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Abstract

Image-based classification of histology sections, in terms
of distinct components (e.g., tumor, stroma, normal), pro-
vides a series of indices for tumor composition. Further-
more, aggregation of these indices, from each whole slide
image (WSI) in a large cohort, can provide predictive mod-
els of the clinical outcome. However, performance of the
existing techniques is hindered as a result of large technical
variations and biological heterogeneities that are always
present in a large cohort. We propose a system that au-
tomatically learns a series of basis functions for represent-
ing the underlying spatial distribution using stacked pre-
dictive sparse decomposition (PSD). The learned represen-
tation is then fed into the spatial pyramid matching frame-
work (SPM) with a linear SVM classifier. The system has
been evaluated for classification of (a) distinct histological
components for two cohorts of tumor types, and (b) colony
organization of normal and malignant cell lines in 3D cell
culture models. Throughput has been increased through
the utility of graphical processing unit (GPU), and evalu-
ation indicates a superior performance results, compared
with previous research.

1. Introduction
Tumor histology provides a detailed insight into cellular

morphology, organization, and heterogeneity. For example,

histology sections can be used to identify mitotic cells, cel-

lular aneuploidy, and autoimmune responses. More impor-

tantly, if tumor morphology and architecture can be quanti-

fied in a large cohort, it will provide the basis for predictive

models in a similar way that genomic techniques have iden-

tified predictive molecular subtypes. Genome wide analysis

∗This work was supported by NIH U24 CA1437991 and NIH R01

CA140663 carried out at Lawrence Berkeley National Laboratory under

Contract No. DE-AC02-05CH11231

techniques (e.g., microarray analysis) have the advantages

of standardized tools for data analysis and pathway enrich-

ment, which enables hypothesis generation for the underly-

ing mechanism. On the other hand, histological signatures

are hard to compute because phenotypic signatures are not

standardized and advanced methods for image analysis re-

main at a deficit. Image analysis is further complicated by

technical variations as a result of sample preparation (e.g.,

fixation, staining) and biological heterogeneity, where the

latter originates within a whole slide image (WSI) and be-

tween WSIs as no two patients have the same aberrant sig-

nature.

Although manual analysis may incur inter- and intra-

pathologist variations [12] and some researchers have fo-

cused on reducing such variations, the value of the quanti-

tative histological image analysis rests on its capability in

capturing detailed morphometric features and organization.

Such rich descriptions can then be linked with genomic in-

formation and clinical outcomes for improved diagnosis and

therapy.

One of the main technical barriers for processing a large

collection of histological data is that the color composition

is subject to technical variations (e.g., fixation, staining) and

biological heterogeneities (e.g., cell type, cell state) across

histological tissue sections, especially when these tissue

sections are processed and scanned at different laborato-

ries. Here, a histological tissue section refers to an image

of a thin slice of tissue applied to a microscopic slide and

scanned from a light microscope. From an image analy-

sis perspective, color variations can occur both within and

across tissue sections. For example, within a tissue section,

some nuclei may have low chromatin content (e.g., light

blue signals), while others may have higher signals (e.g.,

dark blue); nuclear intensity in one tissue section may be

very close to the background intensity (e.g., cytoplasmic,

macromolecular components) in another tissue section.

In this paper, we aim to classify components of each his-
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tology section in terms of distinct phenotypes (e.g., tumor,

stroma, necrosis). We suggest that, compared with human

engineered features, unsupervised feature learning is more

tolerant to batch effect (e.g., technical variations associated

with sample preparation) and can learn pertinent features

without user intervention. The key concept is that stacked

predictive sparse decomposition (PSD) [23] can elucidate

a superior representation that captures intrinsic phenotypic

signature. When this representation is coupled with spatial

pyramid matching (SPM) [26], which utilizes sparse tissue

morphometric signatures at various locations and scales, an

improved classification performance is realized.

Organization of this paper is as follows: Section 2 re-

views related works. Section 3 describes the details of our

proposed approach. Section 4 elaborates the details of our

experimental setup, followed by a detailed discussion on the

experimental results. Lastly, section 5 concludes the paper.

2. Related Work
Several outstanding reviews for the histology sections

analysis can be found in [14, 20]. From our perspective,

four distinct works have defined the trends in tissue histol-

ogy analysis: (i) one group of researchers proposed nuclear

segmentation and organization for tumor grading and/or the

prediction of tumor recurrence [2, 13, 3, 15, 10]. (ii) A sec-

ond group of researchers focused on patch level analysis

(e.g., small regions) [4, 24, 21], using color and texture fea-

tures, for tumor representation. (iii) A third group focused

on block-level analysis to distinguish different states of tis-

sue development using cell-graph representation [1, 5]. (iv)

Finally, a fourth group has suggested detection and repre-

sentation of the auto-immune response as a prognostic tool

for cancer [19].

The major challenge for tissue classification is the

large amounts of technical variations and biological hetero-

geneities in the data [25], which typically results in tech-

niques that are tumor type specific. To overcome this prob-

lem, recent studies have focused on either fine tuning hu-

man engineered features [4, 24, 25], or applying automatic

feature learning [22] for robust representation.

In the context of computer vision research on image cat-

egorization, the traditional bag of features (BoF) model

has been widely studied and improved through different

variations [8, 7, 16, 31, 26], among which SPM [26] has

clearly become the major component of the state-of-art sys-

tems [17] for its effectiveness in practice.

The evolution of our research in patch level analysis has

been SIFT-like feature extraction followed by a evaluation

of several kernel-based classification policies [21]; indepen-

dent subspace analysis that utilizes unsupervised learning

without the constraint of being able to reconstruct the origi-

nal signal [27]; a single layer predictive sparse coding with

SVM classifier [32]; and more recently, coupling of either

prior knowledge [9] or predictive sparse coding [11] with

with spatial pyramid matching. The current research builds

on these results to render an unsupervised feature learning

approach with superior performance.

In summary, motivated by the fact that (i) pathologists

often use “context” to assess the disease state, (ii) SPM par-

tially captures context [26, 23], and (iii) unsupervised fea-

ture learning is preferable to capture the variance in large

cohorts, we have extended our previous research with im-

proved scalability and performance.

3. Approach
In this work (PSDnSPM), we employ predictive sparse

decomposition (PSD) [23] as a building block for the

purpose of constructing hierarchical learning framework,

which can capture higher-level sparse tissue morphometric

features [34]. Unlike many unsupervised feature learning

algorithms [28, 29, 33, 39], the feed-forward feature infer-

ence of PSD is very efficient, as it involves only element-

wise nonlinearity and matrix multiplication. For classifica-

tion, the predicted sparse features are used in a similar fash-

ion as SIFT features in the traditional framework of SPM,

as shown in Figure 1.

3.1. Unsupervised Feature Learning

Given X = [x1, ...,xN ] ∈ R
m×N as a set of vectorized

image patches, we formulate the PSD optimization problem

as:

min
B,Z,G,W

‖X−BZ‖2F + λ‖Z‖1 + ‖Z−Gσ(WX)‖2F
s.t. ‖bi‖22 = 1, ∀i = 1, . . . , h (1)

where B = [b1, ...,bh] ∈ R
m×h is a set of the ba-

sis functions; Z = [z1, ..., zN ] ∈ R
h×N is the sparse

feature matrix; W ∈ R
h×m is the auto-encoder; G =

diag(g1, . . . , gh) ∈ R
h×h is a scaling matrix with diag be-

ing an operator aligning vector, [g1, . . . , gh], along the diag-

onal; σ(·) is the element-wise sigmoid function; and λ is a

regularization constant. Joint minimization of Eq. (1) with

respect to the quadruple 〈B,Z,G,W〉, enforces the infer-

ence of the nonlinear regressor Gσ(WX) to be similar to

the optimal sparse codes, Z, which can reconstruct X over

B [23].

As shown below, optimization of Eq. (1) is iterative,

where the algorithm terminates when either the objective

function is below a preset threshold or the maximum num-

ber of iterations has been reached.

1. Randomly initialize B, W, and G.

2. Fixing B, W and G, minimize Eq. (1) with respect to

Z, where Z can be either solved as a �1-minimization

problem [28] or equivalently solved by greedy algo-

rithms, e.g., Orthogonal Matching Pursuit (OMP) [35].
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Figure 1. Computational workflow of our approach (PSDnSPM).

3. Fixing B, W and Z, solve for G, which is a simple

least-square problem with analytic solution.

4. Fixing Z and G, update B and W, respectively, using

the stochastic gradient descent algorithm.

5. Repeat [2]-[4] until stopping condition is satisfied.

In large-scale feature learning problems, involving ∼ 105

image patches, it is computationally intensive to evaluate

the sum-gradient over the entire training set. However,

both stochastic gradient descent algorithm and GPU par-

allel computing can provide a significant increase in speed.

The former approximates the true gradient of the objective

function by the gradient evaluated over mini-batches, and

the latter further accelerates the process (up to 5X) with

our Matlab implementation based on an Nvidia GTX 580

graphics card. Figure 2 illustrates 1024 basis functions

computed from the GBM dataset, which capture both color

and texture information from the data and is generally diffi-

cult to realize using hand-engineered features.

3.2. Spatial Pyramid Matching (SPM)

Having computed the sparse features, Z ∈ R
h×N (e.g.,

predictions by the nonlinear regressor Gσ(WX)), we then

construct a code book and proceed with SPM pooling.

The codebook, D = [d1, ...,dK ] ∈ R
h×K , consisting

of K sparse tissue morphometric types, is constructed by

solving the following optimization problem:

min
D,C

N∑

i=1

‖zi −Dci‖2 (2)

s.t. card(ci) = 1, ‖ci‖1 = 1, ci 	 0, ∀i

where C = [c1, ..., cN ] ∈ R
K×N is the code matrix assign-

ing each zi to its closest sparse tissue morphometric type

in D, card(ci) is a cardinality constraint enforcing only

one nonzero element in ci, and ci 	 0 is a non-negative

constraint on all vector elements. Eq. (2) is optimized by

alternating between the two variables, i.e., minimizing one

while keeping the other fixed. After training, D is fixed and

the query signal set, Z, is encoded by solving Eq. (2) with

respect to C only.

Figure 2. Computed basis functions (B) from the Glioblastoma

Multiforme (GBM) dataset.

The next step is to construct a spatial histogram for

SPM [26]. By repeatedly subdividing an image, histograms

of different sparse tissue morphometric types over the re-

sulting subregions are computed. The spatial histogram, H ,

is then formed by concatenating the appropriately weighted

histograms of sparse tissue morphometric types at all reso-

lutions, i.e.,

H0 = H0
0

Hl = (H1
l , ..., H

4l

l ), 1 ≤ l ≤ L (3)

H = (
1

2L
H0,

1

2L
H1, ...,

1

2L−l+1
Hl, ...,

1

2
HL)

where (·) denotes the vector concatenation operator, l ∈
{0, ..., L} is the resolution level of the image pyramid, and

Hl represents the concatenation of histograms for all image

subregions at pyramid level l. Instead of using kernel SVM,

we employ the homogeneous kernel map [36] and linear

SVM [18] for improved efficiency.
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4. Experiments And Discussion
In this section, we provide details of the experimental

design that includes data from tumor histopathology and

3D cell culture assays. The tumor data includes a curated

set of Glioblastoma Multiforme (GBM) and Kidney Clear

Cell Carcinoma (KIRC) from The Cancer Genome Atlas

(TCGA), which are publicly available from the NIH repos-

itory. The 3D cell culture data consists of a tumorigenic

breast cancer and a control cell line.

4.1. Classification of Tumor Histopathology

We have evaluated the proposed method against four

other techniques for classification of distinct histopathology

for two tumor types.

1. PSDnSPMNR: The nonlinear kernel SPM that uses

spatial-pyramid histograms of sparse tissue morpho-

metric types. In this implementation,

(a) n = 1, 2;

(b) The nonlinear regressor (Z = Gσ(WX)) was

trained for the inference of Z;

(c) The image patch size is fixed to be 20 × 20 and

the number of basis functions in the top layer was

fixed to be 1024. We adopted the SPAMS opti-

mization toolbox [30] for efficient implementa-

tion of OMP to compute the sparse code, Z, with

sparsity prior set to 30;

(d) Standard K-means clustering was used for the

construction of the dictionary;

(e) The level of pyramid was fixed to be 3; and

(f) The homogeneous kernel map was applied, fol-

lowed by the linear SVM for classification.

2. PSD1SPMLR [11]: The nonlinear kernel SPM that

uses spatial-pyramid histograms of sparse tissue mor-

phometric types. In this implementation,

(a) The linear regressor (Z = WX) was trained for

the inference of Z;

(b) For consistency, the image patch size and the

number of basis functions was fixed at 20 × 20
and 1024, respectively. The sparsity constraint

was set at 0.3 for best performance following

cross validation.

(c) Standard K-means clustering was used for the

construction of the dictionary;

(d) The level of pyramid was fixed to be 3;

(e) The homogeneous kernel map was applied, fol-

lowed by linear SVM for classification.

3. ScSPM [37]: The linear SPM that utilizes linear kernel

on spatial-pyramid pooling of SIFT sparse codes. In

this implementation,

(a) The dense SIFT features was extracted on 16×16
patches sampled from each image on a grid with

stepsize 8 pixels;

(b) The sparse constraint parameter λ was fixed to

be 0.15, which was determined empirically to

achieve the best performance;

(c) The level of pyramid was fixed to be 3;

(d) Linear SVM was used for classification.

4. KSPM [26]: The nonlinear kernel SPM that uses

spatial-pyramid histograms of SIFT features; In the

implementation,

(a) The dense SIFT features was extracted on 16×16
patches sampled from each image on a grid with

stepsize 8 pixels;

(b) Standard K-means clustering was used for the

construction of the dictionary;

(c) The level of pyramid was fixed to be 3;

(d) The homogeneous kernel map was applied, fol-

lowed by linear SVM for classification.

5. CTSPM: The nonlinear kernel SPM that uses spatial-

pyramid histograms of color and texture features; In

this implementation,

(a) Color features were extracted from the RGB

color space;

(b) Texture features were extracted via steerable fil-

ters [38] with 4 directions (θ ∈ {0, π
4 ,

π
2 ,

3π
4 })

and 5 scales (σ ∈ {1, 2, 3, 4, 5}) from the

grayscale image;

(c) The feature vector was constructed by concate-

nating texture and mean color on 20×20 patches,

empirically, to achieve the best performance;

(d) Standard K-means clustering was used for the

construction of the dictionary;

(e) The level of pyramid was fixed to be 3;

(f) The homogeneous kernel map was applied, fol-

lowed by linear SVM for classification.

All experimental processes were repeated 10 times with

randomly selected training and testing images. The fi-

nal results were reported as the mean and standard devia-

tion of the classification rates on the following two distinct

datasets, which included vastly different tumor types:
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Figure 3. GBM Examples. First column: Tumor; Second column:

Transition to necrosis; Third column: Necrosis.

Figure 4. KIRC examples. First column: Tumor; Second column:

Normal; Third column: Stromal.

1. GBM Dataset. The GBM dataset contains 3 classes:

Tumor, Necrosis, and Transition to Necrosis, which

were curated from whole slide images (WSI) scanned

with a 20X objective (0.502 micron/pixel). Examples

can be found in Figure 3. The number of images per

category are 628, 428 and 324, respectively. Most im-

ages are 1000 × 1000 pixels. In this experiment, we

trained on 40, 80 and 160 images per category and

tested on the rest, using three different dictionary sizes:

256, 512 and 1024. Detailed comparisons are shown in

Table 1.

2. KIRC Dataset. The KIRC dataset contains 3 classes:

Tumor, Normal, and Stromal, which were curated from

whole slide images (WSI) scanned with a 40X ob-

jective (0.252 micron/pixel). Examples can be found

in Figure 4. The number of images per category are

568, 796 and 784, respectively. Most images are

1000 × 1000 pixels. In this experiment, we trained

on 70, 140 and 280 images per category and tested on

the rest, using three different dictionary sizes: 256, 512

and 1024. Detailed comparisons are shown in Table 2.

(a) (b) (c)
Figure 5. Comparison of PSD with linear and nonlinear regressors

in terms of reconstruction. (a) Original image; (b) Reconstruction

by PSD with linear regressor (SNR=14.9429); (c) Reconstruction

by PSD with nonlinear regressor (SNR=19.3436).

4.2. Discussion

Above experiments indicate that,

1. Features from unsupervised feature learning are more

tolerant to the batch effect than human engineered fea-

tures for tissue classification. Tables 1 and 2 show

that PSDnSPM consistently outperforms KSPM, Sc-

SPM and CTSPM on the two distinct datasets that suf-

fer from technical variations as a result of both sam-

ple preparation and biological heterogeneity, where the

latter is due to the variation in tumor phenotype across

patients.

2. PSD with nonlinear regressor outperforms PSD with

linear regressor in terms of both reconstruction and

classification, as shown in Figure 5 as well as Tables 1

and 2.

3. Stacking multiple layers of PSD enables learning

higher level features, which further improves the clas-

sification performance.

As a result, the proposed approach has the following merits,

1. Extensibility to different tumor types. Tables 1 and 2

confirm the superiority and consistency in the perfor-

mance of the proposed approach on two vastly differ-

ent tumor types, which are due to the improved gen-

eralization ability of features from unsupervised fea-

ture learning, compared to human engineered features

(e.g., SIFT), and ultimately ensures the extensibility of

proposed approach to different tumor types.

2. Robustness in the presence of large amounts of techni-

cal variations and biological heterogeneities. Tables 1

and 2 indicate that the performance of our approach,

based on small number of training samples, is com-

parable to or better than the performance of ScSPM,

KSPM and CTSPM, which are based on large number

of training samples. Given the fact that TCGA datasets

contain large amounts of technical variations and bi-

ological heterogeneities, these results clearly indicate

the robustness of our approach, which improves the
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

160 training PSD2SPMNR 91.85 ± 1.03 91.86 ± 0.78 92.07 ± 0.65
PSD1SPMNR 91.85 ± 0.69 91.89 ± 0.99 91.74 ± 0.85

PSD1SPMLR [11] 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29

ScSPM [37] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

KSPM [26] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

CTSPM 78.61 ± 1.33 78.71 ± 1.18 78.69 ± 0.81

80 training PSD2SPMNR 90.51 ± 1.06 90.88 ± 0.66 90.51 ± 1.06

PSD1SPMNR 90.74 ± 0.95 90.42 ± 0.94 89.70 ± 1.20

PSD1SPMLR [11] 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08

ScSPM [37] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

KSPM [26] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

CTSPM 75.93 ± 1.18 76.06 ± 1.52 76.19 ± 1.33

40 training PSD2SPMNR 87.90 ± 0.91 88.21 ± 0.90 87.71 ± 0.81

PSD1SPMNR 87.72 ± 1.21 86.99 ± 1.76 86.33 ± 1.32

PSD1SPMLR [11] 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14

ScSPM [37] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05

KSPM [26] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

CTSPM 73.10 ± 1.51 72.90 ± 1.09 72.65 ± 1.41

Table 1. Performance of different methods on the GBM dataset.

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

280 training PSD2SPMNR 99.03 ± 0.20 98.89 ± 0.19 98.92 ± 0.21

PSD1SPMNR 98.98 ± 0.35 98.81 ± 0.45 98.69 ± 0.41

PSD1SPMLR [11] 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45

ScSPM [37] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

KSPM [26] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

CTSPM 87.45 ± 0.59 87.95 ± 0.49 88.53 ± 0.49

140 training PSD2SPMNR 98.26 ± 0.34 98.07 ± 0.46 97.85 ± 0.56

PSD1SPMNR 98.17 ± 0.72 98.05 ± 0.71 97.99 ± 0.82

PSD1SPMLR [11] 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84

ScSPM [37] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

KSPM [26] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

CTSPM 86.55 ± 0.99 86.40 ± 0.54 86.49 ± 0.58

70 training PSD2SPMNR 96.67 ± 0.53 96.20 ± 0.54 95.57 ± 0.66

PSD1SPMNR 96.42 ± 0.68 96.41 ± 0.59 96.03 ± 0.69

PSD1SPMLR [11] 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40

ScSPM [37] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86

KSPM [26] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

CTSPM 84.76 ± 1.32 84.29 ± 1.53 83.71 ± 1.42

Table 2. Performance of different methods on the KIRC dataset.

scalability with varying training sample sizes, and the

reliability of further analysis on large cohort of whole

mount tissue sections.

4.3. Application to 3D Cell Culture Models

To demonstrate extensibility of the proposed method, the

technique has been applied to discriminated colony orga-

nization in 3D cell culture models for control (MCF10A)

and malignant (MDA-MB-231) cell lines, which have been

well characterized in [6]. Five biological replicates per cell

line were harvested on Day 5 and imaged with confocal mi-

croscopy with the middle sections shown in Figure 6. All

images were scaled isotropically with the image patch size

fixed to be 20× 20× 20 in the isotropic space for unsuper-

vised feature learning. The performance is reported as the

mean classification rate (shown in Table 3), which clearly

indicates the extensibility of proposed method for classifi-

cation of aberrant growth conditions.
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

2 training PSD1SPMNR 61.67 81.67 88.33

Table 3. Performance of proposed method on 3D cell culture differentiation.

(a) MCF10A (b) MDA-MB-231
Figure 6. Examples of a section for the control and malignant lines.

5. Conclusion and Future Work

In this paper, we proposed a multi-layer PSD framework

for classification of distinct regions of tumor histopathol-

ogy, which outperforms traditional methods that are typ-

ically based on pixel- or patch-level features. Our anal-

ysis indicates that the proposed approach is (i) extensi-

ble to different tumor types; (ii) robust in the presence of

large amounts of technical variations and biological hetero-

geneities; (iii) scalable with varying training sample sizes;

and (iv) extensible to 3D cell culture models. Future re-

search will focus on further validation of our approach on

other tumor types and further discrimination of phenotypic

responses in multicellular systems.

6. Disclaimer
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sumes any legal responsibility for the accuracy, complete-

ness, or usefulness of any information, apparatus, product,

or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any

specific commercial product, process, or service by its trade

name, trademark, manufacturer, or otherwise, does not nec-

essarily constitute or imply its endorsement, recommenda-

tion, or favoring by the United States Government or any

agency thereof, or the Regents of the University of Califor-

nia. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States

Government or any agency thereof or the Regents of the

University of California.
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