Evaluation of CNN-based Single-Image Depth Estimation Methods

Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, Marco Korner; The European Conference on Computer Vision (ECCV) Workshops, 2018, pp. 0-0


While an increasing interest in deep models for single-image depth estimation (SIDE) can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art SIDE approaches, we provide a new high-quality RGB-D dataset. We used a digital single-lens reflex (DSLR) camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol.

Related Material

author = {Koch, Tobias and Liebel, Lukas and Fraundorfer, Friedrich and Korner, Marco},
title = {Evaluation of CNN-based Single-Image Depth Estimation Methods},
booktitle = {The European Conference on Computer Vision (ECCV) Workshops},
month = {September},
year = {2018}