
Accurate Localization by Fusing Images and GPS Signals

Kumar Vishal C. V. Jawahar Visesh Chari
Centre for Visual Information Technology,

IIIT Hyderabad, India

Abstract

Localization in 3D is an important problem with
wide ranging applications from autonomous navigation in
robotics to location specific services on mobile devices. GPS
sensors are a commercially viable option for localization,
and are ubiquitous in their use, especially in portable de-
vices. With the proliferation of mobile cameras however,
maturing localization algorithms based on computer vision
are emerging as a viable alternative. Although both vision
and GPS based localization algorithms have many limita-
tions and inaccuracies, there are some interesting compli-
mentarities in their success/failure scenarios that justify an
investigation into their joint utilization. Such investigations
are further justified considering that many of the modern
wearable and mobile computing devices come with sensors
for both GPS and vision.

In this work, we investigate approaches to reinforce GPS
localization with vision algorithms and vice versa. Specif-
ically, we show how noisy GPS signals can be rectified by
vision based localization of images captured in the vicin-
ity. Alternatively, we also show how GPS readouts might be
used to disambiguate images when they are visually similar
looking but belong to different places. Finally, we empiri-
cally validate our solutions to show that fusing both these
approaches can result in a more accurate and reliable lo-
calization of videos captured with a Contour action camera,
over a 600 meter long path, over 10 different days.

1. Introduction and Related Work
Localization refers to the idea of “locating” the position

of an object within its environment. It has numerous ap-
plications in wearable computing, robotics, entertainment
devices and consumer electronics. Most popular localiza-
tion approaches are designed to represent object location in
3D coordinate systems either using the lat/long format like
Global Position System ( GPS ) sensors, or by using met-
ric distances like vision based localization methods. GPS
based methods provide global/absolute information about
the location of an object with the help of special purpose

Figure 1: Histogram of GPS localization error (top row) of a
stationary GPS sensor, showing how inaccurate they can be.
Bottom row is an example of two images belonging to the
approximately same pose. Visual localization is inaccurate
here since in one image the object is occluded, while GPS
sensors give accurate localization.

sensors, and satellite communication. Vision based ap-
proaches usually provide localization relative to a reference
image, and are not global in nature. Visual localization
is achieved by matching images using interest points like
SIFT, and estimating relative positions by computing and
decomposing multiview geometric quantities like the Fun-
damental/Essential matrix.

There are several advantages and disadvantages of us-
ing GPS based localization vis-a-vis visual localization ap-
proaches. Commercial viability of GPS sensors make them
cheap to obtain, thus explaining their ubiquitousness. Such
sensors are generally useful for obtaining coarse localiza-
tion of objects in a global coordinate system. They are also
not usually affected by the visual quality of an object’s sur-
roundings, i.e. GPS sensors localize with similar accuracy
irrespective of whether they are used on a beach (no unique



interest points) or near a popular monument (uniquely iden-
tifiable structures), and they give unambiguous localization
to visually similar but differently located places. However,
GPS sensors are inaccurate beyond a certain point, as illus-
trated in Figure 1, and can fail in many environments due
to reasons such as sporadic unavailability of the satellite
signal [9]. Thus, cheap, global, unambiguous, inaccurate,
sporadic unavailability are keywords that characterize GPS
sensors.

With the sudden increase of consumer cameras found
on portable devices, vision based localization approaches
are also now cheaply available. Such approaches are gen-
erally useful for fine localization of objects in a local co-
ordinate system relative to a reference frame. Compared
to GPS sensors, vision based localization systems also pro-
vide reasonable accurate estimates of the object’s location.
However, chances of ambiguities are higher in vision based
localization methods since visual similarity of two images
of far apart places can lead to erroneous localization esti-
mates. However, since vision based localization methods
are not dependent on satellite connectivity, such approaches
are readily available for utilization. Thus vision based lo-
calization approaches can be characterized to be cheap, lo-
cal, ambiguous, accurate and available.

Notice that the two sensors have complimentary advan-
tages and disadvantages. Thus, it is natural to ask why not
combine the advantages of both to improve their accuracy
and reliability (Figure 2a). With recent portable devices
carrying both GPS and vision based sensors, we answer this
increasingly important question in this paper. In section 2,
we discuss related work. We then describe an approach
to improve visual localization using GPS sensory output in
section 3. Then we elaborate on an approach to improve
GPS output using visual information in section 4, before
describing an experiment that complimentarily fuses both
the improved estimates to do sequential localization in sec-
tion 5. Finally we relevant experiments on several datasets
to demonstrate the results of our approach in section 6, and
conclude in section 7.

2. Related Work
Unreliability in GPS tags critically affects many com-

puter vision tasks like 3D reconstruction and localization
for shorter range [8, 3]. This unreliability in GPS has been
addressed in several previous works[4]. This includes the
use of additional cues such as wifi strength [10], additional
special purpose hardware [15] or algorithms that learn error
patterns [1]. Vision based methods have been used for GPS
tag refinement. Most of the approaches often require a ref-
erence point (e.g. Street View) or dataset with pre-assumed
correct GPS tag in case of vision based refinement and multi
sensor input in case of Kalman filter algorithms [9]. Za-
mir et. al. [13] propose a self-refinement process, that

(a)

(b)

Figure 2: (a) Problem Statement: We want to simultane-
ously use the noisy GPS signals and erroneous visual lo-
calization to generate accurate localization. (b) The block
diagram of the proposed method.

has an internal noise reduction and robustness mechanism
which effectively uses initial noisy GPS tags of the images
to give refined values. Accurate localization is critical to
many robotic applications [11, 2].

Visual localization is the problem where the location of
a query image is identified by comparison with location-
tagged images in a database. Its a challenging problem
because images of even the most common scenes like ur-
ban environments show wide diversity in appearance. They
can vary on different parameters e.g. different viewpoint,
scale, occlusion, illumination etc. than the prior images in
the database. For this paper we refer occlusion as blocking
of the camera view because of non permanent objects. An
occlusion in foreground (refer Figure 1) or similar looking
images for example, could degrade visual localization. Per-
formance evaluation in visual localization is measured as
the Euclidean distance between the GPS tags of query im-
age and retrieved images [11]. Due to inaccuracies in GPS
devices people integrate other sensor data like IMU, wheel
odometry, and LIDAR sensors [7, 15] to get an accurate lo-
calization.

In this paper we propose a method which localizes with
an accuracy of 7.5m by fusing vision and GPS together. In
this regard, we address 3 main challenges in visual and GPS
localization: (i) Perceptual aliasing, when similar-looking
images have very different GPS locations, (ii) camera occlu-
sion (Figure 1), when dissimilar images are co-located, and



(iii) noisy GPS data. To do this, we present an approach to
learn the useful feature [14, 6] to improve the localization
performance, along with an approach to correct noisy GPS
outputs using visual localization [13].

Dataset To do experiments in this paper, we collect 10
video datasets using a Contour action camera, while walk-
ing along a 600m path repeatedly over 10 days. We extract
images from these videos at 10fps or 1fps depending on
the requirement. We then extract SIFT features and store
them for each frame. While processing 1 video, images
from the other 9 are used to build the visual bag of words
vocabulary for image retrieval.

3. Use of GPS for Better Visual Localization
and Extracting Useful Features

The visual localization problem is often formulated as an
image retrieval problem. To achieve this visual features are
extracted and clustered to form a visual vocabulary. Bag-
of-Words representation models the image database as an
unordered set of visual words in the form of an “inverted
index”. Inverted index is represented as a (key, value) pair
where key is the visual word index, and value is the list of
the images in which the visual word appears, with their cor-
responding reliability weights. We identify the visual words
in a query image using standard techniques [12]. With the
help of visual words and an inverted index, a score of the
nth retrieved image is computed as:

Score(imgn) =
∑
zk∈Zq

Wn
k (1)

where Zq is the set of feature descriptors in the query im-
age and Wn

k is the reliability weight of the visual word
corresponding to the zk feature descriptors in the nth im-
age. The image with the highest score is then chosen as
the best matching image corresponding to the query image.
Due to occlusion many noisy features are extracted that are
not useful for the retrieval process. This includes features
generated around unstable interest points. We define unsta-
ble objects / interest points as those non-stationary objects /
interest points that hinder stable retrieval of a given object
/ location. Our noisy feature rejection module is motivated
by the fact that occlusion and unstable object features will
likely exist in a single image, while useful features are likely
to be found in multiple images of the same object or loca-
tion. Identifying the features which are robust to change
in view can be determined by tracking which features exist
in multiple views and are geometrically consistent with one
another. This requires a minimum of two views, assuming
that the object or location exists in the database prior to the
useful feature extraction stage.

(a) (b)

Figure 3: Original image features (a) vs those features
which could be considered useful features (b). Transient ob-
jects, occlusions in the foreground and non-distinctive areas
of the scenes are found to be without useful features.

Figure 4: Flow chart for Section 3

Extracting Useful Features and Role of GPS: The pro-
cess of determining useful image features first starts with
the construction of a Bag-of-Words model for an imaeg
database. Each image in the database is used as a query
and the top k images are then retrieved. All the images in
the database have GPS tags associated with them. In order to
avoid the perceptual aliasing and camera occlusion we con-
sider only those images which lie within a radius of distance
d from the query image. Inliers are then used to estimate
epipolar geometry and only features which are geometri-
cally consistent are labelled as useful features. We perform
experiments for d = 10, 20 and 30 meters and show how it
effects visual localization. For details of these experiments
please refer sub-section 6.1. A sample result of useful fea-
ture extraction is shown in Figure 3. Note that this image



has more than 70% non-distinctive area with occlusion. Our
approach has filtered out almost all the noisy features gen-
erated around the non-stationary object and non-distinctive
area. Figure 4 describes the flow diagram of our proposed
method.

4. Improving GPS Signals through Image Re-
trieval

Zamir et. al. [13] proposed a self refinement method to
refine user-specified GPS tags of images. We extend their
work and apply it to discrete noisy GPS signals in order to
get more accurate and consistence GPS signals, which we
term refined GPS signals.

4.1. Details of Algorithm

We have a set S = {(V1, G1), (V2, G2), ..(Vn, Gn)}
where Vi and Gi is the ith video and it’s corresponding
GPS signal. Each GPS signal Gi has a noise attached with
them Gi = Ĝi + η, where Ĝi is the refined signal and η is
the noise attached to Gi. Our goal is to extract out Ĝi in
a self-refinement manner without using any external refer-
ence point.

We sample each Vi at 1fps and use each frame as query
image I against the rest of the frames from the set {S-Vi},
and retrieve the top µ matches {m1,m2, ..mµ} for each I.
We use SIFT Bag-of-Words with vocabulary size of 1 mil-
lion for the purpose of image retrieval. We then form

( µ
2

)
triplets from each query image & each pair of database im-
ages and estimate the relative location of the triplet by us-
ing Bundler for camera localization [16]. For each triplet
{ I,mi,mj} we get {lI , li, lj} which are camera locations
of I,mi, andmj in the SfM local co-ordinate system. How-
ever, we note that since in most images the relative height
of the camera w.r.t the ground is the same, we could trans-
form these 3D vectors into 2D vectors. Thus, applying an
assumption that video tracks were recorded roughly on a
planar surface we can reduce the dimensionality of lI , li
and lj to two (e.g. using PCA).
Our aim is to calculate the GPS of I using the image triplet
{lI , li, lj}. To do this, the locations {lI , li, lj} should be
mapped from SfM local co-ordinate system to the global
GPS co-ordinate system. These two Cartesian co-ordinates
are related through a similarity transformation matrixRST .[

g
1

]
= (RST)

[
l
1

]
(2)

where l is a point in the SfM coordinate system and g is it’s
corresponding point in global GPS co-ordinate system,

[ g
1

]
and

[
l
1

]
are homogeneous co-ordinates of g and l. RST

is denoted by 3 × 3 matrix. We need at least two pairs of
g ↔ l correspondence in-order to calculate the RST ma-
trix from Equation 2. In each triplet mi and mj are GPS

tagged, we use their GPS tags and their locations li and lj
to compute RST of the triplet. Now this transformation is
used for finding the location of I in global GPS co-ordinate
system. Since we have

( µ
2

)
possible triplets, we will get( µ

2

)
possible GPS estimates for a query image.

4.1.1 Robust Estimation through Random Walks

The estimated GPS locations of I yielded by the triplets is
accurate only if the GPS tag of reference images mi and mj

is accurate. We use Random Walks on estimated triplets
to discover the reliable subset of estimations. We define a
graph G = (N,E) where N and E represent the set of node
and edges. Each node represents one estimation, i.e. N
= {g1, g2, ...gλ}, and there is and edge between each pair
of nodes, E = {(gi, gj), i 6= j }. We include the original
GPS tag of I, for the estimation of its correct GPS-location,
in set N. The transition probability from node i to node j
according to their GPS distance is calculated using Equation
3 given by Zamir et. al. [13]:

p(i, j) =
e−σ||gi−gj ||2∑λ
k=1 e

−σ||gi−gk||2
(3)

where ||.||2 denotes the l2 norm, λ is the number of node in
graph G and σ is call insensitive parameter.

Image Geo Density and Initial Node Score: The pur-
pose of image geo density is to handle the phenomenon of
non uniform distribution of images across popular sites like
flickr, facebook, etc . . . In our case, where we have multiple
videos of the same path, we can assume uniform distribu-
tion of images. The initial score of the nodes is not going
to be effected by geo-density, hence initial score of the nth

node v(n) can be calculated as:

v(n) =
1

λ
(4)

4.1.2 Adaptive Damping Factor

For a each query image we got a graph G having λ nodes
where each node is initialized with score v(n). The Random
Walks algorithm will update the score of one node at every
iteration using the transition probability from other nodes to
it. Equation 5 is the basic Random Walks formula

x(k+1)(j) =

λ∑
k=1

1©︷︸︸︷
α xk(i)p(i, j) +

2©︷ ︸︸ ︷
(1− α) v(j) (5)

where xk(i) is the relevance score of ith node at kth itera-
tion. The use of the damping term in Random Walks is to
use the prior knowledge about the relevance of nodes and
to ensure irreducibility of the transition probabilities matrix
which is a convergence condition for Random Walks [5].



The summation of term 1© and term 2© in Equation 5 should
be 1 because the relevance score at any iteration must sum
to one, i.e.,

∑λ
k=1 xk(i) = 1. Zamir et al. [13] further pro-

pose an adaptive damping factor which adaptively changes
according to the consistency of each node w.r.t others. They
formulate the damping term of a node as a function of its
relevance score at each iteration:

xk+1(j) =
1

η

( λ∑
i=1

1©︷ ︸︸ ︷(
1− (1− α

)
xk(j))xk(i)p(i, j)

+

2©︷ ︸︸ ︷
(1− α)xk(j) v(j)

)
(6)

The normalization constant η given by Equation 7 forces
the sum of all relevance scores to be one.

η =

λ∑
j=1

( λ∑
i=1

(
1− (1− α

)
xk(j))xk(i)p(i, j)

+(1− α)xk(j)v(j)
)

(7)

Estimation of Final GPS-Tag using the Relevance
Scores: The estimations which are badly effected by noise
are expected to have relevance score of ≈ 0, other nodes
should gain the score based on their transition probability
and initial score. Finally we compute the refined GPS-Tags
of the query I, utilizing a weighted mean using the rele-
vance scores xπ .

ĝ =

λ∑
i=1

gixπ(i) (8)

where ĝ is refined GPS-Tag.

5. Improving the Localization
Integrating Visual Localization and GPS Refine-

ment: In section 3 we have shown how with the help of
GPS we can overcome issues like occlusion and perceptual
aliasing in order to improve visual localization using image
retrieval, whereas section 4 describe how to reduce the error
in GPS signal with the help of image retrieval and random
walks. As mentioned above, we integrate both modules to
improve localization in challenging scenarios like over short
distances where GPS signals tend to fail. First we improve
GPS signals and label all the images in the database with re-
fined GPS tags. Using these refined GPS tags we filter out
the useful features for building a vocabulary and inverted
index.

Sequential Localization: Without any loss of general-
ity, we can assume that the motion of any portable device

Algorithm 1 Estimation of initial pose

1: Input: Bag-of-Word framework, Q: Queue
2: Output: Initial pose with minimum probability P ∗.
3: for i=1→ N do
4: ri← Retrieved image using query image qi.
5: if Q is NULL then
6: Q← ri
7: else
8: for j=1→ Number of element in Q do
9: dist = calEculideanDistance(ri,Qj)

10: if dist < thresholdDistance then
11: Score(Qj) = Score(Qj) + 1
12: else
13: Q← ri
14: end if
15: end for
16: end if
17: end for
18: P ∗ = arg max(Score(pk) / N ; where pk ∈ Q
19: Return the pose corresponding to pk

with GPS is a smooth motion. So we can assume such mo-
tion satisfies the Markov assumption i.e. that is the cur-
rent pose Xt is dependent only on the previous pose Xt−1.
Our sequential visual localization method consists of two
phases: initial localization phase and query retrieval phase.
In initial localization phase we keep on retrieving relevant
images to the query image until estimation of the pose is
known to us with minimum probability P ∗. P ∗ is calcu-
lated using Algorithm 1. Once the initial pose Xt is fixed
we use temporal sequence property to fix the pose of Xt+1

in query retrieval phase. In section 5 we have demonstrated
the effect of useful features, refined signal as well as com-
bined effect of both on localization by conducting different
set of experiments. We also performed sequential localiza-
tion after integration.

6. Experiments and Results

In this section, we demonstrate the utility of our ap-
proach with quantitative experiments. We capture the
videos using a Contour action camera with resolution
1920 × 1080 at 30fps. The device also has an inbuilt
GPS sensor which recorded the corresponding GPS signal
at 1Hz. This gives us two different loosely aligned signals
GPS and videos. Since we are also interested in studying
the utility of multiple runs captured over time, we collect
the videos on ten different days by walking on the same
600m long path. Data is captured in the evening at peak
traffic hours to ensure approximately same crowded urban
environment setting. This process yields ten videos of the
same path with labelled GPS tags.



Figure 5: Plot demonstrating the noisy and refined GPS sig-
nals. One can observe refined GPS signal (red) is less ran-
dom and in zig-zag shape as compare to noisy GPS signal
(green).

For vision based localization, we use bag of words repre-
sentation with 1 M visual words built on top of dense SIFT
descriptors. During all the experiments, we have ensured
that the test data is not used for the vocabulary construc-
tion. Wherever, multiple runs are used, one run is used for
the evaluation in a leave one out manner.

As can be seen in Figure 5, our sensor fusion scheme
yeilds superior estimates of localization. One may notice
the noisy (zig zag) path of the original localizations and the
more or less smooth path estimated after the multi sensor
localization as we discussed in the previous section. In the
rest of this section, we demonstrate the quantitative results
of various experiments.

6.1. Effect of Useful Features on Visual Localization

First, we demonstrate the utility of feature selection in
improving the accuracy of localization. Effect of useful fea-
tures on visual localization performance was evaluated us-
ing K-fold cross validation with number of folds set to 10.
For each of the query image we retrieved an image from
Bag-of-Words model built by using useful features only. If
the Euclidean distance between retrieved image and query
image is greater than δd we consider the localization to be
an “invalid localization”. The percentage error in the visual
localization is define as:

Pe =
(TotalNo.OfInvalidLocalization

No.OfQueryFrames

)
× 100 (9)

In this experiment we have set the δd = 10m. Table 1 shows
the comparative percentage error in visual localization be-
tween two approaches. In the table experiment Ei means
ith video is used as the source for query images and rest
all are use in building visual vocabulary. One can observe
significant drop in error while using useful features for vi-
sual localization. The other observation that can be made

Table 1: Effect of useful features on visual localization.
There is a significant drop in percentage error in visual lo-
calization with useful features. As d increases the increase
in number of inliers are very less. Therefore useful features
are almost constant for different values of d. Hence the drop
in Pe error is less. NA=Not Applicable, OF=Original Fea-
tures, UF=Useful Features as shown in Figure 3.

Exp. Pe, d=NA Pe, d=10 Pe, d=20 Pe, d=30
No. OF UF UF UF
E1 31.63 23.56 22.69 22.57
E2 31.70 23.47 22.65 22.59
E3 29.49 22.21 21.49 21.52
E4 32.06 23.93 23.03 22.98
E5 30.54 22.89 22.15 22.15
E6 31.98 23.07 22.26 22.23
E7 31.04 22.87 22.15 22.09
E8 30.68 22.72 22.13 22.07
E9 31.75 23.47 22.70 22.58
E10 32.30 23.72 22.63 22.56

is, the drop in percentage error Pe is less for increasing val-
ues of d. This is because the number of inliers are almost
constant with varying d. Hence we set d = 10m for further
experiments to expedite the process without compromising
accuracy a lot.

6.2. Refined vs Noisy GPS Signals RMSE Score

The recorded GPS signal has noise associated with it. To
illustrate with an example, if one were to log the GPS signal
while keeping the device stationary, one would see large
variation in GPS values of up to 35m (as shown in Figure 1).
The term noisy GPS signals refer to the GPS signals which
were recorded using GPS receiver. By improving the GPS
signals using images (section 4) we get refined GPS signals.

To refine a GPS signal the corresponding video run was
used as the query video in the vision based localization. We
do this for each of the videos separately. Using all these
attempts, we refine the GPS tags and finally we integrate all
the GPS tags to get the refined GPS signal.

To quantitatively compare, we used Root Mean Square
Estimate(RMSE) values. We assume one of the GPS signal
as the ground truth and calculate the RMSE for other signals
with respect to assumed ground truth. RMSE for the Gn
GPS signal is given as:

RMSE(Gn) =

2

√∑N
i=0

(
Dist(Ggt(i), Gn(i))

)2
N

(10)

where N = min
(
length(Ggt), length(Gn)

)
as all the sig-

nals are approximately same length (so discarding few val-
ues will not effect the RMSE much). Ggt(i) and Gn(i) is



ith GPS reading of assumed ground truth signal and nth GPS
signal respectively. Dist calculates the Euclidean distance
between two GPS measurements. Mean RMSE of the nth

GPS signal is the mean of all the RMSE values taking nth

signal as a ground truth. We calculate RMSE values for
noisy GPS signals and refined GPS signals separately. Ta-
ble 2 shows the comparison between Mean RMSE values
of noisy and refined GPS signals for each video. Sn indi-
cates that nth signal was taken as ground truth to calculate
the Mean RMSE. The Mean RMSE for the noisy GPS sig-
nal is ≈10m whereas for refined GPS signals it comes down
to ≈6-7m. This demonstrates that the sensor fusion is re-
sulting in a more consistent localization results than using a
single sensor alone.

Table 2: Mean RMSE comparison of noisy and refined GPS
signal. For refined GPS signal RMSE values ≈7m.

Run No. RMSE RMSE % drop in
Noisy Signal Refined Signal RMSE Error

S1 9.81 6.76 31.10
S2 10.55 7.36 30.23
S3 10.49 7.01 33.17
S4 9.76 6.73 31.05
S5 9.54 6.79 28.82
S6 10.31 6.98 32.30
S7 10.21 6.92 32.22
S8 10.01 6.87 31.36
S9 10.65 7.01 34.17
S10 9.96 6.95 30.22

6.3. Comparison of Denoising using Synthetic Noise

In another experiment to test the method in various ex-
treme circumstances we added random Gaussian noise as
an input error with mean values 100, 500, 1000, 2000, 3000
and 4000 meters to 5, 10, 20, 33 and 50 percent of the 24648
images in our dataset and the standard deviation was set
to the half the mean to replicate the GPS device error with
mean = 12.23m and standarddeviation = 5.98 (Figure
1). We improvised the synthetic error on top of the already
existing noise. Hence, the additional synthetic noise deter-
mines the lower bound of noise since the exact amount of
error in the dataset is unknown. We also made sure that
in this experiment, the query images were among the ones
with contaminated GPS tags to ensure the evaluation is fair
and challenging. We got similar results to the one observed
by Zamir et. al. (Figure 7.a in [13]). We observed that for a
contamination percentages of less than 33%, the method al-
most completely eliminates the error regardless of the mean
of the contamination in the input. Once the input error in-
crease beyond the 33% and 50% the error in output is no
more avoidable yet still less than the error in input, which is

consistent with the findings of [13].

6.4. Effect of Refined GPS Signal On Localization:

We also performed the experiments to study the effect of
refined GPS signal on localization. The ten videos sampled
at 10fps and tagged each frame with their corresponding
noisy and refined GPS tags. Bag-of-Word framework was
built using SIFT features from the nine runs with visual
vocabulary set to 1 million words. We performed visual
localization using one of the video run as a query dataset.
Percentage error in visual localization for distance was cal-
culated using Equation 9. Table 3 shows the comparison in
visual localization performance between refined and noisy
GPS signal for different δd distances. An experiment Ei
means ith run was used as a query run (each query run con-
tains 4000-4193 frames) and rest all other for vocabulary
building. From the the Table 3 one can also infer that for δd
= 7.5m the difference in the Pe error for noisy GPS signal
and refined signal is huge, but as δd increases from 10m and
beyond Pe is approximately same for both kind of signals.
Variance in the Pe for refined GPS signal less than noisy GPS
signal as standard deviation are 9.67 and 6.70 respectively
for the noisy and refined signal.

Multi Sensor Localization: We integrated both the
modules i) Use of GPS for Better Visual Localization and
ii)Improving the GPS Signal Through Image Retrieval to
form a pipeline for more accurate localization. First we re-
fined the GPS signals using images and adjusted the GPS
tags therein to the correct locations. Then we improved the
visual localization by labelling the useful features with the
help of refined GPS . The pipeline was tested on ten video
runs, where each runs contains 4000-4193 frames. Nine
runs were used to build the Bag-of-Word framework for
image retrieval having vocabulary size of 1 million visual
words. All the frames from a video run were used as query

Table 3: Effect of refined signal on percentage error. With
small value of δd there is significant difference in the per-
formance. As δd increases the performance gap is narrowed
down.NS = Noisy Signal, RS = Refined Signal.

Exp.No. Pe, δd=7.5m Pe, δd=10m Pe, δd=15m
NS RS NS RS NS RS

E1 45.98 29.68 31.63 23.11 16.05 15.33
E2 40.00 33.68 31.73 30.73 18.53 20.00
E3 32.00 27.85 24.09 24.52 16.19 14.28
E4 33.00 24.50 25.24 21.28 13.61 10.00
E5 37.12 29.09 29.43 22.19 16.30 14.80
E6 39.00 28.67 28.84 25.05 17.46 15.09
E7 38.85 28.72 28.19 24.23 16.57 14.91
E8 37.18 28.99 27.79 25.45 16.47 15.00
E9 40.49 29.81 30.35 23.52 15.82 14.73
E10 36.72 30.01 28.80 24.74 16.14 14.94



Table 4: Comparison of percentage error Pe in localiza-
tion with δd =7.5m while using the methods i)Bag-of-
Words framework ii)Bag-of-Words framework + Integra-
tion of modules iii)Bag-of-Words framework + Integration
of modules + Sequential Localization.

Exp. Simple BOW BOW Seq.
No. BOW Integration Localization
E1 31.63 8.09 2.97
E2 31.70 8.03 2.73
E3 29.49 7.10 2.14
E4 32.06 10.03 3.30
E5 30.54 7.60 2.71
E6 31.98 9.07 2.85
E7 31.04 8.10 2.56
E8 30.68 7.71 2.60
E9 31.80 8.29 2.12
E10 31.44 8.56 2.82

dataset. Percentage error in visual localization was calcu-
lated by the Equation 9. We localize for the distance δd =
7.5m. We also performed the sequential localization by fix-
ing the initial position with Algorithm 1. In the Algorithm 1
we set N = 10(i.e re-sampling frequency of the videos) and
thresholdDistance = δd and P ∗=0.7. Table 4 shows sig-
nificant drop in Pe with multi sensor localization method.
Our proposed method is useful to perform localization for a
shorter distance(≈ 7.5m) by fusing images and noisy GPS
tags obtained by using any commercial GPS receiver.

7. Discussion and Conclusion
This work proposed a multi sensor based localization

scheme that fuse two popular localization schemes to result
in a more accurate localization strategy. The objective of
our work has been to fuse GPS signals and images together
in order to improve the localization. We propose methods
that use noisy GPS to improve the vision based localization.
We also propose methods that use vision based localiza-
tion to improve the GPS signals. Finally we use these two
steps in an iterative manner to get further improvement. We
also presented a set of experiments to validate the fusion
schemes and thereby the improvements in localization by
fusing image and GPS .

Robustness or accuracy of our proposed method will not
be affected by the type of camera, the resolution of the im-
age and occlusion up to a great extent, as our system is built
over invariant features like SIFT which take care of issues
like change in camera or image resolution. To address the
problem of occlusion we use useful features, which han-
dle the occlusion problem pretty well, even when more than
half of the image is occluded (Figure 3). Finally, doing mul-
tiple runs over the same path is really important, since it is
used for building a visual vocabulary and refining the GPS
signal.
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