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Bendable ←−−−−−−−−−−−−−−−−−−−−−−−−− Bending Stiffness −−−−−−−−−−−−−−−−−−−−−−−−−→ Stiff

Figure 1. A sample of the fabrics in our collected database ranked according to stiffness predicted by our model. The top panel shows
physical fabric samples hanging from a rod. The bottom panel shows a horizontal space × time slice of a video when the fabrics are blown
by the same wind intensity. Bendable fabrics generally contain more high frequency motion than stiff fabrics.

Abstract

Passively estimating the intrinsic material properties of
deformable objects moving in a natural environment is es-
sential for scene understanding. We present a framework to
automatically analyze videos of fabrics moving under var-
ious unknown wind forces, and recover two key material
properties of the fabric: stiffness and area weight. We ex-
tend features previously developed to compactly represent
static image textures to describe video textures, such as fab-
ric motion. A discriminatively trained regression model is
then used to predict the physical properties of fabric from
these features. The success of our model is demonstrated on
a new, publicly available database of fabric videos with cor-
responding measured ground truth material properties. We
show that our predictions are well correlated with ground
truth measurements of stiffness and density for the fabrics.
Our contributions include: (a) a database that can be used
for training and testing algorithms for passively predicting
fabric properties from video, (b) an algorithm for predict-
ing the material properties of fabric from a video, and (c) a
perceptual study of humans’ ability to estimate the material
properties of fabric from videos and images.

1. Introduction

Automatic scene understanding is a fundamental goal of
computer vision. Although the computer vision commu-
nity has made great strides in the last couple of decades
towards achieving this goal, with work in object detection,
3D reconstruction, etc., there has been very little work on
understanding the intrinsic material properties of objects in
a scene. For instance, is an object hard or soft, rough or
smooth, flexible or rigid? Humans passively estimate the
material properties of objects on a daily basis. Designing a
system to estimate these properties from a video is a difficult
problem that is essential for automatic scene understanding.

Knowing the material properties of objects in a scene
allows one to have a better understanding of how objects
will interact with their environment. Additionally, it can
be very useful for many applications such as robotics, on-
line shopping, material classification, material editing, and
predicting objects’ behavior under different applied forces.
For instance, imagine a system that is able to automatically
segment a video of a complex natural scene into different
materials and estimate their intrinsic properties. Such a sys-
tem would yield powerful meta-data that could be easily
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integrated into many video search applications.
In this paper, we focus on developing an algorithm to

passively estimate the material properties of fabric from a
video of the fabric moving due to unknown wind forces.
Two considerations motivate starting with fabric. First, a
number of metrics exist to describe the intrinsic material
properties of fabric. These metrics can be measured using
setups such as the Kawabata system [7]. Second, fabric is
intrinsically a 2D material, making most of its motion easily
visible from video.

The motion of a fabric is determined by its density, its
resistance to bending, stretching, and shearing, external
forces, aerodynamic effects, friction, and collisions [1]. In
this work we restricted our attention to recovering two of
the most distinctive properties of fabric in natural scenes
- the bending stiffness and area weight (weight/area). We
aimed to develop spatiotemporal visual features that cap-
ture these intrinsic material properties of fabric. To the best
of our knowledge, our work is the first attempt to passively
estimate material properties of fabric from video when the
fabric is moving in a simple natural scene due to unknown
forces.

The remainder of this paper is structured as follows. In
Section 2 we provide a background of previous applicable
work. Section 3 describes the database we have collected
for training and testing of our algorithm. Section 4 de-
scribes a perceptual study testing how well humans are able
to estimate the material properties of fabric from video and
image data. Section 5 presents our algorithm for predicting
the material properties of fabric. Section 6 contains results
of our algorithm and a discussion of the results.

2. Background

Previous work has focused on understanding static prop-
erties of materials, such as surface reflectance [14], material
category [10], roughness [4], and surface gloss [2]. In con-
trast, we address the problem of passively estimating mate-
rial properties of deformable objects in a natural scene that
are visually evident through dynamic motions.

The material properties of fabric can be measured using
expensive and time-intensive systems. These systems pre-
cisely measure a fabric’s response to many different, con-
trolled forces. The most well known setup used to measure
these parameters is the Kawabata evaluation system [7].
Since the development of the Kawabata system, other sys-
tems have been developed to directly measure the properties
of fabric [11, 17]. Although these systems produce accu-
rate measurements of a fabric’s material properties, they are
undesirable for applications in which we are not able to di-
rectly manipulate a physical specimen of the fabric.

Jojic and Huang attempted to estimate a fabric’s mate-
rial parameters from 3D data of a static scene containing
the fabric draped over an object [5]. However, because the

fabric was static, the system was not able to estimate prop-
erties evident from dynamic motion. Additionally, the sys-
tem needed very accurate 3D data in order to perform the
inference. Bhat et al. presented a method to estimate the
material properties of fabric from video data [1]. However,
this system has several limitations as well; the system re-
quires a controlled setup of structured light projected onto
the fabric and only allows movement due to a known gravi-
tational force. Such a system is inapplicable to the problem
we focus on. Instead, we wish to estimate material proper-
ties in a more natural setting, when the fabric is exposed to
unknown forces.

3. Database

In order to study this problem, we collected a database
containing videos of moving fabrics along with their associ-
ated material properties. This database has been made pub-
licly available online1. Thirty fabrics were collected for the
database. The fabrics span a variety of stiffness and den-
sities. Example categories include cotton, velvet, spandex,
felt, silk, upholstery, wool, denim, and vinyl.

Low ←−−−−−− Wind Force Strength −−−−−−→ High

Figure 2. An example of a horizontal space × time slice of the
same fabric exposed to the three different strengths of wind from
an oscillating fan. Note that the motion of the fabric appears very
different under the different wind strengths.

Ground Truth Measurements In order to obtain ground
truth material property measurements for the fabrics, we
sent specimens of each fabric to the Lowell Advanced Com-
posite Materials and Textile Research Laboratory2 to have
their stiffness (lbf-in2), area weight (oz/yd2), and density
(lb/in3) measured [16]. Since the material properties of fab-
ric often varies depending on the direction of measurement,
for many of the fabrics we made measurements of the prop-
erties in two orthogonal directions.

In this work, we have focused on recovering two of these
properties from video - the stiffness and area weight of fab-
rics. For convenience, in the remainder of this paper we
refer to area weight as density.

1http://people.csail.mit.edu/klbouman
2http://m-5.uml.edu/acmtrl/index.htm
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Videos Videos (859×851 pixel resolution) were recorded
for all fabrics. Fabrics were hung from a bar and exposed
to three different strengths of wind from an oscillating fan
positioned to the right of the fabrics. The two-minute videos
capture the fabrics moving in response to the wind force.
Figure 2 shows a space-time slice of the same fabric moving
under the three wind forces. Note that the motion of the
cloth looks very different under the different wind strengths.

RGB-D Kinect videos (640 × 480 pixel resolution) of
the scene were also recorded, providing a lower resolution
RGB image along with a corresponding depth image at ev-
ery frame. We have not used this data in our work thus far,
however this information could be used in the future to ob-
tain motion along the depth dimension.

All fabrics were cut to approximately 107×135 cm, and
steamed to remove wrinkles. Cutting the fabrics to the same
size removes any uncertainties due to scale that would con-
fuse human observers or an algorithm. For instance, a life-
size window curtain may move in a qualitatively different
way than a curtain from a dollhouse, even when cut from
the same piece of fabric.

4. Human Material Perception

In order to design our own algorithm we first looked to
humans for inspiration on what features may be important.
While visual cues from a static image can sometimes reveal
a lot about the materials in a scene, they can often be mis-
leading. In these cases, a video may help to disambiguate
the material properties.

To verify that humans use motion cues to passively es-
timate material properties, we designed a psychophysical
experiment to understand material perception from a purely
visual perspective. The experiment was designed to mea-
sure how well subjects are able to estimate the relative stiff-
ness and density of fabrics when observing video or image
stimuli. These experiments were conducted using Ama-
zon’s Mechanical Turk. Results of this study have been
made publicly available online.

4.1. Experimental Setup

Video Stimuli Stimuli included the videos of 30 common
fabrics exposed to 3 different strengths of wind from our
database (Section 3). A paired comparison method was
used to measure perceived differences in the stiffness and
density between the fabrics in two videos [8]. Specifically,
a subject was shown two videos of fabric stimuli moving by
either the same or a different wind force and then was asked
to report which fabric was stiffer, the fabric in video A or
B, by answering on a 7-point scale provided underneath the
videos (Figure 3). This pairwise score, which takes a value
in {−3,−2,−1, 0, 1, 2, 3}, indicates which fabric the sub-
ject believed was stiffer, and the degree of stiffness differ-
ence between two fabrics. Similarly, in a second experi-

ment, a subject was asked to report a pairwise score indi-
cating the relative weight of the fabric. Since fabrics in the
videos were cut to approximately the same size, the task of
predicting a fabric’s area weight reduces to predicting its
weight in this experiment.

A total of 100 workers from Mechanical Turk ( > 95%
approval rate in Amazon’s system) completed each experi-
ment by answering 100 questions. To prevent biases from
seeing different wind combinations across video pairs, a
particular subject always saw the same combination of wind
strengths between the two videos.

Figure 3. Experimental setup of pairwise comparisons of material prop-
erties (stiffness or density) from image stimuli. Subjects were asked to
compare material properties of the two fabrics on a 7 point scale. A simi-
lar setup was also used to compare the stiffness and density of fabrics given
video stimuli.

Image Stimuli A similar experimental setup was used to
test the perception of density and stiffness of the same 30
draped fabrics from a single still image. A total of 25 work-
ers from Mechanical Turk ( > 95% approval rate in Ama-
zon’s system) completed each experiment. Each subject an-
swered 100 questions.

Participants In order to maximize high quality responses,
subjects were required to watch each pair of videos for 15
seconds and each pair of images for 2 seconds before re-
sponding. Additionally, subjects were tested periodically
throughout the experiment by answering questions that they
had been given the answer to previously. Subjects who did
not respond to over 80% of these questions correctly were
removed from our analysis.

4.2. Data Analysis and Discussion

Given N pairwise scores, a single perceptual score for
each of the K fabrics was found by solving a linear regres-
sion problem. For each question n ∈ {1, ..., N} a stimuli
pair containing fabrics in, jn ∈ {1, ...,K} was observed
and assigned a pairwise score b(n) ∈{− 3, 2, 1, 0, 1, 2, 3}.
To obtain a single score for each fabric we solve Ax = b for
x, where A(n, in) = −1 and A(n, jn) = +1 for all n.
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Figure 4. Comparisons of ground truth material properties with human predictions when subjects observed video (a,b) and image (c,d) stimuli. Each star in
the plots represents a single fabric. The Pearson product-moment correlation coefficient (R-value) is shown for each comparison. These plots suggest that
human observers use motion cues in videos to estimate material properties. Results are shown scaled to values in the range of 0 to 1.

In accordance with Weber’s Law, we found that human
responses were well correlated with the log of ground truth
stiffness and density measurements when they were asked
to make judgments from videos of the fabric. However, the
responses were much less correlated with ground truth mea-
surements when the subjects were asked to make judgments
only from still images of the fabric. Figure 4 compares the
log of ground truth stiffness and density of the fabrics with
the perceptual score of the same material property for these
experiments. These plots suggest that human observers use
motion cues in videos to estimate material properties.
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Figure 5. Comparison of ground truth stiffness (a) and density (b) versus
perceptual scores computed from responses where subjects observed fab-
rics exposed to the same wind strength. Results are colored according to
the wind strength applied (indicated by W1, W2, and W3). This suggests
that humans were somewhat invariant to the strength of wind when making
predictions about material properties of fabric.

Next, we evaluated the effect of wind force on subjects’
responses in estimating material properties of fabric. To do
so, for each pair of fabrics, we measured how the differ-
ence in wind strength affected the fabrics’ pairwise score.
Table 1 shows the average change in pairwise score for ev-
ery increase in wind strength difference. We find that while
a wind’s strength has a small effect on human perception
of stiffness and density, relative judgements of the mate-
rial properties are largely unchanged under different force

Stiffness Density
-4.4% ± 5.8% -4.7% ± 5.3%

Table 1. The average sensitivity of humans to the strength of a wind force
in estimating material properties of fabric. The average percentage change
(and standard deviation) of a pairwise score for every wind strength in-
crease applied to the fabric in the second stimuli (Material B). This value
indicates that subjects on average judged fabric moving with an increased
force as 4.4% less stiff and 4.7% less heavy than they would have with a
weaker force.

environments. Figure 5 illustrates how subjects’ responses
correlated with ground truth material properties in varying
wind conditions for pairs of fabric moving under the same
wind strength.

5. Approach

A goal of computer graphics is to create models of phys-
ical objects that can be used to synthesize realistic images
and videos. In this work, we solve the inverse problem: de-
rive a model and its parameters that fit the observed behav-
ior of a moving deformable object in videos. A candidate
solution is to use the same generative model to solve the in-
verse problem as is used in the forward rendering. However,
this would require us to first infer the geometry of the mov-
ing object at every instant in time before fitting an inverse
model to the data. This intermediate inference step would
both have a high computational cost and a large chance of
introducing errors that an inverse model may be sensitive
to. Thus, we look towards alternate methods to predict the
material properties of a deformable object more robustly. In
this work, we use statistics characterizing temporal textures
in order to predict the material properties of fabric.

A flow diagram of our algorithm can be seen in Figure 6.
The input to our system is a video of a previously unseen
fabric moving (Figure 6a) along with a mask of which pix-
els contain the fabric in every frame; the output is a value
indicating its stiffness or density.
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Figure 6. Illustration of our framework for estimation of material properties of fabric from video. The input to our system is a video
containing fabric (a) along with a mask of what pixels contain the material. The masked magnitude of motion is extracted from the video
of moving fabric via optical flow (b). Features are computed from the masked magnitude of the motion (c). These features are computed
on a decomposition of the motion into sub-bands associated with concentric spheres in the frequency domain. PCA is then used to reduce
feature dimensionality (d). These features are fed into a regression model that predicts the material properties of the fabric in the input
video. The regression model was trained using features extracted from videos of other fabric where ground truth was available (e). This
model is used to estimate the stiffness or density of the fabric in the input video (f).

5.1. Motion Estimation

The intensity values of a video contain information about
both the appearance and motion in a scene. The printed
pattern on a fabric is less useful for the purpose of mate-
rial property prediction since the pattern does not, in gen-
eral, affect the material properties of the underlying fab-
ric. Therefore, since we would like to focus on character-
izing the fabric’s motion, we separate the appearance of the
printed pattern from the motion field in a video by comput-
ing the magnitude of the optical flow [9]. Any region in the
video not containing the fabric is masked out by assigning
it a flow magnitude of zero. Figure 6b shows the masked
magnitude of flow for a sample video. Note that different
parts of the fabric move at different speeds, even at a single
instant in time.

5.2. Statistical Features

Once we have extracted the motion’s magnitude from a
video, our goal is to extract a set of features from the mo-
tion field that are descriptive of the material properties. Mo-
tivated by humans’ ability to passively estimate the relative
material properties of fabric, we would like to find a set of
features that have a monotonic relationship between their
computed values and the perceived similarity of the motion
fields.

In designing our feature set, we draw inspiration from
Portilla and Simoncelli’s constraints that were developed
for synthesizing perceptually indistinguishable 2D visual
textures [12]. Portilla and Simoncelli developed a compact,
parametric statistical model that could then be used for tex-

ture analysis. We extend Portilla and Simoncelli’s work to
3D temporal textures for the application of inferring mate-
rial properties.

Pyramid Decomposition First, we decompose our mo-
tion field using a 3D complex multi-resolution pyramid.
Similar to a 2D complex steerable pyramid, this pyramid
uses a set of local filters to recursively decompose a video
into sub-band videos at Nsc different spatiotemporal scales
and Nor orientations; however, steerability does not hold in
this representation [12, 15]. Each sub-band contains a lo-
cal estimate of the magnitude and phase of the 3D signal
around a pixel. We have chosen to decompose the magni-
tude of our motion field into Nsc = 4 scales and Nor = 1
orientation. Figure 6c shows how the frequency domain is
split up for our decomposition. Features are computed from
the sub-bands of the multi-resolution complex pyramid de-
composition.

Decomposing the motion field in this way is desirable for
this application because different material properties may
be more pronounced in the motion from different spatiotem-
poral scales. For instance, a fabric’s density may have a
larger effect on the low frequency motion, whereas a fab-
ric’s bending stiffness may have a larger effect on the high
frequency motion.

The following sections describe features computed from
the coefficients of the decomposed motion field in order to
characterize the motion of a fabric. Implementation details
for the special case of these features in 2D can be found in
[12].
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5.2.1 Marginal Statistics

Statistics defined over the histogram of motion magnitudes
in a video are a simple but very powerful feature to use in
describing a motion field. Many texture analysis [3, 12, 18]
and action recognition [13] algorithms have either used
marginal statistics or histograms directly to characterize
marginal distributions. We measure the mean, skew, kur-
tosis and range (minimum and maximum) of the motion
magnitude. Additionally, the mean, skew, and kurtosis for
each of the Nsc = 4 lowpass videos are computed from the
complex 3D pyramid. The marginal statistics of the lowpass
videos characterize the distribution of motion magnitudes at
different spatiotemporal scales.

5.2.2 Autocorrelation

Julsez’s work in texture discrimination found that, although
not always sufficient, second order statistics are often very
important in guaranteeing pre-attentive perceptual equiva-
lence of textures [6]. In order to capture the second order
spatiotemporal distribution, or structure, in the motion field
we include the autocorrelation of the spatiotemporal signal
as a statistical feature.

The circular autocorrelation for a 3D neighborhood of
Nl = 9 pixels is computed for each of the Nsc = 4 low-
pass videos. By using the same size neighborhood for the
high and low spatiotemporal scales, the local autocorrela-
tion captures higher spectral resolution in the lower spa-
tiotemporal scales.

5.2.3 Magnitude Correlation

The correlation of the sub-band magnitudes of an image’s
pyramid decomposition has been previously used to repre-
sent structures such as edges, bars, and corners in image
textures [12]. Although bars and corners are rare in motion
fields containing a single object, edges may occur due to
occlusions. This is caused by the fabric moving at different
speeds on either side of the occlusion. Thus, we include cor-
relation of the decomposition’s neighboring sub-bands as a
feature of the motion field in a video. Capturing occlusions
in space can be useful for identifying material properties
such as stiffness: the less stiff a fabric is, the more folds it
generally contains.

5.2.4 Phase Correlation

Local phase estimates of a signal indicate its gradient in a
local region [12]. In order to capture gradual changes in the
motion field, we compute the correlation across the local
phases in the neighboring sub-bands of the video’s pyramid
decomposition.

5.3. Model Learning

We aim to recover the underlying material properties
from a video using the features described above. Specifi-
cally, we learn a function that maps the features to the log
of ground truth stiffness and density measurements. Moti-
vated by Weber’s Law, we choose to work in the log domain
since humans tend to be sensitive to the logarithm of mate-
rial properties and the features we have chosen to use were
initially developed for perceptual indistinguishability.

We first standardize each feature by subtracting the mean
and dividing by the the standard deviation. We would like
each feature-type (e.g., marginal statistics, autocorrelation,
etc.) to contribute the same amount of variance to the fea-
ture vector. Thus, we force the variance of each feature to
be proportional to the number of features in its feature-type.
We do this by dividing each feature by the square root of the
number of elements in its feature-type. Dimensionality of
the standardized feature vectors is then reduced using PCA.
Feature vectors are projected onto the top M eigenvectors,
Em, that preserve 95% of the variance in the data.

A simple linear regression model is used to map the
resulting features to the ground truth material properties.
We chose to use linear regression rather than a more com-
plex regression method to more directly reveal the power in
the selected features. To normalize for differences in sam-
ple sizes for different materials being analyzed, we add a
weight to our regression model proportional to the number
of samples containing the same material. Mathematically,
we solve W ⊙ Y = W ⊙ Xβ, for the weights β, given
the dimensionality-reduced feature vectors X , log-domain
ground truth measurements Y , and normalization weights
W . Here, ⊙ denotes element-wise multiplication.

5.4. Implementation Details

Twenty-three of the 30 fabrics in our database were se-
lected for training and testing of our model. Fabrics were
removed that either lacked texture or caused specularities in
the videos since they produced inaccurate optical flow esti-
mates of the motion.

Videos were first cropped to 832 × 832 pixels. Then,
for each video we extracted two non-overlaping video seg-
ments, each 512 frames long. A single feature vector was
computed for each segment. The linear regression model
described in Section 5.3 was then used to learn a mapping
from the feature vectors to the log of ground truth measure-
ments. In the cases where a single fabric contained multiple
ground truth measurements, we mapped each feature vector
corresponding to that fabric to each of the collected mea-
surements. We used a leave-one-out method for training the
model and predicting the material properties of the fabric
in each video segment. More specifically, when making a
prediction using a feature vector associated with a fabric, all
feature vectors extracted from video segments correspond-
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Error Stiffness Density
Motion 17.2% 13.8%
Intensity 34.7% 28.9%

Table 2. Percentage error calculated for stiffness and density esti-
mates when features were computed from the motion’s magnitude versus
grayscale intensity values. Percentage error is calculated by taking the
average percentage difference between a predicted measurement for each
video segment and all ground truth log measurements for a specific fabric.

Stiffness Density
-5.8% ± 4.0% -4.6% ± 5.2%

Table 3. The sensitivity of our model to the wind strength in estimating the
material properties of fabric. The average percentage change (and standard
deviation) of a pairwise score for every wind strength increase applied to a
given fabric. The sensitivity of our model to the wind force is comparable
to the sensitivity of human observers.

ing to the same fabric were removed from the training set.

6. Results and Discussion

Our goal was to develop a set of features that enable suc-
cessful estimation of the intrinsic material properties of a
fabric in the presence of unknown forces. In this section,
we demonstrate the power of the features introduced in Sec-
tion 5.2 for predicting the stiffness and density of fabrics
from video.

We compare predicted measurements of stiffness and
density from our algorithm to the ground truth measure-
ments (Section 3) and perceptual estimates (Section 4) in
Figure 7. This figure suggests that our estimates of the ma-
terial properties of the fabric in a video are well correlated
with the log of ground truth material property values. Thus,
our model is able to find a general trend of increasing stiff-
ness and density in the fabric videos.

Percentage error for stiffness and mass of our results can
be seen in Table 2. To evaluate the usefulness of extract-
ing the motion magnitude from the videos, as a baseline
we have also calculated the percentage error when features
were computed from the grayscale intensity values of the
video rather than the the motion’s magnitude. The error
is significantly larger when features are computed from the
grayscale intensity values. This supports our claim that it is
necessary to decompose the video into printed texture and
motion in order to estimate material properties using our
proposed features.

To evaluate our model’s sensitivity to wind strength in
predicting a fabric’s material properties, we computed the
average change in pairwise score for every increase in wind
strength difference as described in Section 4.2. Results
(Table 3) show that our model’s sensitivity to the wind
force is comparable to that of human sensitivity (Table 1)
in estimating the stiffness and density of fabric. For com-
pleteness, Figure 8 shows how relative predictions made by
our model correlated with ground truth material properties
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Figure 8. Comparison of ground truth stiffness (a) and density (b) versus
our model’s predictions computed from differences in the value predicted
for fabrics exposed to the same wind strength. Results are colored accord-
ing to the wind strength applied (indicated by W1, W2, and W3).

when the videos contained fabrics moving under the same
wind strength.

Sensitivity Analysis To evaluate the importance of each
of our feature-types (eg. marginal statistics, autocorrela-
tion, etc.) in the estimation of material properties, we have
computed the total sensitivity due to each feature-type. The
total sensitivity of the prediction due to the set of features
F in a single feature-type is computed as

S(F ) ∝
�

f∈F

����
M�

m=1

(βmEf
m)2 (1)

where Ef
m is the f th feature of the mth eigenvector and βm

are the regression weights from our model. A bar graph of
the normalized sensitivities can be found in Figure 9. These
sensitivities indicate that the autocorrelation is the most im-
portant feature for prediction of both the stiffness and den-
sity of fabric from video.

Marginal Statistics Autocorrelation Magnitude Corr. Phase Corr.
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Figure 9. The average normalized sensitivity of each feature-type in our
proposed model for the prediction of stiffness and density. Features related
to the autocorrelation have the largest effect on the estimation of stiffness
and density for videos from our database.
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Figure 7. Comparisons of model predictions for material properties against (a) ground truth stiffness, (b) ground truth density, (c) perceptual stiffness
scores, and (d) perceptual density scores. Each star in the plots represents a single fabric. The Pearson product-moment correlation coefficient (R-value) is
shown for each comparison. Results are shown scaled to values in the range of 0 to 1.

7. Conclusion

We have developed an approach for estimating the mate-
rial properties of fabric from video through the use of fea-
tures that capture spatiotemporal statistics in a video’s mo-
tion field. We tested our method on RGB videos from a new,
publicly available dataset on dynamic fabric movement and
ground truth material parameters that we constructed. Our
method recovers estimates of the stiffness and density of
fabrics that are well correlated with the log of ground truth
measurements. Both our method and humans were able to
partially discount the intensity of applied forces when form-
ing judgments about material properties. We believe our
dataset and algorithmic framework is the first attempt to
passively estimate the material properties of deformable ob-
jects moving due to unknown forces from video. More gen-
erally, our work suggests that many physical systems with
complex mechanics may generate image data that encodes
their underlying intrinsic material properties in a way that
is extractable by efficient discriminative methods.
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