∈ N|b ≤ bU}
(1)

where t1 and t2 are the lattice spanning vectors defining the

spacing and direction of consecutive points along the hori-

zontal and vertical alignment direction of facade structures.

t3 can be interpreted as the origin of the lattice. The repeti-

tions are reflected in the natural numbers a and b (including

0) which are bounded by the upper limits aU and bU .

1.3. Bipartite matching

As we are interested in the correspondences for all PS

at a facade in an optical image we aim at establishing an

one to one assignment between the PS and the point-wise

representation of PS inducing geometrical structures in the

image. In other words, one has to ensure that no two PS

are assigned to the same lattice node or vice versa. This as-

signment problem can be formulated as finding the maximal

matching in a bipartite graph G = (V,E) where the PS and

the nodes of a lattice representing the regularity in the image

are two disjoint groups of vertices: V = {P,L}, P ∩L = ∅
where P denotes all PS projected into the oblique image

and L are the lattice nodes defined by (1). The weighted

edges E = P × L correspond to the assignment of the PS

and lattice nodes adjacent to these edges. A matching is a

subset M ⊆ E of edges between P and L where no ver-

tex is adjacent to more than one edge. This ensures the one

to one correspondence. A maximum matching means that

as many edges as possible between P and L exist. Such as-

signment problem is a standard task in combinatorial theory

and can be exactly solved by the Hungarian algorithm [12].

Figure 1 shows the basic principle of bipartite graph match-

ing. The matching result is marked with thick lines. Note

that usually the proposed lattice L consists of more points

than PS, thus, |L| > |P | and, therefore, many lattice points

stay unmatched while all PS are assigned to lattice points.

2. Data Preprocessing
In order to reference Persistent Scatterers to optical

oblique images both data types have to be transferred into

a single reference system. Following assumption (2) we

consider the oblique image as the reference and the pro-

jection of a three-dimensional object coordinate into it as
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Figure 1: Principle of bipartite matching. On the left hand

side all |P | Persistent Scatterers are sketched as one part of

the bipartite graph. The lattice nodes L1 to LM form the

other part. Among all possible |P | × |L| edges (depicted as

thin lines) the biggest possible subset yielding the smallest

sum of edge weights is the solution of the bipartite matching

(marked as thick lines).

error-free. Furthermore, it is well known that the two-

dimensional SAR image coordinates range and azimuth are

orders of magnitude more precise than the third dimension,

elevation. The regular distribution of PS in terms of reg-

ular patterns can therefore better be captured in the SAR

domain.

Consequently, our aim for the data preprocessing is, on

the one hand, to extract topology information from the Per-

sistent Scatterers in the SAR domain and, on the other hand,

to transfer them and their covariance matrix into the image

space.

2.1. Improving the PS positioning accuracy

Given a set of Persistent Scatterers in range and azimuth

coordinates as well as in geocoded world coordinates we

first segment them into single facades. In order to do so,

the normal of the local plane through the 10 nearest neigh-

bors at every PS is clustered to distinguish different facade

orientations. To further separate facades of the same orien-

tation the mutual Euclidean distance is used assuming that

the difference between points belonging to the same facade

is smaller than the distance between PS of different facades.

The procedure is inspired by [14] and the reader is referred

thereto for more details.

A single two-dimensional SAR acquisition has the coor-

dinate axis corresponding to the flight direction of the satel-

lite (azimuth) and the sensing direction (range). The accu-

racy of these two SAR coordinates is largely determined by

the sensing hardware. Using a stack of acquisitions allows

for resolving the third coordinate direction (elevation), how-

ever, with a notably worse accuracy. The experiments in

this paper are conducted on a set of Persistent Scatterers de-

rived from a stack of N = 54 TerraSAR-X High-Resolution
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Figure 2: Sketch of the plane projection procedure. The

PS marked in green is projected onto the robustly estimated

plane (shown in blue) along the elevation direction.

Spotlight acquisitions. According to the parameters of the

stack we yield lower bounds for the theoretical localization

precision in the SAR domain ([3]) of

σaz ≈ 0.55√
SNR ·N · ρaz = 0.020m

σrg ≈ 0.55√
SNR ·N · ρrg = 0.035m

σel ≈ λR

4π · √2 SNR ·N · σB

= 0.6m

(2)

where SNR denotes the signal-to-noise ratio of a dominant

scatterer with respect to the surrounding clutter, R the dis-

tance from sensor to the object, σB the standard deviation

of the perpendicular baseline of the acquisitions, the wave-

length λ, and finally ρaz and ρrg the resolution in azimuth

and range direction of the SAR system, respectively. The

discrepancy of factor ∼ 30 is salient.

The SAR coordinates
������������

PRAE can be transformed into real

world coordinates by applying two rotations around the Z-

axis (heading angle taz of the SAR sensor) and Y-axis (in-

cidence angle θ), respectively:

f :
������������

PXY Z = Rz(taz)
T ·Ry(θ)

T · ������������

PRAE . (3)

To obtain the covariance matrix ΣXY Z one can apply stan-

dard error propagation [11] by differentiating these trans-

formation:

ΣXY Z = FΣRAEF
T (4)

where F contains the partial derivatives of f with respect

to the PS coordinates in the SAR domain. The resulting

covariance matrix ΣXY Z has the form

ΣXY Z =

⎡
⎣
σ2
X σXY σXZ

σ2
Y σY Z

sym. σ2
Z

⎤
⎦

=

⎡
⎣
C(σ2

R+σ2
A+σ2

E) C(σ2
A−σ2

R) C(σ2
E−σ2

R)
C(σ2

R+σ2
A+σ2

E) C(σ2
E−σ2

R)
sym. C(σ2

R+σ2
E)

⎤
⎦

(5)



where C is a placeholder for any trigonometric function of

the two angles taz and θ. From the structure of the covari-

ance matrix it can be seen that the correlations between the

coordinates in the object system gets higher, the bigger the

discrepancy between the error budget of the elevation direc-

tion σE relative to the range direction σR becomes.

To mitigate this anisotropic error behavior, we apply

model assumption (1) (all PS of a facade are situated in a

plane) by fitting an adjusted RANSAC plane [7] through

all PS belonging to the same facade. All PS are then pro-

jected onto this plane along the elevation direction. Figure 2

shows this procedure schematically. Given the plane defin-

ing vectors { ��v1,
��v2,

��v3} and the three-dimensional position

of the PS
������������

PXY Z the intersection point of the plane with the

elevation direction fulfills the equation

������������

PXY Z +Δ ��e = ��v3 + r ��v1 + s ��v2 (6)

where Δ is the distance from the PS to the plane in elevation

direction. Solving this equation for the triplet {Δ, r, s} and

plugging it in the right hand side of equation 6 yields the

projected coordinates of the PS in the XY Z space.

We then exploit the topology of the grouping results in

section 2.1 by explicitly forming groups of H horizontally

or V vertically aligned PS. Looking upon H horizontally

aligned PS can be seen as H times measuring the same

height [15], assuming zero mean and equally precise mea-

surements. We extend this approach by also averaging the

planimetric position, i.e. X and Y coordinate, of V verti-

cally aligned PS:

g1 : X =
1

H

H∑
i=1

Xi and g2 : Y =
1

H

H∑
i=1

Yi

g3 : Z =
1

V

V∑
i=1

Zi

(7)

Taking into account that not all PS of a H × V lattice are

present due to temporal decorrelation or occlusion, for in-

stance, the averaged group coordinates can be interpreted

as a lower bound for the covariance matrix. The grouped

covariances are then

ΣXY Z = GΣXY ZG
T

=

⎡
⎣
σ2
X/H σXY /H σXZ/V

σ2
Y /H σY Z/V

sym. σ2
Z/V

⎤
⎦ (8)

with G containing the partial derivatives of g1, g2 and g3
with respect to X , Y , and Z. Comparing the covariance

matrix of the averaged PS (8) with the original covariance

matrix (5) shows directly that the latter is smaller by a fac-

tor of 1
H or 1

V , respectively. The impact of this individual

grouping and, therefore, individual covariance matrices is

Figure 3: A rectified facade with 95% error ellipses of the

propagated positioning accuracy. Differently sized ellipses

are a result of the individual grouping.

exemplarily shown in Figure 3. In red the 95% confidence

level error ellipses are drawn. The PS on the ground level

could not be grouped and therefore exhibit a bigger uncer-

tainty.

The remaining transformation is the projection of the

grouped PS into an optical oblique image. This is done by

applying the standard collinearity equations. Following as-

sumption (2), we consider this projection error-free. Build-

ing the partial derivatives with respect to the averaged object

coordinates and multiplying it with ΣXY Z in the same way

like before yields an covariance estimation for the localiza-

tion accuracy for grouped PS in the oblique image.

3. Method

Our aim is to find the maximal bipartite matching be-

tween the projected Persistent Scatterers and lattice nodes

describing the underlying regularity in the optical image.

The matching costs are defined by quantifying the model

assumptions mentioned in section 1.2.

3.1. Lattice proposal

A crucial step in the presented approach is the proposal

of matching partners for the Persistent Scatterers. Follow-

ing equation (1) the set of lattice points L in the image

is determined by the two spanning vectors t1 and t2, the

lattice origin t3, and upper bounds for the extent aU and

bU . Implementing the model assumptions of section 1.2

and exploiting preliminary results from the preprocessing



lets us narrow down the search space of possible lattices.

We achieve this by the following steps.

3.1.1 Image rectification

According to assumption (1) all PS at a facade lie in one

plane. This plane is robustly estimated during the prepro-

cessing in three-dimensional object space. Given the ori-

entation parameters of the oblique image, the direction be-

tween the plane normal and the camera’s viewing angle can

be computed. Projecting this direction into the image allows

to rectify the image in a way that the horizontal alignment

of facade objects corresponds to one image coordinate axis

while the other coincides with the vertical alignment. This

reduces the two-dimensional spanning vectors t1 and t2 to

scalar values with values corresponding to the horizontal

and vertical lattice spacing in the rectified image, respec-

tively.

3.1.2 Spacing estimation

Following assumptions (3) and (4) of our model the geo-

metrical structures inducing the Persistent Scatterers are a

repetitive pattern which is discernible in the oblique image.

In the proposed model the repetitions occur with constant

spacings in horizontal and vertical direction of the facade.

We use the well established cross-correlation procedure to

extract this regularity. The approximate size of the match-

ing template can be derived from the previously performed

grouping of the PS. Since the geometrical structure induc-

ing the PS at the facade has a certain extent in the image the

actual template size is robust and still capturing the regular-

ity even if it is slightly under or over-estimated.

Since we work on rectified images, the spacings in X
and Y direction can be extracted independently from each

other. In order to do so, we apply a voting scheme for the

differences of local maxima of the normalized cross cor-

relation result. Taking the maximum of peak differences

is a robust estimate for the spacing and empirically yields

very reliable results. To derive a measure on how well a

lattice node conforms the regularity assumption (3) the cor-

relation coefficient is computed for every lattice node Lm

of the matched pairs in M .

3.2. Origin estimation

Having extracted the regularity of the facade image we

aim at extracting the part of the regular patch which most

likely induces the PS. In terms of equation (1) every lattice

defining parameter except the origin t3 and the lattice extent

aU and bU are determined. Since the bipartite matching en-

sures a one-to-one assignment of PS to lattice nodes, the

actual extent of the ’true lattice’ is implicitly limited. We

focus now on finding the most likely origin of the lattice

t1y t1y t1y t1y

t2x

t2x

t2x dy
dx

Figure 4: Sketch of the rectified facade model. The green

dashed lines are equally spaced according to the spacing es-

timation based on cross correlation. The red ellipses sym-

bolize the error ellipses of the projected PS. The blue lat-

tice nodes are determined by the offset (dy, dy). An opti-

mal solution minimizes the Mahalanobis distance between

matched pairs of lattice nodes and PS.

which means to find the most likely pixel inside the regu-

lar patch. Figure 4 shows schematically the rectified facade

image. The dashed green lines are the spacings according

to the maximum peaks in the cross correlated result. The

remaining parameter to estimate (t3) can be interpreted as

the translation between the lattice points (blue points) and

the intersections of the green dashed spacing lines. Due to

the repetitive manner of the lattice model, the origin can be

independently estimated in every regular patch. We denote

this translation as dy in horizontal and dx in vertical direc-

tion, respectively, and hence, t3 = [dy, dx]T .

The distance between the set of lattice points L defined

by the parameters and the corresponding PS projected to the

image should be small. As mentioned above, the anisotropy

of the error budget has to be taken into account leading to

correlated coordinates in the image and therefore to elliptic

isolines of points with the same distance in the anisotropic

error metric. We choose the lattice origin (dx, dy) which

minimizes the distance for every pair of matched lattice

point and assigned PS according to the Mahalanobis dis-

tance [10]. The distance δ(m) between a matched pair m
of PS and the corresponding lattice point, i.e. the vertices

adjacent to an edge m of the matching M , is defined as

δ(m) =

√
(
�����

Lm − �����

Pm)Σ−1
xy,m(

�����

Lm − �����

Pm)T (9)

where
�����

Lm are the coordinates of the lattice point and
�����

Pm

is the matched PS, respectively. Note that the covariance



matrix Σxy,m is not the same for every PS due to the PS-

individual grouping results. In Figure 4 this is indicated by

differently sized error ellipses. The Mahalanobis distance

captures well the anisotropy of the error budget and is inex-

pensive to compute.

The overall score which we want to minimize is than de-

fined as the sum over all distances between matched pairs

t̂3 = argmin
t3

∑
m:M⊆E(t3)

δ(m) (10)

where m is the index over all matchings of PS and lattice

nodes. The lattice nodes are dependent on the lattice origin

t3 which implies that t3 has to be set prior to evaluating the

distance measure. Even though the search space for dx and

dy is limited by 0 ≤ dy ≤ t1y and 0 ≤ dx ≤ t2x, re-

spectively, applying a search strategy is beneficial in terms

of lowering the computational effort (The Hungarian algo-

rithm has a complexity of O (
(|P |+ |L|)3). Therefore,

we apply a standard simplex search method based on the

Nelder-Mead algorithm [9].

4. Interpreting the matching result
The matched result can be interpreted twofold: The in-

tentional viewpoint is to derive a quantitative measure of

how well the Persistent Scatterers can be assigned to their

correspondences in an optical oblique image. Another way

of interpreting the presented method is to understand it as

a fusion result and use the combined information, for in-

stance, to improve the Persistent Scatterer processing. This

could be done by identifying lattice nodes which are not

matched to a Persistent Scatterer despite having strong sup-

port in the optical data which means that the regular struc-

ture inducing PS at other lattice positions is apparently

present at that position. For both outlined scenarios a quan-

titative measure is helpful. We assess the model quality by

combining the matching costs which is the summed Maha-

lanobis distances as outlined in equation (9) as well as the

correlation coefficient for every matched lattice node. To

make both values comparable, we assume that the underly-

ing distribution of matched PS is bimodal and the problem

can, therefore, be seen as a binary classification problem.

Either a PS belongs to the regular structure at the facade or

not. The same holds for the lattice nodes. Either a lattice

node and its surrounding represents the underlying regular-

ity or not. Therefore we apply the thresholding approach of

[13] to separate the following four classes in total:

• A lattice node has support from both data types.
The lattice node is centered in an area which com-

plies with the regularity assumption (3) (high correla-

tion coefficient) as well as the Mahalanobis distance to

the corresponding Persistent Scatterer is small. These

points can be interpreted as good matches where the

presented model seems to be right. In the following

case studies those lattice nodes are marked in green.

• A lattice node has support only from PS data. The

Mahalanobis distance to a PS is small but the under-

lying regularity is not present. This could be due to a

validation of model assumption (4) (PS inducing struc-

ture is visible in the image). Reflections or occlusions

lead to such behavior. Since the viewing directions be-

tween both sensor types are different, some parts of a

facade can be visible in one type of data but not in the

other. Such points are marked in red.

• A lattice node has support only from optical data.
The lattice node has a strong correlation coefficient but

no PS is close in terms of the Mahalanobis distance.

These nodes are interesting for further investigations

with respect to the PS processing. Since the optical

appearance of this node’s neighborhood is the same

as that of similar nodes with PS support and apply-

ing model assumption (3) (PS are induced by the same

geometrical structure) the lattice information could be

used to infer missing PS on such positions. Nodes of

this kind are marked in blue.

• A lattice node has no support neither from PS nor
optical data. Those points are discarded and marked

in gray.

5. Case studies
We show two examples of possible applications of the

presented approach. No quantitative evaluation of the re-

sults can be performed due to the missing ground truth in-

formation.

5.1. Axel-Springer building

The Axel-Springer building is an example for a typical

high-rise office building in densly developed city centers. It

is a 19-storied tower of 78 meters total height. The facade

exhibits regularly aligned vertical and horizontal braces.

Figure 5 shows four processing steps of the presented ap-

proach. In 5a the support of the optical data is shown.

The lattice nodes are the final result of the Nelder-Mead

algorithm and are the same in the following figures. The

color codes the normalized cross correlation between every

patch centered at every lattice point and the mean patch of

matched lattice nodes. In the lower middle part of the fa-

cade an area of low support can be identified. This is due to

the different appearance of the facade in this area due to a

reflection of another building. In Figure 5b the support by

the PS data according to the Mahalanobis distance is color

coded. The value is also normalized to make it comparable

(visually and numerically) with the optical score. For rea-

sons of visual clarity the original positions of PS are omitted
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Figure 5: Result for case study ’Axel-Springer building’. (a) shows the support by the optical data. The color codes the

normalized correlation coefficient for the neighborhood around every lattice node compared to the mean patch. (b) shows

the support by the Persistent Scatterer data. For reasons of clarity the original positions of the PS are omitted but can be seen

in (c). (c) depicts the classified result where the color of the lattice nodes codes the class affiliation according to the legend.

The original positions of the PS are marked with yellow crosses. In (d) all matched pairs are linked with blue lines.

here but can be seen in Figure 5c. A violation of the model

assumption (2) (projection into the image is error-free) can

be identified by looking to the right hand side next to the

building. Some PS are projected onto the image but can-

not be assigned to the facade. The four colors represent the

classes as described in section 4. Figure 5d finally shows

the matching result as blue lines between adjacent nodes

and PS, respectively.
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Figure 6: Result for case study ’Lindenstrasse 69’. (a) - (d) similar to Fig. 5.

5.2. Lindenstrasse 69

The building Lindenstrasse 69 is an office building with

8 floors. The facade is characterized by regularly aligned

windows which are displaced inside the building face. Fig-

ure 6 shows results analog to the case study ’Axel-Springer

building’. An interesting detail can be seen on the right

hand side in the middle section of the facade. A horizon-

tal group of six PS are missing resulting in a low support

score from the PS data (compare Figure 6c and 6b). Figure

6a shows that this area also exhibits a low optical support.

This suggests the assumption that the facade structure in

this area is different compared to the surrounding leading to

an unlike appearance in the optical image as well a different

reflection mechanism resulting in the absence of PS.

6. Conclusion

We presented a first comprehensive process of accurately

projecting Persistent Scatterer into oblique optical images

and assigning them to a regular lattice. The presented ap-

proach uses a model which describes PS at a facade as reg-

ularly spaced points in a plane. Establishing the connection

between grouped PS and optical imagery forms a tool for

investigating the reflection mechanisms. The lattice infor-

mation, for example, can be used in the PS processing as

additional information to support their detection. The used

model restricts the approach to a very limited subset of ex-

isting facades. The assignment of PS to optical lattices can

only be performed if both data exhibit an regularly spaced

lattice distribution. Further work will comprise the exten-

sion of the presented approach towards a more general fa-

cade model, like for instance, grammar-based methods.
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