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Abstract

Low rank models have been widely used for the represen-
tation of shape, appearance or motion in computer vision
problems. Traditional approaches to fit low rank models
make use of an explicit bilinear factorization. These ap-
proaches benefit from fast numerical methods for optimiza-
tion and easy kernelization. However, they suffer from seri-
ous local minima problems depending on the loss function
and the amount/type of missing data. Recently, these low-
rank models have alternatively been formulated as convex
problems using the nuclear norm regularizer; unlike factor-
ization methods, their numerical solvers are slow and it is
unclear how to kernelize them or to impose a rank a priori.

This paper proposes a unified approach to bilinear fac-
torization and nuclear norm regularization, that inherits the
benefits of both. We analyze the conditions under which
these approaches are equivalent. Moreover, based on this
analysis, we propose a new optimization algorithm and a
“rank continuation” strategy that outperform state-of-the-
art approaches for Robust PCA, Structure from Motion and
Photometric Stereo with outliers and missing data.

1. Introduction

Many computer vision, signal processing and statisti-

cal problems can be posed as problems of learning low

dimensional models from data. Low rank models have

been widely used for learning representations of shape,

appearance or motion in computer vision problems, un-

der several noise assumptions and use of prior informa-

tion [12, 14, 15, 35]. All these problems are directly or

indirectly related to the problem of recovering a rank-k ma-

trix Z from a corrupted data matrix X, by minimizing

min
Z

f(X− Z)

subject to rank(Z) = k,
(1)

min
U,V

f(X−UV�)

min
Z

f(X− Z) + λ‖Z‖∗

min
U,V

f(X−UV�) +
λ

2

(‖U‖2F + ‖V‖2F
)

Bilinear factorization:

Nuclear norm regularization:

Unified model:

Variational definition of the nuclear norm:

‖Z‖∗ = min
Z=UV�

1

2

(‖U‖2F + ‖V‖2F
)

Figure 1. Low-rank matrix decomposition can be achieved with

both bilinear factorization and nuclear norm regularization mod-

els. We analyze the conditions under which these are equivalent

and propose a unified model that inherits the benefits of both.

where f(·) denotes a loss function (see footnote1 for nota-

tion). Due to its intractability, the rank constraint in (1) has

typically been imposed by a factorization Z = UV�, as

min
U,V

f(X−UV�). (2)

It has been shown that when the loss function is the Least

Squares (LS) loss, i.e., f(X − UV�) = ‖X − UV�‖2F ,

then (2) does not have local minima and a closed form solu-

tion can be obtained via the Singular Value Decomposition

(SVD) of X [3]. Unfortunately, this factorization approach

has several caveats: The LS loss is highly susceptible to

outliers; also, the presence of missing data in X results in

local minima. While outliers can be addressed with robust

loss functions [14, 22], factorization with missing data is an

1Bold capital letters denote matrices (e.g., D). All non-bold letters

denote scalar variables. dij denotes the scalar in the row i and column

j of D. 〈d1,d2〉 denotes the inner product between two vectors d1 and

d2. ||d||22 = 〈d,d〉 =
∑

i d
2
i denotes the squared Euclidean Norm of

the vector d. tr(A) =
∑

i aii is the trace of A. ‖A||2F = tr(A�A) =∑
ij a

2
ij designates the squared Frobenius Norm of A. ||A||∗ designates

the nuclear norm (sum of singular values) of A. � denotes the Hadamard

or element-wise product. IK ∈ R
K×K denotes the identity matrix.
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NP-Hard problem [17]. For this reason, the optimization of

(1) remains an active research topic [5, 15, 36, 41].

Recently, several works have surfaced which exploit

low-rank structure through regularization, by minimizing

min
Z

f(X− Z) + λ‖Z‖∗, (3)

where λ is a trade-off parameter between the loss func-

tion and the low-rank regularization induced by the nuclear

norm. These models have extended the use of low-rank pri-

ors to many applications where Z is low rank but its rank is

not known a priori [9, 20, 40]. Despite their convexity and

theoretical guidelines for the choice of λ [9], these models

also have several drawbacks. First, it is unclear how to im-

pose a certain rank in Z: we show that adjusting λ so Z has

a predetermined rank typically provides worse results than

imposing it directly in (2). Second, the inability to access

the factorization of Z in (3) hinders the use of the “kernel

trick”. Third, (3) is a Semidefinite Program (SDP). Off-the-

shelf SDP optimizers only scale to hundreds of variables,

not amenable to the high dimensionality typically found in

vision problems. While [8, 9, 24] ameliorate this issue, they

still perform a SVD of Z in each iteration, making them un-

suitable for handling dense, large scale datasets.

In this paper, we provide a best-of-all-worlds approach.

Motivated by the theoretical results in [6], we show that

many nuclear norm regularized problems of the form (3)

can be optimized with a bilinear factorization of Z = UV�

by using the variational definition of the nuclear norm (see

Fig. 1). While this reformulation is known in the litera-

ture, this paper is the first to propose a unification of tra-

ditional bilinear factorization and nuclear norm approaches

under one formulation. This result allows us to analyze the

conditions under which both approaches are equivalent and

provide the best solution when they are not. Our analysis

is divided in two situations: when the output rank is uncon-

strained and when the output rank is known a priori. For the
first case, we propose a scalable and kernelizable optimiza-

tion algorithm; for the second case, we propose a “rank con-

tinuation” strategy to avoid local optima. We show that our

proposed strategies outperform state-of-the-art approaches

in problems of Robust PCA, Photometric Stereo and Struc-

ture from Motion with outliers and missing data.

2. Previous Work
Low-rank matrix factorization is a long standing prob-

lem in computer vision. The seminal factorization method

for Structure from Motion of Tomasi and Kanade [35]

has been extended to encompass non-rigid and articulated

cases, as well as photometric stereo [5] and multiple bod-

ies [12]. Unfortunately, in the presence of missing data or

weights, the factorization problem becomes NP-Hard [17].

Thus, many research works have focused on initialization

strategies [21] or algorithms that are robust to initialization.

Aguiar et al. [1] proposed an optimal algorithm in the ab-

sence of noise when the missing data follows a Young di-

agram. However, typical missing data scenarios in com-

puter vision exhibit band patterns. Buchanan et al. [4]

showed that alternated minimization algorithms are subject

to flatlining and proposed a Newton method to jointly op-

timize U and V. Okatani et al. [29] showed that a Wiberg

marginalization strategy onU orV is very robust to initial-

ization, but its high memory requirements make it imprac-

tical for medium-size datasets. These methods have also

been extended to handle outliers [14, 15, 22]. De la Torre

and Black [14] proposed a PCA with robust functions, and

used Iterative Re-Weighted Least Squares (IRLS) to solve

it. This approach can handle missing data by setting weights

to zero in the IRLS algorithm; unfortunately, it is prone to

local minima. Ke and Kanade [22] suggested replacing the

LS loss with the L1 norm, minimized by alternated linear

programming. Similarly to the LS case, Eriksson et al. [15]
showed this approach is subject to flatlining and propose a

Wiberg extension for L1. Wiberg methods have also been

extended to arbitrary loss functions by Strelow [33], but ex-

hibit the same scalability problems as its LS and L1 coun-

terparts. Recently, Glashoff and Bronstein [18] proposed

an Augmented Lagrange Multiplier (ALM) method for this

problem, as a special case of [5] without constraints. This is

subsumed by the generalized model proposed herein. Also,

in Sec. 3 we provide a theoretical justification for this choice

of algorithm for the factorization problem. The addition of

problem specific constraints e.g., orthogonality of U, has

also been shown to help escape local minima in structure

from motion [5, 41]. However, this is not generalizable

to several other computer vision problems modeled as low-

rank factorization problems [5, 31, 34, 37].

Alternatively to bilinear factorization approaches, Can-

des and Recht [10] stated that the rank function, under broad

conditions of incoherence, can be minimized by its convex

surrogate, the nuclear norm. This result has extended the

use of low-rank priors to many applications where the rank

is not known a priori, e.g., segmentation [11], background

modeling [9] and tracking [39]. It has also been applied to

penalize complexity in image classification and regression

tasks [7, 20, 25]. Since the nuclear norm yields a SDP, sev-

eral methods try to optimize it efficiently [8, 9, 16, 24] by

exploiting a closed form solution of its proximal operator.

However, they compute a SVD of Z in every iteration, hin-

dering their applicability to large, dense datasets. Gradient

methods on the Grassmann manifold have also been pro-

posed to incrementally optimize (3) (e.g., [19]). However,

these methods rely on a rank selection heuristic, which fails

when the missing data pattern is not random.

Recently, the nuclear norm has also been proposed to

tackle the factorization problem when the rank is known a
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priori. Angst et al. [2] proposed a weighted version of the

nuclear norm for structure from motion. Dai et al. [13] pro-
posed an element-wise factorization for projective recon-

struction by relaxing the rank 4 constraint to nuclear norm

optimization. Zheng et al. [41] extended [15] by adding a

nuclear norm regularizer to V and the orthogonality con-

straints in U found in [5] for structure from motion. Re-

sults provided in this paper shows that when the output rank

is known a priori, nuclear norm solutions typically provide

worse reconstruction results than those obtained with bilin-

ear factorization models.

3. Soft and hard rank constraints
In this section, we bridge the gap between factorization

and nuclear norm approaches. Consider the nuclear norm

model in (3). For convex f(·), we can rewrite it as [32]

min
Z,B,C

f(X− Z) +
λ

2
(tr(B) + tr(C))

subject to Q =

[
B Z
Z� C

]
� 0.

(4)

For any positive semidefinite matrix Q, we can write Q =
RR� for someR. Thus, we can replace matrixQ in (4) by

Q =

[
B Z
Z� C

]
=

[
U
V

] [
U� V� ]

, (5)

where U ∈ R
M×r, V ∈ R

N×r and r ≤ min(N,M) is an

upper bound on rank(Z). Merging (5) into (4) yields

min
U,V

f(X−UV�) +
λ

2

(‖U‖2F + ‖V‖2F
)
, (6)

where the SDP constraint was dropped because it is satisfied

by construction. This reformulation seems counterintuitive,

as we changed the convex problem in (3) into a non-convex

one, which may be prone to local minima (e.g., in the case

of missing data under the LS loss [17]). However, we show

the existence of local minima in (6) depends only on the

dimension r imposed on matrices U and V. We extend the

analysis of Burer and Monteiro [6] to prove that:

Theorem 1 Let f(X − Z) be convex in Z and Z∗ be an
optimal solution of (3) with rank(Z∗) = k∗. Then, any
solution Z = UV� of (6) with r ≥ k∗ is a solution of (3).

Theorem 1 (which we prove in Appendix A) immediately

allows us to draw one conclusion: The factorization and the

nuclear norm models in (2) and (3) are special cases of (6).

Fig. 2 illustrates this result in a synthetic case. We plot the

output rank of Z = UV� in (6) as a function of λ for a

random 100 × 100 matrix X with all entries sampled i.i.d.

from a Gaussian distribution N (0, 1), no missing data and
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Figure 2. Region of equivalence between factorization (6) and nu-

clear norm approaches (3) for a 100 × 100 random matrix and

LS loss. When factorization is initialized in the white area, it is

equivalent to the result obtained with the nuclear norm (black line).

When the rank is known a priori, better reconstruction results can

be found in the grey area, by using factorization approaches.

LS loss: the factorization approach in (2) corresponds to the

case where λ = 0 and r is fixed, whilst the nuclear norm in

(3) outputs an arbitrary rank k∗ as function of λ (the black

line). According to Theorem 1 and the analysis in [6], for

any r ≥ k∗ (white area), (6) does not have additional local

minima relative to (3). On the other hand, when r < k∗

(grey area), the conditions of Theorem 1 are no longer valid

and thus optimizing (6) can be prone to local minima.

A special case of Theorem 1 has been used to recom-

mend the use of nuclear norm approaches in the machine

learning community by Mazumder et al. [27]. However,

their analysis is restricted to the LS loss and the case where

the rank is not known a priori (i.e., white area of Fig. 2).

Our analysis instead extends to other convex loss functions

and is based on the observation that many computer vision

problems live in the grey area of Fig. 2. That is, their out-

put rank k is predetermined by a domain-specific constraint

(e.g., in Structure from Motion k = 4 [35]). Thus, we ad-

vocate the use of our unified model in (6) over the nuclear

norm formulation in (3), based on two arguments:

When the output rank is unconstrained, we show in

Sec. 4 that we can always choose r ≥ k∗ such that (6)

provides equivalent results to (3), while yielding scalable

and kernelizable algorithmic solutions. In the case of the

L1 loss, our algorithm for (6) has less computational com-

plexity than exact proximal methods for (3).

When the output rank is known a priori, optimizing (6)

is preferable to (2) and (3). As we will show in the experi-

mental section, optimizing (6) is less prone to local minima

than the unregularized problem (2). On the other hand, se-

lecting λ in the nuclear norm model (3) such that the output

rank k is the desired value typically leads to worse recon-

structions than directly imposing r = k in (6). Moreover,

based on this analysis, we propose in Sec. 5 a “rank con-
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tinuation” strategy, and empirically show it is able to attain

global optimality in several scenarios.

For the remainder of the paper, we focus our attention in

the LS loss ‖W�(X−Z)‖2F =
∑

ij(wij(xij−zij))
2, and

the L1 loss ‖W�(X−Z)‖1 =
∑

ij |wij(xij−zij)|, where

W ∈ R
M×N is a weight matrix that can be used to denote

missing data (i.e., wij = 0). We note, however, that this

result applies to the Huber [2, 22] and hinge loss [25, 31].

4. Factorization with unconstrained rank

Nuclear norm models have extended the use of low-rank

priors to many applications where Z is low rank but its ex-

act value is not known a priori [9, 20, 40]. In this section,

we propose an algorithm for solving (6) and show its com-

plexity is lower than proximal methods [24] for optimiz-

ing the nuclear norm model in (3). One important factor

to take into account when optimizing (6) is that when U or

V are fixed, (6) becomes convex. However, it has been re-

ported that pure alternation approaches are prone to flatlin-

ing [4, 15, 30]. For smooth losses such as the LS, this can be

circumvented by performing gradient steps jointly inU,V.

Alternatively, we propose an Augmented Lagrange Multi-

plier (ALM) method for two reasons: 1) Theorem 1 and the

analysis in [6] can be used to prove ALM’s convergence to

global optima of (3) when r ≥ k∗, and 2) its applicability

to the non-smooth L1 norm. Let us rewrite (6) as

min
Z,U,V

‖W � (X− Z)‖1 + λ

2

(‖U‖2F + ‖V‖2F
)

subject to Z = UV�,
(7)

and its corresponding augmented lagrangian function as

min
Z,U,V,Y,ρ

‖W � (X− Z)‖1 + λ

2

(‖U‖2F + ‖V‖2F
)

+ 〈Y,Z−UV�〉+ ρ

2
‖Z−UV�‖2F ,

(8)

whereY are Lagrange multipliers and ρ is a penalty param-

eter to improve convergence [24]. This method exploits the

fact that the solution for each subproblem inU,V,Z can be

efficiently solved in closed form: ForU andV, the solution

is obtained by equating the derivatives of (8) in U and V to

0. For known U and V, Z can be updated by solving

min
Z

‖W � (X− Z)‖1 + ρ

2
‖Z− (

UV� − ρ−1Y
) ‖2F ,

(9)

which can be done in closed form by the element-wise

shrinkage operator Sμ(x) = max (0, x− μ), as

Z = W � (
X− Sρ−1(X−UV� + ρ−1Y)

)
+W � (UV� − ρ−1Y),

(10)

for the L1 loss, or

Z = W �
(

1

2 + ρ

(
2X+ ρ(UV� − ρ−1Y)

))

+W � (UV� − ρ−1Y),

(11)

for the LS loss. Here, wij = 1, ∀ijwij �= 0 and 0 otherwise.

The resulting algorithm is summarized in Alg. 1.

Algorithm 1 ALM method for optimizing (6)

Input: X,W ∈ R
M×N , params μ, λ, initialization of ρ

while not converged do
while not converged do

Update U = (ρZ+Y)V
(
ρV�V + λIr

)−1

Update V = (ρZ+Y)
�
U

(
ρU�U+ λIr

)−1

Update Z via (10) for L1 loss or (11) for LS loss

end while
Y = Y + ρ(Z−UV�)
ρ = min (ρμ, 1020)

end while
Output: Complete Matrix Z = UV�

Assuming without loss of generality that X ∈ R
M×N

andM > N , we have that exact state-of-the-art methods for

SVD (e.g., Lanczos bidiagonalization algorithm with partial

reorthogonalization) take a flop count of O(MN2 + N3).
The most computational costly step in our ALMmethod are

the matrix multiplications in the update of U and V, which

take O(MNr +Nr2) if done naively. Given that typically

k∗ ≤ r � min(M,N) and k∗ can be efficiently estimated

[23], Alg. 1 provides significant computational cost savings

when compared to proximal methods which use SVDs [24].

Note on kernelization: An important implication of The-

orem 1 is that in (6) we can solve (3) with access to U,V.

This makes kernel extensions trivial in e.g., RLDA [20].

5. Factorization with rank known a priori
Many representations of shape, appearance or motion in

computer vision problems yield models of a predetermined

rank k [5, 12, 35]. In this case, we argue for the use of

our model (6) instead of the nuclear norm approach in (3)

and the unregularized model in (2). To understand why this

is the case, let us consider the example of rank-k factor-

ization of a matrix X under the LS loss with no missing

data. For this case, both (2) and (3) have closed form so-

lutions in terms of the SVD of X = UΣV
�
, respectively,

Z = UΣ1:kV
�

and Z = USλ
2
(Σ)V

�
. In the case of noisy

data, while the former yields the optimal rank-k reconstruc-

tion, we need to tune λ in the latter such that σk+1 = 0.
If the λ required to satisfy this constraint is high, it may

severely distort the non-zero singular values σ1:k, result-

ing in poor reconstruction accuracy. On the other hand,
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the analysis in Sec. 3 shows that rank restrictions typically

lead to local minima when missing data are present. This

problem is exacerbated when regularization is not used (i.e.,
λ = 0): in addition to gauge freedom2, it is clear that not

all weight matrices W admit a unique solution [4]. As an

extreme example, if W = 0, any choice of U and V yields

the same (zero) error. Thus, the unregularized factorization

in (2) will be more prone to local minima than its regular-

ized counterpart (6). These two arguments provide a general

guideline for choosing λ: it should be selected as non-zero

to ameliorate the local minima problem of (2), but small

enough such that the first r singular values are not distorted.

Given that for any fixed λ we showed in Sec. 4 that

(6) always has a region with no local minima, we propose

the following “rank continuation” strategy: we initialize (6)

with a rank r ≥ k∗ matrix (i.e., white region of Fig. 2),

to guarantee its convergence to the global solution. Note

that in the absence of an estimate for k∗, we can always use

r = min(M,N). Then, we use this solution as initialization

to a new problem (6) where the dimensions r of U,V are

decreased by one, until the desired rank is attained. This

reduction can be done by using an SVD projection. This

approach is summarized in Alg. 2.

Algorithm 2 Rank continuation

Input: X,W ∈ R
M×N , output rank k, parameter λ, an

optional estimate of the output rank k∗ of (3)

Initialize U,V randomly, with k∗ ≤ r ≤ min (M,N)
Solve for Z in (6) with Alg. 1

for r = rank(Z)− 1, . . . , k do
SVD: Z = UΣV

�

Rank reduce: Ur = UΣ
1
2
1:r, V

�
r = Σ

1
2
1:rV

�

Solve Z in (6) with initialization Ur,Vr using Alg. 1

end for
Output: Complete Matrix Z with rank k

Rank continuation provides a deterministic optimization

strategy that empirically is shown to find better local op-

tima. We show in the experimental section that global min-

ima of (6) are achieved with this strategy in several cases.

6. Experimental Results
In this section, we provide experimental validation of the

conclusions drawn in Sec. 3, by applying our models in both

synthetic and real datasets. We consider two computer vi-

sion scenarios: in Sec. 6.1, we explore the application of

Robust PCA, a typical scenario when the desired output

rank is unconstrained and compare our factorization (6) to

nuclear norm approaches; in Sec. 6.2, we explore the ap-

plications of SfM, Non-rigid SfM and Photometric Stereo,

typical scenarios where the output rank is known a priori.
2for each solution UV�, any solution (UR)(R−1V�) where R ∈

R
r×r is an invertible matrix will provide an equal cost.

In this case, we compare our continuation approach to nu-

clear norm approaches and several factorization algorithms.

We use implementations provided in authors’ websites

for all baselines. For all experiments, we fix μ = 1.05 ini-

tialize ρ = 10−5 in Alg. 1. All experiments were run in a

desktop with a 2.8 GHz Quad-core CPU and 6 GB RAM.

6.1. Factorization with unconstrained rank

In this section, we validated the lower computational

complexity of the algorithm proposed in Sec. 4, when the

output rank is unconstrained. We compared to state-of-

the-art nuclear norm and Grassmann manifold methods:

GRASTA [19], PRMF [36] and RPCA-IALM [24] in a syn-

thetic and real data experiment for background modeling.

Synthetic data We mimicked the setup in [24] and gen-

erated low-rank matrices X = UV�. The entries in

U ∈ R
M×r,V ∈ R

N×r and M = N were sampled i.i.d.

from a Gaussian distribution N (0, 1). Then, we corrupted

10% of the entries with large errors uniformly distributed

in the range [−50, 50]. The error support was chosen uni-

formly at random. Like [24], we set λ =
√
N and use

the L1 loss. We varied the dimension N and rank r and

measured the algorithm accuracies, defined as
‖Z−X‖2

‖X‖2
, and

the time they took to run. The results in Table 1 corrobo-

rate the analysis in Sec. 4: as N grows significantly larger

than r, the smaller runtime complexity of our method al-

lows for equally accurate reconstructions in a fraction of the

time taken by RPCA-IALM. While PRMF and GRASTA

are also able to outperform RPCA-IALM in time, these

methods achieve less accurate reconstructions due to their

alternated nature and sampling techniques, respectively.

Real data Next, we compared these methods on a real

dataset for background modeling. Here, the goal is to obtain

the background model of a slowly moving video sequence.

Since the background is common across many frames, the

matrix concatenating all frames is a low rank matrix plus a

sparse error matrix modeling the dynamic foreground.

We followed the setup of [36] and used the Hall se-

quence3. This dataset consists of 200 frames of video with

a resolution of 144 × 176, and we set the scope of the vir-

tual camera to have the same height, but half the width. We

simulated a camera panning by shifting 20 pixels from left

to right in frame 100 to simulate a dynamic background.

Additionally, we randomly dropped 70% of the pixels. We

proceeded as in the previous synthetic experiment. Fig. 3

shows a visual comparison of the reconstruction of sev-

eral methods. Results corroborate the experiment in Tab. 1

and show that the lower accuracies of GRASTA and PRMF

yield noisier reconstructions than our method.

3http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Table 1. Performance comparison of state-of-the-art methods for Robust PCA. Time is in seconds. Error has a factor of 10−8.

Matrix RPCA-IALM [24] GRASTA [19] PRMF [36] Ours

N r Error Time Error Time Error Time Error Time

100 3 1.4872 0.3389 226.46 1.7656 3338.7 0.4704 0.5286 0.1734
200 5 1.5599 2.3575 241.99 2.7282 2687.5 1.0382 0.7182 0.5739
500 10 3.2595 10.501 263.55 9.5399 1692.4 6.2480 0.1273 3.2373
1000 15 0.3829 44.111 286.17 23.535 1145.8 30.441 0.0701 14.339
2000 20 0.6212 196.89 329.11 83.010 808.20 126.95 0.0308 60.658
5000 25 0.2953 1840.0 379.94 507.57 504.08 1307.4 0.0589 556.21

Figure 3. Results for background modeling with virtual pan. The

first row shows the known entries used for training in frames 40,

70, 100, 130, 170, 200. The remaining rows show the results ob-

tained by PRMF, GRASTA and our method, respectively.

6.2. Factorization with known rank

In this section, we empirically validated the “rank con-

tinuation” strategy proposed in Sec. 5, in several synthetic

and real data problems where the output rank is known a
priori. We compared our method to state-of-the-art factor-

ization approaches: the damped Newton in [4], the LRSDP

formulations in [28] and the LS/L1 Wiberg methods in

[15, 29]. Following results reported in the detailed com-

parisons of [4, 15, 29, 30, 33, 41], we dismissed alternated

methods due to their flatlining tendency. To allow direct

comparison with published results [4, 28, 29, 41], all meth-

ods solved either (2) or (6) without additional problem spe-

cific constraints and we fixed λ = 10−3. For control, we

also compared to two nuclear norm baselines: NN-SVD,

obtained by solving (3) with the same λ used for other mod-

els and projecting to the desired rank with an SVD; NN-λ,
obtained by tuning λ in (3) so the desired rank is obtained.

Synthetic data We assessed the convergence perfor-

mance of our continuation strategy using synthetic data. We

performed synthetic comparisons for the two loss choices

described in Sec. 3: LS loss and L1 loss. For the LS loss,

we generated rank-3 matrices X = UV�. The entries in

U ∈ R
20×3,V ∈ R

25×3 were sampled i.i.d. from a Gaus-

sian distributionN (0, 1) and Gaussian noiseN (0, 0.1) was
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(b) L1 loss

Figure 4. Comparison of convergence to empirical global minima

(Min) for the LS and L1 losses in synthetic data. The minima are

found as the minimum of all 100 runs of all methods for each test.

added to every entry of X. For the L1 loss, we proceeded

as described for the LS case but additionally corrupted 10%
of the entries chosen uniformly at random with outliers uni-

formly distributed in the range [−2.5, 2.5]. We purposely

kept the synthetic experiments small, due to the significant

memory requirements of the Wiberg algorithms. We varied

the percentage of known entries and measured the resid-

ual over all observed entries, according to the optimized

loss function. We chose this measure as it allows for direct

comparison between unregularized and regularized models.

We ran damped Newton, LRSDP and Wiberg methods 100
times for each test with random initializations.

Fig. 4 shows the results for the LS and L1 loss cases.

We show two representatives cases for the percentage of

known entries (75% and 35%, the breakdown point for L2-

Wiberg methods), both for missing data patterns at ran-

dom (M.A.R.) and with a pattern typical of SfM matrices

(Band), generated as in [29]. The theoretical minimum

number of entries to reconstruct the matrix is the same as

the number of parameters minus factorization ambiguity

Mr+(N−r)(r+1), which for this case is 29.6% [29]. We

verified the behavior of all methods when more than 40% of

the entries are known is similar to the result shown for 75%.

For the LS case, results in Fig. 4(a) show that our deter-

ministic continuation approach always reaches the empiri-

cal optima (found as the minimum of all runs of all meth-

ods), regardless of the number of known entries or pattern of

missing data. Note the minimum error is not zero, due to the

variance of the noise. As reported previously [29, 30, 41],
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Table 2. Real datasets for problems with known output rank-k.
Dataset Size Output rank k Known entries

Dino 319× 72 4 28%
Giraffe 240× 167 6 70%
Face 2944× 20 4 58%

Sculpture 26260× 46 3 41%

we observe that L2-Wiberg is insensitive to initialization for

a wide range of missing data entries. However, we note

that its breakdown point is not at the theoretical minimum,

due to the lack of regularization. The LRSDP method for

optimizing (6) outperforms the Wiberg method, suggest-

ing that similar convergence properties of the Wiberg can

be obtained without its use of memory. The baseline NN-

SVD performed poorly, showing that the estimation of the

nuclear norm fits information in its additional degrees of

freedom instead of representing it with the true rank. For

the L1 loss case, results in Fig. 4(b) show that our contin-

uation strategy no longer attains the empirical optima. We

note that this is not surprising since the problem of fac-
torization with missing data is NP-Hard. However, its

deterministic result is very close to the optima. Our con-

tinuation method regained empirical optimality when only

2% of outliers were present in the data, suggesting a de-

pendency on the noise for the L1 case. In this case, our

performance is comparable to what is obtained with the L1-

Wiberg algorithm [15] on average. Thus, continuation is a

viable alternative to the memory expensive Wiberg method.

Real data Next, we assessed the results of our continua-

tion approach in real data sequences. We used four popular

sequences4: a) Dino, for affine SfM; b) Giraffe, for non-

rigid SfM, and c) Face and d) Sculpture, both photometric

stereo sequences. Their details are summarized in Table 2.

The dimension of these datasets make the usage of the L1-

Wiberg of [15] prohibitive in our modest workstation, due

to its memory requirements. For the Sculpture dataset, we

treated as missing all pixels with intensity greater than 235
or lower than 20 (e.g., in Fig. 5(b), the yellow and pur-

ple+black masks, resp.). All other datasets provide W.

Table 3 shows a comparison of average error over all

observed entries for the continuation proposed in Alg. 2

and several methods, according to the loss functions L1/LS.

“Best” denotes the best known result in the literature. As

explained in Sec. 5, we observe that nuclear norm regular-

ized approaches NN-SVD and NN-λ result in bad approxi-

mations when a rank restriction is imposed. Similar to the

results in the synthetic tests, our method always attained or

outperformed the state-of-the-art result for the LS loss. The

convergence studies in [4, 29] performed optimization on

the first three datasets several times with random initializa-

tions, so their reported results are suspected by the commu-

nity to be the global optima for these problems. Our method

consistently attains these results in a deterministic fashion,

4http://www.robots.ox.ac.uk/˜abm/

(a) Input (b) Mask (c) NN-λ (d) RL1NN (e) NNSVD (f) Ours

Figure 5. Results for frame 17 of the sculpture sequence. While

(c) (d) smooth out the image and (e) fails to reconstruct it, our

continuation approach (f) is able to obtain reconstructions preserve

finer details, such as the imperfections on the cheek or chin.

Table 3. Comparison of LS/L1 average error over all observed en-

tries for structure from motion and photometric stereo datasets.

Dataset f(·) Best NN-λ NN-SVD Ours

Dino
LS 1.0847 [4] 6.1699 35.8612 1.0847
L1 0.4283 [41] 7.6671 80.0544 0.2570

Giraffe
LS 0.3228 [4] 0.4370 0.6519 0.3228
L1 – 1.8974 11.0196 0.2266

Face
LS 0.0223 [4] 0.0301 0.0301 0.0223
L1 – 0.0287 0.6359 0.0113

Sculpt
LS 24.6155 [5] 44.5859 31.7713 22.8686
L1 17.753 [41] 21.828 [38] 33.7546 12.6697

as opposed to state-of-the-art methods which get stuck in

local minima several times. As a control experiment, we

also ran our continuation strategy for the unregularized case

(λ = 0) on the Dino sequence with LS loss, which resulted

in a RMSE of 1.2407. We attribute this to the fact that this

case is more prone to local minima, as mentioned in Sec. 5.

For the L1 loss, continuation outperforms the state-of-

the art in all datasets. It might be argued that problem spe-

cific constraints are required to obtain clean reconstructions,

but we reiterate the importance of escaping local minima.

While there are certainly degenerate scenarios which can

only be solved with such constraints [26], Alg. 1 (and con-

sequently, Alg. 2) can be trivially extended to handle such

cases. For example, the projection step on U for SfM in [5]

can be added to Alg. 1 or the problem can be reformulated

as a different SDP [28] with a rank constraint, which can be

tackled by our continuation strategy in Alg. 2.

7. Conclusion

We developed a unified approach to matrix factorization

and nuclear norm regularization, that inherits the benefits

of both approaches. Based on this analysis, we proposed a

deterministic “rank continuation” strategy that outperforms

state-of-the-art approaches in several computer vision ap-

plications with outliers and missing data. Future work in

factorization algorithms should optimize the unified model

in (6), since it subsumes the traditional factorization and the

nuclear norm regularized approaches. It should also focus

into the theoretical understanding of the continuation model

proposed in Sec. 5, as both synthetic and real data experi-

mental results provide a strong indication of it achieving the
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global minima when using the LS loss.
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A. Proof of Theorem 1
To show this, we first note that (6) agrees with the fol-

lowing alternative formulation of the nuclear norm [32],

‖Z‖∗ = min
Z=UV�

1

2

(‖U‖2F + ‖V‖2F
)
. (12)

and that Mazumder et al. [27] showed the following result:

Lemma 2 For any Z ∈ R
M×N , the following holds: If

rank(Z) = k ≤ min (M,N), then the minimum of (12) is
attained at a factor decomposition Z = UM×kV

�
N×k.

This result allows us to prove the desired equivalence:

Proof Applying Lemma 2, we can reduce (6) to

min
U,V

f(X−UV�) + λ‖UV�‖∗
= min

Z,rank(Z)=k
f(X− Z) + λ‖Z‖∗

=min
Z

f(X− Z) + λ‖Z‖∗.
(13)
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