Learning Hash Codes with Listwise Supervision

Jun Wang, Wei Liu, Andy X. Sun, Yu-Gang Jiang; The IEEE International Conference on Computer Vision (ICCV), 2013, pp. 3032-3039


Hashing techniques have been intensively investigated in the design of highly efficient search engines for largescale computer vision applications. Compared with prior approximate nearest neighbor search approaches like treebased indexing, hashing-based search schemes have prominent advantages in terms of both storage and computational efficiencies. Moreover, the procedure of devising hash functions can be easily incorporated into sophisticated machine learning tools, leading to data-dependent and task-specific compact hash codes. Therefore, a number of learning paradigms, ranging from unsupervised to supervised, have been applied to compose appropriate hash functions. However, most of the existing hash function learning methods either treat hash function design as a classification problem or generate binary codes to satisfy pairwise supervision, and have not yet directly optimized the search accuracy. In this paper, we propose to leverage listwise supervision into a principled hash function learning framework. In particular, the ranking information is represented by a set of rank triplets that can be used to assess the quality of ranking. Simple linear projection-based hash functions are solved efficiently through maximizing the ranking quality over the training data. We carry out experiments on large image datasets with size up to one million and compare with the state-of-the-art hashing techniques. The extensive results corroborate that our learned hash codes via listwise supervision can provide superior search accuracy without incurring heavy computational overhead.

Related Material

author = {Wang, Jun and Liu, Wei and Sun, Andy X. and Jiang, Yu-Gang},
title = {Learning Hash Codes with Listwise Supervision},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2013}