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Abstract

This work aims at introducing a new unified Structure-
from-Motion (SfM) paradigm in which images of circular
point-pairs can be combined with images of natural points.
An imaged circular point-pair encodes the 2D Euclidean
structure of a world plane and can easily be derived from
the image of a planar shape, especially those including cir-
cles. A classical SfM method generally runs two steps: first
a projective factorization of all matched image points (into
projective cameras and points) and second a camera self-
calibration that updates the obtained world from projective
to Euclidean. This work shows how to introduce images of
circular points in these two SfM steps while its key contri-
bution is to provide the theoretical foundations for combin-
ing “classical” linear self-calibration constraints with ad-
ditional ones derived from such images. We show that the
two proposed SfM steps clearly contribute to better results
than the classical approach. We validate our contributions
on synthetic and real images.

1. Introduction

A now classical Structure-from-Motion (SfM) paradigm
basically consists of two key steps: (i) compute a projec-
tive reconstruction of cameras and points; (ii) update the
obtained projective representation to Euclidean by locating
the absolute conic on the plane at infinity [3]. One key is-
sue in SfM is to solve (i) by simultaneously using all the
matched features in all images i.e., all the constraints ensur-
ing the scene rigidness. This is exactly what factorization-
based paradigms aim at. They rely on the factorization of
a measurement matrix consisting of matched points scaled
to their projective depths, into two lower-rank matrices, one
representing the camera motion and one representing the 3D
points of the scene structure, both w.r.t. some unknown pro-
jective world representation. A method that solves (ii) is so-
called self-calibration and is always achieved under some
assumptions on the camera parameters [10] as the absolute
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conic refers to the (unique) imaginary circle at infinity in
projective 3-space which is fixed under general motions of
the camera. Once the absolute conic is recovered, a pro-
jective transfomation can be applied to the world space to
update it to Euclidean.

We focus here on direct approaches which rely on the
fact that the absolute conic may be represented by a sin-
gle equation in dual projective space (and hence by a sin-
gle matrix) as the assemblage of its tangent planes i.e., as
the so-called absolute dual quadric. The absolute dual
quadric and its use in computer vision has been introduced
by Triggs in 1997 [13] but surely popularised in 1999 by
the linear least-squares algebraic solution of Pollefeys et al.
[S, 6, 10]. In this approach, it is assumed the hypothesis (H)
of a camera with known intrinsics except a time-varying fo-
cal length. A minimal set of 3 cameras is required to obtain
a linear least squares solution for the 4 x 4 symmetric ma-
trix QX of the dual absolute quadric, if one omits that Q7
is rank-3 and semidefinite positive. It is known [3, p. 468]
that any method that enforces such constraints a posteriori
suffers critical motions if not explicitly dealt with [2].

Problem statement and contributions. In this work, it
is assumed to have at one’s disposal a set of views where
some “natural” points of interest are matched and the 2D
Euclidean structure of a world plane is available (e.g., as the
plane-to-image homography), but possibly not in all views.
Fig. 1(a)(b) gives two examples of such view sets. On the
one hand, omitting the available 2D Euclidean structure, if
we run the classical SfM approach [5, 6, 10] with these sets
as input, it fails because either there are too few views or
matched points or the camera motion is critical [2]. On the
other hand, if we run a planar-based camera calibration ap-
proach for 3D reconstruction, e.g. [16], it also fails because
the pattern is too small and/or not seen in all views. This
works aims at introducing a new unified SfM paradigm,
getting the best out of the two SfM and plane-based recon-
struction approaches, and overcoming their disadvantages,
without requiring off-line calibration. In our examples, us-
ing the new paradigm, we were able to obtain a satisfactory
final dense reconstruction, which was provided by PMVS



O

(b)

Figure 1: (a) Three views of a dragon where 54 points can be matched and a very small checkerboard-style grid is visible except in view 2. The 2D
Euclidean structure is computed from the plane-to-image homography induced by the grid (no other points were used). (b) Five views of a human face
where 11 points can be matched and the 2D Euclidean structure is given by the imaged circular points which are two (complex) intersection points of the two
coplanar circles formed by the eye’s iris outlines. (c) No consistent Euclidean reconstruction was obtained using either Bouguet’s Toolbox or POLLEFEYS’
method [5, 6, 10]. (c)+(d) Only the proposed method, starting from the same projective reconstruction than other methods, by adding circular points in
self-calibration (see Table 4), was able to provide PMVS [1] —even if the planar shape was very small— accurate Euclidean cameras. This yielded the

dense reconstruction seen here from three different viewpoints.

[1] from the obtained Euclidean cameras along with the set
of views, as seen in Fig. 1(c)(d).

In this work, we treat the circular point-pair (CP-pair) of
a plane as a feature. The CP-pair consists of two complex
conjugate points at infinity [3] whose images, easily derived
from the geometry of any planar shape like [15, 16, 11],
define the well-known plane-based calibration constraints
[16]. Our key idea is that incorporating the images of CP-
pairs into the SfM algorithm sequence, namely (i) in projec-
tive factorization scheme mixing images of natural points
and images of CP as well and (ii) in the Euclidean update of
the obtained projective reconstruction. The contribution is
double: the first one is to show how to determine the com-
plex projective depths of the images of CP and how to we
deal with the subproblem of missing data i.e., when the CP
are not seen in all views. The key contribution is secondly
to describe how the “classical” Pollefey’s self-calibration
constraints can be combined with additional ones derived
from the images of the CP. In fact, we give the theoretical
foundation proving that both Pollefey’s constraints and the
proposed ones define 3D lines through the camera centre
that cut the absolute conic i.e., that are tangent-lines of the
absolute conic. Since the Absolute Quadratic Complex is
the assemblage of these tangent -lines, as a result, surpris-
ingly enough, this means that the self-calibration methods
of Pollefeys et al. but also [5] Ponce et al. [7], Valdés et al.
[14] basically rely on a same paradigm.

Paper organisation. At the end of this section, some
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background on projective geometry in 3-space is reminded.
In section 2, we show how to introduce images of CP in the
projective factorization algorithm. In section 3, we describe
how the “classical” self-calibration constraints can be com-
bined with additional ones derived from the images of the
CP.

Background. Any projective plane intersects the abso-
lute conic Q. at a (complex) circular point-pair. Planes
that are parallel share the same circular point-pair which is
also the common point-pair of all circles lying on such par-
allel planes [3, p. 52-53]. The image of a circular point
only have 4 dof as its (complex) homogeneous 3-vector is
defined up to a complex factor. Throughout this paper I
will represent the image of a circular-point pair and we will
assume that it is part of the input data, but possibly not for
all the views. When it is not necessary to distinguish be-
twen I, and I_, the image of a circular point will simply
be referred to as I.

2. Projective factorization with circular points

The statement of the projective factorization problem as-
sumes that M world points are viewed by N different cam-
eras and that the M N image points are gathered within a
measurement 3N x M-matrix. The first key issue is that
of rescaling all image points such that, in absence of mea-
surement noise, the measurement matrix is ensured to have
rank 4. The second key issue is that of dealing with missing
data i.e., when world points are not seen in all views. In



our case, we assume the image points to be projections of
“natural” points and circular points. Our contribution is to
solve the two issues by describing linear solutions. While
the proposed method can deal with more than one circular
point, we will focus on the case of a single circular point
which is the only case that theoretically requires images of
natural points in addition. The input data consists of (a) a
sequence of view indices (jo, ..., jp; je, ---, jn) in the pro-
cessing order (which can be arbitrary) ; (b) the set of un-
scaled images {I;} of circular points and, for each view,
the set of (already) rescaled images {11} of natural point
k(1 <k < P); (c)inter-view epipoles (represented by
vector e, ;. in view j. imaging the j,-th camera centre).
Regarding (b), any rescaling method can be used e.g., that
in [4, 12][3, p. 444].

Rescaling circular-point images. Rescaling the image
I; of a circular point is not straightforward as it must be
multiplied by a complex factor ;. We propose an iterative
algorithm (see table 1) that rescales the available images of
circular points in such a way that, at the current step pro-
cessing view j., the images have already been rescaled in
previous view j,. Initially, the images in the first view jo
are arbitrarily scaled i.e., p;, = 1.

We first write (1; = a; + ib;, with a;, b; € R, such that

I

where i = —1 and C; denotes the 3 x 2-matrix whose
columns stack the real and imaginary 3-vectors of I;. Our
solution relies on two linear equations. The first one is
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that is a rewriting of ;. I; —u; Hj ;1;. =0 which transfers
the image of a circular point from previous view j, to cur-
rent view j., via the homography H; ; , induced by some
world plane that contains the circular point-pair. Given
the matched rescaled images (11;,,1;,) of a natural world

point, the second one is

bj.
aj.

} — 15,H;,5.Cj, = O3x2 ey
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where e;_;, is the epipole in view j. imaging the j,-th cam-
era centre and 1; is the rescaled image point in view j.
This is basically a direct rewriting of the standard epipolar
constraint F; ; w; — [ej,;.], @, = O3, which involves
the fundamental matrix F; ;= [e; ;.| H;, ;. mappings a
point in view j,, to its epipolar line in view je.

Keeping in mind that, 1;, has been estimated in previous
step jp, clearly (1) is an homogeneous equation that linearly
constrains the unknown scalars a;, , b;, (which rescaled I;,)
plus the unknowns in H; ;.. On the other hand, (2) is an in-
homogeneous equation which is linear in H; ;. It is worthy

ej,).)  (Hj,j.05, — ;) =03
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of mention that, using only one CP-pair, there is a 1-dof
ambiguity in Hj ;_ in both equations (1) and (2). This is
due to the fact that an absolute point-pair is common to a
1D set of parallel planes: if we represent their (common)
vanishing lines in view jj, by the 3-vectors v; , then the set
induces a family of inter-view homographies of the form
H(z) = H;,;,— zejpjcvap. In other words, we can replace,
in (1) and (2), the homography H*J by any H(z) and ob-
serve that (1) and (2) still hold. To fix this dof, we assume
that z is such that two elements in H*J are equal (clearly
such z exists). As a result, H*J is parameterised by 8 scalars
instead of 9. As a counting argument, it can be seen that
the configuration of the image of one circular point and the
(scaled) matched images of P natural points introduces 10
unknowns while providing 2P + 6 equations. Hence, P = 2
natural points is a minimal theoretical data set!. An over-
determined set of equations can be easily solved in a linear
least squares manner. Computationally-wise, the complete
iterative algorithm is given in Table 1.

pJe

1) Select a first view jo and let p;, =1

2) Set j, < jo and select a current view j.

3) If the circular point is visible in in views j, and j. then
4) Find S, the set of natural points visible in views j;, and j.
5) Using all p € S, rewrite (1,2) as a linear system AX ~ b
where X € R10 stacks the 8 elements of H;, ;. and a;_, bj,
6) Solve minx ||AX — b||%,
7) Extract p;, = aj, + ib;, from the solution X
8) Set I, — u; 1;,

9) end

10) Set j, < jc, select a new view j. and go to 2).

Table 1: Algorithm scaling the images of circular points

Missing data. Suppose that we ran the algorithm of Ta-
ble 2 only for the visible images of circular points. Hence,
some (block) entries of the measurement matrix are miss-
ing. Thanks to equations (1) and (2), we are able to predict
these missing data. Assume that the circular point is not
seen in view j. but is viewed in V' other views, of which
view j, is taken. A linear solution exists based on two equa-
tions involving the matched rescaled images (1, , @;, ), one
of which being a direct rewriting of (1)

3

and the other one being (2). Now, in addition to a;_, b;, and
the 8 elements of H;_;., the 6 elements of 3 X 2-matrix D;,
are also considered as unknowns. As a counting argument,
it can be seen that a data set, consisting of the (rescaled) im-
ages in V' views of the circular point and P natural points,
introduces 8V + 6 unknowns while providing 6V + 2PV
equations. Hence, P = 3if V =2and P =2ifV > 3
is a minimal data set of natural points. Again, an over-
determined set of equations can be easily solved by linear

Dj. — w5, H;,5.Cj, = O3x2

! Albeit at least 7 points will be always required toto compute the re-
quired fundamental matrix.



least squares optimization. Notice that another way to com-
pute scaled images of circular points in missing views may
also be achieved by first computing them, up to a complex
scale factor, based on their visible images (at least two) and
on fundamental matrices and next, rescaling them as de-
scribed above. However, this method presents poor results
with regard to the one proposed above.

3. Self-calibration with circular points
3.1. Linear self-calibration constraints on Q*_ [5, 10]

We consider a set of n projective cameras, represented
by n projection 3 x 4-matrices, mapping 3D points in some
projective representation to their images and written as

withj=1...n. )

The absolute conic 2, projects in dual form in view j as

&)

where Q7 is the rank-3 semidefinite 4 x 4-matrix of the dual
absolute quadric w.r.t. the projective representation and w*’
the 3 x 3-matrix of its image.

We now replace the hypothesis (H) by the equivalent
(H') of a camera with square pixels whose principal point
coincides with the origin of the pixel coordinate system i.e.,
we assume the calibration matrix K’ to be diagonal. Un-
der hypothesis ('), the image of the absolute conic in dual
form writes:

w* ~piQrpiT

w* = diag ((f7)?, (f7)* 1)
where f7 is the focal length of camera ;.
Considering the projection equation (5), Pollefeys et al.

described in their seminal paper [5] a self-calibration algo-
rithm based on the set of four equations

(6)

ajTonaj - bjTQf;obj =0

a’ Qi ¢! =0

a’ Qi bl =0

b/ TRl e =0

)
(®)

which are linear in the ten elements of Q. Solving those
constraints for multiple cameras e.g., by optimizing in a lin-
ear least squares manner in presence of noise, forms the
basis of the linear self-calibration algorithms [5].

3.2. Adding linear circular-point constraints on Q*_

In this section, the issue is that of writing the independent
self-calibration constraints brought by the image I of a
circular point-pair. A trivial investigation of constraints on
w?* is to derive the equation dual to ITwI = 0, where w ~
(w*)~1 is the image of Q. in “primal” form. This leads to
the (complex) equation:

T w*T =0, 9
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where T is the 3-vector of the line tangent to w at I, defined
by to the polar-pole relation T = wI [3]. Going further
is not so straightforward as some issues must be addressed
just yet : (i) T seemingly depends on w which is unknown ;
(ii) if T was given, it is clear that, by requiring the real and
imaginary parts of the complex equation (9) to be zero, it
would yield two linearly real dependent equations on w*
as w* depends on the sole parameter f. Hence, it does not
really make sense to seek additional linear equations on w* ;
(iii) as the unknown is Q7 related to w™ by (5), it is required
to interpret (9) in 3-space.

All these issues can be solved by introducing the 3D line-
pair L(I1) which back-projects I and cuts the absolute
conic (see fig. 2). Our key contribution is to set up the
correct theoretical background in order to answer the ques-
tion “what are the additional independent equations on Q%
brought by the absolute line-pair L(I1)?”, emphasing the
term “independent”.

Figure 2: The line through the camera centre C and the
image I of a circular point touches the absolute conic 2.

Theoretical background. The following proposition re-
veals the linear constraints on Q% brought by line L(I).
Note that a simple way to get this line is by means of its
Pliicker matrix L(I) = P[] P.
Proposition 1 A line L cuts the absolute conic o, iff
through L it passes a plane tangent to ., 1.€, a (complex)
plane I1 € Q% _, hence satisfying
I17Q:,IT = 0, (10)
and a (complex or real) plane q conjugate to IT w.rt. Q7,
i.e, satisfying

(I

Proof. Any 3D line can be defined as the intersection of
two planes so let L be defined by planes r and s. Through
L it also passes two planes that are tangent to €2, i.e., two
planes of Q% , whose vectors can be written as t; = r +u;s
G 1,2) with uy,us being the solutions for u of the
quadratic equation (r + us)'Q’_(r + us) = 0. (=) If L
touches (2., the two tangent planes coincide which entails

HTQZOq =0



that w; = us and the discriminant of the left-hand side van-
ishesi.e., (r' Q% s)2—(r'Q’ r)(s' Q% s) = 0. Hence, if the
tangent plane where L touches Q7 is either r or s, then the
other one necessarily is a plane that is conjugate to it w.r.t.
Q% . (<) The set of planes conjugate to plane IT w.r.t. Q7 is
formed by all planes through the pole of IT w.r.t. Q5 which
is the point where II is tangent to QJ_, that is a circular
point. Hence, the IT and q share a line through this circular
point so line L cuts the absolute conic. m

Proposition 1 teaches us the fact that, by cutting the abso-
lute conic, L(I) brings the two complex constraints (10,11)
on QY i.e., four real linear equations by requiring the real
and imaginary parts of (10,11) to be zero. It is worthy of
note that constraint (10) is actually the one derived from (9)
by substituting PQ*_P " for w* and IT for P T. Thus, IT is
the plane of Q7 through L(I), obtained by back-projecting
the line T tangent to w at I.

Proposition 2 Under (H'), the plane of Q. through L(I) is

V113
a3
—(¥7 +43)

IH=p' (12)

where I = (Y1, 1)9,43) 7 is the image of the circular point.

Proof. On the one hand, under ('), the point at infinity
of the line T tangent to the image of the absolute conic at I
is given by poo = L™ x T, where L™ = (0,0,1) " rep-
resents the image plane’s line at infinity. It is then easy to
show that po, = [L*°], wI ~ [L*°] I, where [L>°], is
the skew-symmetric matrix related to the cross product as
defined in [3, p. 581]. As T contains both p,, and I we can

define T = (L], I) xI = (¢1¢3, ots, (Y3 + TP%))T :
The fact that II = P T ends the proof. A degenerate case
occurs when I = (1,+i,0)" i.e., when the 3D supporting
plane is fronto-parallel. m

Proposition 1 also teaches us there is an additional inde-
pendent constraint on Q) in the form of (11).

Proposition 3 A (real) plane through L(1), that is conju-
gate to plane TL = PTT w.rt. Q% as given in (12), is
q=P' (I, xI_). (13)
This plane through L(T) includes the circular point-pair and
can be obtained by back-projecting the vanishing line.
Note that, in the general case, the four equations brought
by constraints (10,11) are linearly independent w.r.t. Q%_.

3.3. Unifying the linear self-calibration constraints

What is the link between the circular-point constraints
(10,11) and the “original” linear self-calibration constraints
(7,8)? In the light of the insights given in the previous sec-
tion, we suggest to revisit (7,8) by first complexifying them
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to get algebraically equivalent equations (superscripts are
omitted)

(a+1ib) Q% (a+ib) =0 (14)

c'Q’ (a’ +ib) =0 (15)

with 2 = —1. Equations (14,15) can hence be rewritten as:
(PT(1,4,0)") Q5 (PT(1,3,001) =0 (16)
(PT(1,4,00) Q% (PT(0,0,1)T) =0 (17

If one looks now at (16,17), one finds out that Polle-
feys’ linear self-calibration constraints are nothing else than
the circular-point constraints like (10,11) but involving —
in place of the image I, of some circular point-pair—
the circular point-pair of the image plane, whose homoge-
neous coordinates are I, = (1,44,0)" in any Euclidean
representation, and hence under hypothesis (7). In this
case, constraints (10,11) hold with IT = P'(1,7,0)" and
P'q="P"(0,0,1)7 respectively represent the line tangent
to w at I, and the image plane’s line at infinity.

The self-calibration equations can now be interpreted:
giving projective matrices under hypothesis (H) , they ex-
press fact that the lines, obtained by back-projecting im-
ages of circular points (including the image plane’s circular
point-pair), cut the absolute conic. It is exactly the same
paradigm as in the approaches of Ponce et al. [7, 9] who
introduced the “absolute quadratic complex” approach for
camera self-calibration, except that these latter also work
for a camera with square pixels (and unknown principal
point). The problem was naturally formulated in the pro-
jective 5-space —i.e., the space of lines— but requires sophis-
ticated fitting algorithms.

Let X € R!? be the unknown vector stacking the elements of Q%
For all N views,
/* basic equations */
define IT =P T (1,4,0)T andq =P (0,0,1)T
linearise (10,11) as D1 X = 04 with D; € R4x10
add the block-row D; to the data matrix D
if a plane’s circular point-pair is imaged in the view then
/* proposed equations */
estimate T4 = (t1,%2,%3) T and its conjugate I_
compute IT using (12) and q using (13)
linearise (10,11) as Do X = 04 with Dy € R4x10
add the block-row D2 to the data matrix D
end
end
Solve minx ||DX||?st. [ X% =1

Table 2: Unified self-calibration algorithm based on circular points

4. Experiments

We conducted a large number of experiments with syn-
thetic and real images to quantify the performance of the
proposed SfM paradigm, using a small amount of natural



points as input and depending on the presence (or not) of
one circular point-pair (CP in the sequel). Basically, four
use cases were considered: (i) the incorporation (or not)
of a CP into the projective factorization algorithm and (i)
the incorporation (or not) of the constraints provided by a
CP in the self-calibration algorithm. We put special em-
phasis on the interest of projective factorization based on
circular points as it offers a twofold advantage. This impor-
tant point were confirmed by our experiments: more accu-
rate projective cameras were obtained and the reprojections
of the obtained projective points yielded “corrected” —and
more accurate— image points. .

In the experiments, some algorithms have been provided
by the so-called Vincent’s SfM Matlab Toolbox [8].

4.1. Synthetic data

The performance of the proposed SfM paradigm was as-
sessed by analyzing the accuracy improvement in the final
Euclidean reconstruction, computed as the 3D RMS error.
Multiple SfM processing sequences were carried out. They
are referred to in a generic way as PF[n;]+SC[ns], which
means that we ran a Projective Factorization incorporating
the images of ny CP followed by the Self-Calibration incor-
porating the constraints provided by no CP, with n; = 0, 1.
Notice that PF[0]+SCJ[0] refers to “classical” SfM i.e., when
only natural points are used. When ne > nq > 0, the im-
ages of CP used in self-calibration were the reprojections of
projective CP computed in the factorization. Experiments
were conducted with respect to several variables: the num-
ber of views, the number of natural points, the amount of
measurement noise and the amount of missing data.

We considered a scene consisting at most of p < 20 nat-
ural points and 0 or 1 CP. The CP were computed as the
common projective point-pair of two concentric circles (see
[15]). The natural points were randomly distributed in the
unit sphere (of diameter d = 2 units) centered at the ori-
gin. Each circle was centered at [£0.2,+0.2, z] (with 2z
randomly taken in [—0.2,0.2]) with radius 0.1d while the
normal to the supporting plane were randomly distributed
in the cone of axis [0,0,1] and angle 7/3. The cameras
were roughly oriented toward the origin, randomly placed
at a distance in [2.85, 3.15] from the origin. The image res-
olution is 512 x 512 and the focal lengths were randomly
chosen in [850, 1150]. The principal point was assumed to
(roughly) coincide with the origin but its pixel coordinates
were randomly taken in [—15, 15]2. A zero-mean Gaussian
noise with standard deviation o was added to the image
points, including those of the images of the circles from
which the images of the CP were computed.

All the following experiments compared the 3D RMS
errors obtained by different algorithm sequences (displayed
as legends in Fig. 3) w.r.t. several variables. In Fig. 3(a), 6
views were considered and we let vary the amount of noise
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disturbing the image point coordinates. In the following
experiments, the image points coordinates were always cor-
rupted by a noise of o = 1.0 pixel. In Fig. 3(b), we let vary
the number of views. In Fig. 3(c), 6 views were considered
and we let vary the number of points from 6 to 20. In Fig.
3(d), we also considered 6 views but let vary the number of
views in which the CP is visible. The key result is that, com-
pared to “classical SfM” PF[0]+SC[0], the accuracy was
improved by using either PF[0]+SC[1] or PF[1]+SC[0] and
best by using PF[1]+SC[1]. This means that both proposed
algorithms for projective factorisation and self-calibration
independently contributed to better results even if the ben-
efits provided by additional constraints from CP images
were generally more significant in self-calibration than in
projective factorization, particularly when the number of
views decreased and the noise increased. Of course, for a
very small number of natural points, adding images of CP
in the projective factorization significantly reduced the 3D
RMS error and, in that case, the overall improvement for
PF[1]+SC[1] was mostly due to the factorization. All these
observations may be justified by considering the number of
constraints provided by the images of CP with regard to the
size of equation systems involved in the projective factor-
ization and in self-calibration respectively.

3
16.0

4
10.1

5
8.8

6
7.5

8
6.8

10
6.1

12
5.1

# views
Error (%)

Table 3: Median of errors on focal length vs. the number of views.

Lastly, Table. 3 shows median errors on the focal length
for the proposed method while varying the number of views,
considering 20 natural points corrupted by a noise o = 1.0
pixel. The focal length fj of each projective camera Py
was computed as the least squares solution of the problem

diag ((f*)2, (f*)2,1) = PLQ:iPE.
4.2. Real experiments

The proposed paradigm has been tested on four image
sets extracted from video sequences. Table 4 provides in-
formation about each experiment. In these experiments, we
compared different multiple SM processing sequences, re-
ferred to as PF[n]+SC[n2] as in simulation experiments.

Images of CP were computed based on different prim-
itives (see Table. 4) present in the scene. The “classical”
self-calibration algorithm (referred to as SC[0]) was imple-
mented as in [6] from which the linear equations describe
with no > 1 was adapted in the same way. The dense re-
constructions computed by the PMVS software (described
in [1]) allow to visually evaluate the performance of the
different methods. Selected feature points were extracted
and tracked using the iterative KLT algorithm. Inliers, re-
specting epipolar geometry constraints, were selected using
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Figure 3: Averages of the 3D RMS errors (a) vs. the noise applied on point positions (b) vs. the number of views (c) vs. the number of
views where one CPP is visible (missing ICP) (d) vs. the number of natural points. See text for details.

Experiment Ringo Car Face Dragon
Camcorder Iphone Nikon Iphone Nikon
4S (back) J1 4S8 (front) J1
Image 1920 1920 640 1920
dimensions 1080 1080 480 1080
Nb. views 6 8 5 3
Nb. points 12 7 11 54
Missing ICP no no no yes
2D Eucl. Structure con.centric coplanar pz.lrallel grid
circles circles circles
Euclidean BA no no yes yes

Table 4: Information related to the four experiments. BA means bundle
adjustment and points refers to points which are not circular points.

RANSAC algorithm.

Ringo. In the first experiment, we matched 12 points
of a toy figurine seen in 6 views (see Fig. 4 (a)). Images
of CP were computed from images of concentric circles
lying on a planar marker. The dense reconstruction based
on Euclidean cameras computed with PF[1]+SC[0] was in-
consistent while PF[1]+SC[1], including images of CP in
self-calibration, worked properly, providing results shown
in Fig. 4 (b).

Car. In this experiment, we matched 7 points of a car
seen in 8 views (see Fig. 4(c)). Images of CP which are
the (complex) intersection points of the two coplanar cir-
cles formed by the car’s wheels are computed as described
in [15]. Dense reconstructions based on Euclidean cameras
computed with PF[0]+SC[0] and PF[1]+SC[0] were incon-
sistent even if the one from PF[1]+SC[0] involving images
of CP in the projective factorization is slightly better than
the one from PF[0]+SC[0] based on only natural points.
PF[1]+SC[1] performed well, providing results shown Fig.
4(d). We used the result of the proposed method as initial
Euclidean reconstruction in an incremental SfM procedure
for which results are shown in Fig. 5.

Face. In this experiment, we matched 11 points of a hu-
man face seen in 5 views (see Fig. 1(b)) — details are given
in the legend). Dense reconstruction based on Euclidean
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cameras computed with PF[1]+SC[0] failed to provide any
consistent results where our method worked properly, pro-
viding results shown Fig. 1(d).

Dragon. In the last experiment, we matched 54 points
of a dragon seen in 3 views (see Fig. 1(a)). Plane-to-image
homographies induced by a small grid provided images of
CP in view | and 3. Only the proposed method, starting
from the same projective reconstruction, reached to provide
good results by adding circular points in self-calibration
(see Fig. 1(c)). For further details see legend Fig. 1. We
can notice that performing self-calibration without includ-
ing additional images of CP can fail when there is a small
number of points (see Fig. 4(b), Fig. 4(d), and Fig. 1(d)) but
also may sometimes fail with a quite large number of points
while the number of views is very low (see Fig. 1(c)). These
observations confirm parts of simulation results provided in
the paper.

5. Conclusion

The purpose of this work was first to show how to
introduce images of circular points in a projective fac-
torization algorithm. We dealt with the problem of re-
covering complex scale factors of images of such fea-
tures and how to compute missing elements. In a sec-
ond part, we showed that it is possible to combine “clas-
sical” linear self-calibration constraints on the absolute
dual quadric, under the assumption that shape pixels and
principal points are known, with additional ones derived
from the images of the circular points. We described
the additional independent equations brought by the abso-
lute line-pair, back-projections of the image of some cir-
cular point-pair and how to compute them. Experiments
on synthetic and real data validated the proposed algo-
rithms and its performance (codes can be found at the URL
ubee.enseeiht.fr/vision/ICCV13).

Assessing the effect of position and orientation of intro-
duced planar shapes on the self-calibration quality in order
to optimise it could be investigated. Thus, such new self-
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Figure 4: Ringo. (a) Input images. (b) Dense reconstructions based on Euclidean cameras computed with PF[1]+SC[0] at left and with PF[1]+SC[1] at
right. See text for details. Car. (a) Input images. (b) Dense reconstructions based on Euclidean cameras computed with PF[0]+SC[0], PF[1]+SC[0] and

PF[1]+SC[1] from left to right. See text for details.

Figure 5: Car. Using the whole Car image sequence, from which the
8 images of Fig. 4(b) were selected, the indermediary camera poses were
obtained by incremental resection and all the results were refined by bundle
adjustment.

calibration devices could be used in some application, e.g.
camera tracking, to better control the self-calibration quality
and ensuring the presence of a reliable subset of key-frames
to upgrade the projective SfM to Euclidean. In practice,
such approach would offer a very good trade-off between
flexibility and performance, especially when classical ap-
proaches fail.
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