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Abstract

In many image/video/web classification problems, we
have access to a large number of unlabeled samples. How-
ever, it is typically expensive and time consuming to obtain
labels for the samples. Active learning is the problem of
progressively selecting and annotating the most informa-
tive unlabeled samples, in order to obtain a high classi-
fication performance. Most existing active learning algo-
rithms select only one sample at a time prior to retraining
the classifier. Hence, they are computationally expensive
and cannot take advantage of parallel labeling systems such
as Mechanical Turk. On the other hand, algorithms that
allow the selection of multiple samples prior to retraining
the classifier, may select samples that have significant in-
formation overlap or they involve solving a non-convex op-
timization. More importantly, the majority of active learn-
ing algorithms are developed for a certain classifier type
such as SVM. In this paper, we develop an efficient active
learning framework based on convex programming, which
can select multiple samples at a time for annotation. Unlike
the state of the art, our algorithm can be used in conjunc-
tion with any type of classifiers, including those of the fam-
ily of the recently proposed Sparse Representation-based
Classification (SRC). We use the two principles of classi-
fier uncertainty and sample diversity in order to guide the
optimization program towards selecting the most informa-
tive unlabeled samples, which have the least information
overlap. Our method can incorporate the data distribution
in the selection process by using the appropriate dissimi-
larity between pairs of samples. We show the effectiveness
of our framework in person detection, scene categorization
and face recognition on real-world datasets.

1. Introduction

The goal of recognition algorithms is to obtain the high-

est level of classification accuracy on the data, which can

be images, videos, web documents, etc. The common first

step of building a recognition system is to provide the ma-

chine learner with labeled training samples. Thus, in su-

pervised and semi-supervised frameworks, the classifier’s

performance highly depends on the quality of the provided

labeled training samples. In many problems in computer

vision, pattern recognition and information retrieval, it is

fairly easy to obtain a large number of unlabeled training

samples, e.g., by downloading images, videos or web doc-

uments from the Internet. However, it is, in general, dif-

ficult to obtain labels for the unlabeled samples, since the

labeling process is typically complex, expensive and time

consuming. Active learning is the problem of progressively

selecting and annotating the most informative data points

from the pool of unlabeled samples, in order to obtain a

high classification performance.

Prior Work. Active learning has been well studied in

the literature with a variety of applications in image/video

categorization [5, 15, 16, 22, 30, 33, 34, 37], text/web clas-

sification [25, 29, 38], relevance feedback [3, 36], etc. The

majority of the literature consider the single mode active

learning [21, 23, 25, 27, 29, 31], where the algorithm se-

lects and annotates only one unlabeled sample at a time

prior to retraining the classifier. While this approach is ef-

fective in some applications, it has several drawbacks. First,

there is a need to retrain the classifier after adding each new

labeled sample to the training set, which can be computa-

tionally expensive and time consuming. Second, such meth-

ods cannot take advantage of parallel labeling systems such

as Mechanical Turk or LabelMe [7, 24, 28], since they re-

quest annotation for only one sample at a time. Third, sin-

gle mode active learning schemes might select and annotate

an outlier instead of an informative sample for classifica-

tion [26]. Fourth, these methods are often developed for a

certain type of a classifier such as SVM or Naive Bayes and

cannot be easily modified to work with other classifier types

[21, 23, 25, 29, 31].

To address some of the above issues, more recent meth-

ods have focused on the batch mode active learning, where

they select and annotate multiple unlabeled samples at a

time prior to retraining the classifier [2, 5, 12, 17, 18]. No-

tice that one can run a single mode active learning method

multiple times without retraining the classifier in order to

select multiple unlabeled samples. However, the drawback

of this approach is that the selected samples can have sig-

nificant information overlap, hence, they do not improve
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Figure 1. We demonstrate the effectiveness of our proposed active learning framework on three problems of person detection, scene categorization and

face recognition. Top: sample images from the INRIA Person dataset [6]. The dataset contains images from 2 classes, either containing people or not.

Middle: sample images from the Fifteen Scene Categories dataset [19]. The dataset contains images from 15 different categories, such as street, building,

mountain, etc. Bottom: sample images from the Extended YaleB Face dataset [20]. The dataset contains images from 38 classes, corresponding to 38
different individuals, captured under a fixed pose and varying illumination.

the classification performance compared to the single mode

active learning scheme. Other approaches try to decrease

the information overlap among the selected unlabeled sam-

ples [2, 12, 13, 18, 36]. However, such methods are often

ad-hoc or involve a non-convex optimization, which can-

not be solved efficiently [12, 13], hence approximate solu-

tions are sought. Moreover, similar to the single mode ac-

tive learning, most batch mode active learning algorithms

are developed for a certain type of a classifier and can-

not be easily modified to work with other classifier types

[12, 13, 17, 29, 32, 34].

Paper Contributions. In this paper, we develop an effi-

cient active learning framework based on convex program-

ming that can be used in conjunction with any type of clas-

sifiers. We use the two principles of classifier uncertainty

and sample diversity in order to guide the optimization pro-

gram towards selecting the most informative unlabeled sam-

ples. More specifically, for each unlabeled sample, we de-

fine a confidence score that reflects how uncertain the sam-

ple’s predicted label is according to the current classifier

and how dissimilar the sample is with respect to the labeled

training samples. A large value of the confidence score

for an unlabeled sample means that the current classifier is

more certain about the predicted label of the sample and

also the sample is more similar to the labeled training sam-

ples. Hence, annotating it does not provide significant addi-

tional information to improve the classifier’s performance.

On the other hand, an unlabeled sample with a small con-

fidence score is more informative and should be labeled.

Since we can have many unlabeled samples with low con-

fidence scores and they may have information overlap with

each other, i.e., can be similar to each other, we need to se-

lect a few representatives of the unlabeled samples with low

confidence scores. We perform this task by employing and

modifying a recently proposed algorithm for finding data

representatives based on simultaneous sparse recovery [9].

The algorithm that we develop has the following advantages

with respect to the state of the art:

– It addresses the batch mode active leaning problem,

hence, it can take advantage of parallel annotation systems

such as Mechanical Turk and LabelMe.

– It can be used in conjunction with any type of classi-

fiers. The choice of the classifier affects selection of un-

labeled samples through the confidence scores, but the pro-

posed framework is generic. In fact, in our experiments, we

consider the problem of active learning using the recently

proposed Sparse Representation-based Classification (SRC)

method [35]. To the best of our knowledge, this is the first

active learning framework for the SRC algorithm.

– It is based on convex programming, hence can be solved

efficiently. Unlike the state of the art, it incorporates both

the classifier uncertainty and sample diversity in a convex

optimization to select multiple informative samples that are

diverse with respect to each other and the labeled samples.

– It can incorporate the distribution of the data by using an

appropriate dissimilarity matrix in the convex optimization

program. The dissimilarity between pairs of points can be

Euclidean distances (when the data come from a mixture

of Gaussians), geodesic distances (when data lie on a man-

ifold) or other types of content/application-dependent dis-

similarity, which we do not restrict to come from a metric.

Paper Organization. The organization of the paper is as

follows. In Section 2, we review the Dissimilarity-based

Sparse Representative Selection (DSMRS) algorithm that

we leverage upon in this paper. In Section 3, we propose

our framework of active learning. We demonstrate exper-

imental results on multiple real-world problems in Section

4. Finally, Section 5 concludes the paper.
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2. Dissimilarity-based Sparse Modeling Repre-
sentative Selection (DSMRS)

In this section, we review the Dissimilarity-based Sparse

Modeling Representative Selection (DSMRS) algorithm

[9, 10] that finds representative points of a dataset. Assume

we have a dataset with N points and we are given dissim-

ilarities {dij}i,j=1,...,N between every pair of points. dij
denotes how well i represents j. The smaller the value of

dij is, the better point i is a representative of point j. We as-

sume that the dissimilarities are nonnegative and djj ≤ dij
for every i and j. We can collect the dissimilarities in a

matrix as

D =

⎡
⎢⎣
d�
1
...

d�
N

⎤
⎥⎦ =

⎡
⎢⎣
d11 d12 · · · d1N

...
...

. . .
...

dN1 dN2 · · · dNN

⎤
⎥⎦ ∈ R

N×N . (1)

Given the dissimilarities, the goal is to find a few points that

well represent the dataset. To do so, [9] proposes a convex

optimization framework by introducing variables zij asso-

ciated to dij . zij ∈ [0, 1] indicates the probability that i is

a representative of j. We can collect the optimization vari-

ables in a matrix as

Z =

⎡
⎢⎣
z�
1
...

z�
N

⎤
⎥⎦ =

⎡
⎢⎣
z11 z12 · · · z1N

...
...

. . .
...

zN1 zN2 · · · zNN

⎤
⎥⎦ ∈ R

N×N . (2)

In order to select a few representatives that well encode the

collation of points in the dataset, two objective functions

should be optimized. The first objective function is the en-

coding cost of the N data points via the representatives. The

encoding cost of j via i is set to dijzij ∈ [0, dij ], hence the

total encoding cost for all points is
∑
i,j

dijzij = tr(D�Z). (3)

The second objective function corresponds to penalizing the

number of selected representatives. Notice that if i is a

representative of some points in the dataset, then zi �= 0
and if i does not represent any point in the dataset, then

zi = 0. Hence, the number of representatives corresponds

to the number of nonzero rows of Z. A convex surrogate for

the cost associated to the number of selected representative

is given by
N∑
i=1

‖zi‖q � ‖Z‖1,q, (4)

where q ∈ {2,∞}. Putting the two objectives together, the

DSMRS algorithm solves

min λ ‖Z‖q,1 + tr(D�Z) s. t. Z ≥ 0, 1�Z = 1�,
(5)

G(1)
1

G(1)
2

G(1)
3

G(2)
1G(2)

2

G(1)
1

G(1)
2

G(1)
3

G(2)
1G(2)

2

Figure 2. Separating data in two different classes. Class 1 consists of

data in {G(1)
1 ,G(1)

2 ,G(1)
3 } and class 2 consists of data in {G(2)

1 ,G(2)
2 }.

Left: a max-margin linear SVM learned using two training samples (green

crosses). Data in G(1)
2 are misclassified as belonging to class 1. Note that

labeling samples from G(1)
3 or G(2)

2 does not change the decision boundary

much and G(1)
2 will be still misclassified. Right: labeling a sample that the

classifier is more uncertain about its predicted class, helps to improve the

classification performance. In this case, labeling a sample from G(1)
2 that

is close to the decision boundary, results in changing the decision boundary

and correct classification of all samples.

where the constraints ensure that each column of Z is a

probability vector, denoting the association probability of j
to each one of the data points. Thus, the nonzero rows of

the solution Z indicate the indices of the representatives.

Notice that λ > 0 balances the two costs of the encoding

and the number of representatives. A smaller value of λ
puts more emphasis on better encoding, hence results in ob-

taining more representatives, while a larger value of λ puts

more emphasis on penalizing the number of representatives,

hence results in obtaining less representatives.

3. Active Learning via Convex Programming

In this section, we propose an efficient algorithm for ac-

tive learning that takes advantage of convex programming

in order to find the most informative points. Unlike the

state of the art, our algorithm can be used in conjunction

with any classifier type. To do so, we use the two principles

of classifier uncertainty and sample diversity to define con-

fidence scores for unlabeled samples. A lower confidence

score for an unlabeled sample indicates that we can obtain

more information by annotating that sample. However, the

number of unlabeled samples with low confidence scores

can be large and, more importantly, the samples can have

information overlap with each other or they can be outliers.

Thus, we integrate the confidence scores in the DSMRS

framework in order to find a few representative unlabeled

samples that have low confidence scores. In the subsequent

sections, we define the confidence scores and show how to

use them in the DSMRS framework in order to find the most

informative samples. We assume that we have a total of N
samples, where U and L denote sets of indices of unlabeled

and labeled samples, respectively.
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3.1. Classifier Uncertainty

First, we use the classifier uncertainty in order to select

informative points for improving the classifier performance.

The uncertainty sampling principle [4] states that the infor-

mative samples for classification are the ones that the clas-

sifier is most uncertain about.

To illustrate this, consider the example shown in the left

plot of Figure 2, where the data belong to two different

classes. G(i)
j denotes the j-th cluster of samples that be-

long to class i. Assume that we already have two labeled

samples, shown by green crosses, one from each class. For

this specific example, we consider the linear SVM classifier

but the argument is general and applies to other classifier

types. A max-margin hyperplane learned via SVM for the

two training samples is shown in the figure. Notice that the

classifier is more confident about the labels of samples in

G(1)
3 and G(2)

2 as they are farther from the decision boundary,

while it is less confident about the labels of samples in G(1)
2 ,

since they are closer to the hyperplane boundary. In this

case, labeling any of the samples in G(1)
3 or G(2)

2 does not

change the decision boundary, hence, samples in G(1)
2 will

still be misclassified. On the other hand, labeling a sample

from G(1)
2 changes the decision boundary so that points in

the two classes will be correctly classified, as shown in the

right plot of Figure 2.

Now, for a generic classifier, we define its confidence

about the predicted label of an unlabeled sample. Con-

sider data in L different classes. For an unlabeled sample i,
we consider the probability vector pi =

[
pi1 · · · piL

]
,

where pij denotes the probability that sample i belongs to

class j. We define the classifier confidence score of point i
as

cclassifier(i) � σ − (σ − 1)
E(pi)

log2(L)
∈ [1, σ], (6)

where σ > 1 and E(·) denotes the entropy function. Note

that when the classifier is most certain about the label of a

sample i, i.e., only one element of pi is nonzero and equal

to one, then the entropy is zero and the confidence score

is maximum, i.e., is equal to σ. On the other hand, when

the classifier is most uncertain about the label of a sample

i, i.e., when all the elements of pi are equal to 1/L, then

the entropy is equal to log2(L) and the confidence score is

minimum, i.e., is equal to one.

Remark 1 For probabilistic classifiers such as Naive
Bayes, the probability vectors, pi, are directly given by
the output of the algorithms. For SVM, we use the re-
sult of [14] to estimate pi. For SRC, we can compute
the multi-class probability vectors as follows. Let xi =[
x�
i1 · · · x�

iL

]�
be the sparse representation of an un-

labeled sample i, where xij denotes the representation co-
efficients using labeled samples from class j. We set pij �

G(1)
1

G(1)
2

G(2)
1

G(2)
2

G(1)
1

G(1)
2

G(2)
1

G(2)
2

Figure 3. Separating data in two different classes. Class 1 consists of data

in {G(1)
1 ,G(1)

2 } and class 2 consists of data in {G(2)
1 ,G(2)

2 }. Left: a max-

margin linear SVM learned using two training samples (green crosses).

Data in G(1)
2 and G(2)

2 are misclassified as belonging to class 2 and 1, re-

spectively. Note that the most uncertain samples according to the classifier

are samples from G(1)
1 and G(2)

1 , which are close to the decision boundary.

However, labeling such samples does not change the decision boundary

much and samples in G(1)
2 and G(2)

2 will still be misclassified. Right:

labeling samples that are sufficiently dissimilar from the labeled training

samples helps to improve the classification performance. In this case, la-

beling a sample from G(1)
2 and a sample from G(2)

2 results in changing the

decision boundary and correct classification of all samples.

‖xij‖1/‖xi‖1.

3.2. Sample Diversity

We also use the sample diversity criterion in order to find

the most informative points for improving the classifier per-

formance. More specifically, sample diversity states that in-

formative points for classification are the ones that are suf-

ficiently dissimilar from the labeled training samples (and

from themselves in the batch mode setting).

To illustrate this, consider the example of Figure 3,

where the data belong to two different classes. G(i)
j denotes

the j-th cluster of samples that belong to class i. Assume

that we already have two labeled samples, shown by green

crosses, one from each class. For this example, we con-

sider the linear SVM classifier but the argument applies to

other classifier types. The max-margin hyperplane learned

via SVM for the two training samples is shown in the the

left plot of Figure 3. Notice that samples in G(1)
1 and G(2)

1

are similar to the labeled samples (have small Euclidean dis-

tances to the labeled samples in this example). In fact, label-

ing any of the samples in G(1)
1 or G(2)

1 does not change the

decision boundary much, and the points in G(1)
2 will be still

misclassified as belonging to class 2. On the other hand,

samples in G(1)
2 and G(2)

2 are more dissimilar from the la-

beled training samples. In fact, labeling a sample from G(1)
2

or G(2)
2 changes the decision boundary so that points in the
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1
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1

G(1)
2

G(2)
1

G(2)
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1
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2
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1
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2

Figure 4. Separating data in two different classes. Class 1 consists of data in {G(1)
1 ,G(1)

2 } and class 2 consists of data in {G(2)
1 ,G(2)

2 }. Left: a max-margin

linear SVM learned using two training samples (green crosses). All samples in G(2)
2 as well as some samples in G(1)

2 are misclassified. Middle: two

samples with lowest confidence scores correspond to two samples from G(1)
2 that are close to the decision boundary. A retrained classifier using these two

samples, which have information overlap, still misclassifies samples in G(2)
2 . Right: two representatives of samples with low confidence scores correspond

to a sample from G(1)
2 and a sample from G(2)

2 . A retrained classifier using these two samples correctly classifies all the samples in the dataset.

two classes will be correctly classified, as shown in the right

plot of Figure 3.

To incorporate diversity with respect to the labeled train-

ing set, L, for a point i in the unlabeled set, U , we define

the diversity confidence score as

cdiversity(i) � σ − (σ − 1)
minj∈L dji

maxk∈U minj∈L djk
∈ [1, σ],

(7)

where σ > 1. When the closest labeled sample to an unla-

beled sample i is very similar to it, i.e., minj∈L dji is close

to zero, then the diversity confidence score is large, i.e., is

close to σ. This means that sample i does not promote di-

versity. On the other hand, when all labeled samples are

very dissimilar from an unlabeled sample i, i.e., the fraction

in (7) is close to one, then the diversity confidence score is

small, i.e., is close to one. This means that selecting and

annotating sample i promotes diversity with respect to the

labeled samples.

3.3. Selecting Informative Samples

Recall that our goal is to have a batch mode active learn-

ing framework that selects multiple informative and diverse

unlabeled samples, with respect to the labeled samples as

well as each other, for annotation. One can think of a sim-

ple algorithm that selects samples that have the lowest con-

fidence scores. The drawback of this approach is that while

the selected unlabeled samples are diverse with respect to

the labeled training samples, they can still have significant

information overlap with each other. This comes from the

fact that the confidence scores only reflect the relationship

of each unlabeled sample with respect to the classifier and

the labeled training samples and do not capture the relation-

ships among the unlabeled samples.

To illustrate this, consider the example of Figure 4,

where the data belong to two different classes. Assume

that we already have two labeled samples, shown by green

crosses, one from each class. A max-margin hyperplane

learned via SVM for the two training samples is shown in

the the left plot of Figure 4. In this case, all samples in

G(2)
2 as well as some samples in G(1)

2 are misclassified. No-

tice that samples in G(1)
2 have small classifier and diversity

confidence scores and samples in G(2)
2 have small diversity

confidence scores. Now, if we select two samples with low-

est confidence scores, we will select two samples from G(1)
2 ,

as they are very close to the decision boundary. However,

these two samples have information overlap, since they be-

long to the same cluster. In fact, after adding these two

samples to the labeled training set, the retrained classifier,

shown in the middle plot of Figure 4, still misclassifies sam-

ples in G(2)
2 . On the other hand, two representatives of sam-

ples with low confidence scores, i.e., two samples that cap-

ture the distribution of samples with low confidence scores,

correspond to one sample from G(1)
2 and one sample from

G(2)
2 . As shown in the right plot of Figure 4, the retrained

classifier using these two points correctly classifies all of

the samples.

To select a few diverse representatives of unlabeled sam-

ples that have low confidence scores, we take advantage

of the DSMRS algorithm. Let D ∈ R
|U|×|U| be the dis-

similarity matrix for samples in the unlabeled set U =
{i1, · · · , i|U|}. We propose to solve the convex program

min λ ‖CZ‖1,q+tr(D�Z) s. t. Z ≥ 0, 1�Z = 1�,
(8)

over the optimization matrix Z ∈ R
|U|×|U|. The matrix

C = diag(c(i1), . . . , c(i|U|)) is the confidence matrix with

the active learning confidence scores, c(i), defined as

c(ik) � min{cclassifier(ik), cdiversity(ik)} ∈ [1, σ]. (9)

More specifically, for an unlabeled sample ik that has a

small confidence score c(ik), the optimization program puts

less penalty on the k-th row of Z being nonzero. On the

other hand, for a sample ik that has a large confidence score

c(ik), the optimization program puts more penalty on the

k-th row of Z being nonzero. Hence, the optimization pro-
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Figure 5. Classification accuracy of different active learning algorithms

on the INRIA Person dataset as a function of the total number of labeled

training samples selected by each algorithm.

motes selecting a few unlabeled samples with low confi-

dence scores that are, at the same time, representatives of

the distribution of the samples. This therefore addresses

the main problems with previous active learning algorithms,

which we discussed in Section 1.

Remark 2 We should note that other combinations of the
classifier and diversity scores can be used, such as c(i) �√
cclassifier(i) · cdiversity(i) ∈ [1, σ]. However, (9) is very in-

tuitive and works best in our experiments.

4. Experiments
In this section, we examine the performance of our pro-

posed active learning framework on several real-world ap-

plications. We consider person detection, scene catego-

rization and face recognition from real images (see Figure

1). We refer to our approach, formulated in (8), as Con-

vex Programming-based Active Learning (CPAL) and im-

plement it using an Alternating Direction Method of Mul-

tipliers method [1], which has quadratic complexity in the

number of unlabeled samples. For all the experiments, we

fix σ = 20 in (6) and (7), however, the performances do

not change much for σ ∈ [5, 40]. As the experimental re-

sults show, our algorithm works well with different types of

classifiers.

To illustrate the effect of confidence scores and represen-

tativeness of samples in the performance of our proposed

framework, we consider several methods for comparison.

Assume that our algorithm selects Kt samples at iteration t,
i.e., prior to training the classifier for the t-th time.

– We select Kt samples uniformly at random from the pool

of unlabeled samples. We refer to this method as RAND.

– We select Kt samples that have the smallest classifier con-

fidence scores. For an SVM classifier, this method corre-

sponds to the algorithm proposed in [29]. We refer to this
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Figure 6. Total number of samples from each class of INRIA Person

dataset selected by our proposed algorithm (CPAL) at different active

learning iterations.

algorithm as Classifier Confidence-based Active Learning

(CCAL).

4.1. Person Detection

In this section, we consider the problem of detecting hu-

mans in images. To do so, we use the INRIA Person dataset

[6] that consists of a set of positive training/test images,

which contain people, and a set of negative train/test im-

ages, which do not contain a person (see Figure 1). For each

image in the dataset, we compute the Histogram of Oriented

Gradients (HOG), which has been shown to be an effective

descriptor for the task of person detection [6, 8]. We use

the positive/negative training images in the dataset to form

the pool of unlabeled samples (2, 416 positive and 2, 736
negative samples) and use the the positive/negative test im-

ages for testing (1, 126 positive and 900 negative samples).

For this binary classification problem (L = 2), we use the

linear SVM classifier, which has been shown to work well

with HOG features for the person detection task [6, 8]. We

use the χ2-distance to compute the dissimilarity between

the histograms, as it works better than other dissimilarity

types, such as the �1-distance and KL-divergence, in our

experiments.

Figure 5 shows the classification accuracy of different

active learning methods on the test set as a function of the

total number of labeled samples. From the results, we make

the following conclusions:

– Our proposed active learning algorithm, consistently out-

performs other algorithms. In fact, with 316 labeled sam-

ples, CPAL obtains 96% accuracy while other methods ob-

tain less than 84% accuracy on the test set.

– CCAL and RAND perform worse than our proposed algo-

rithm. This comes from the fact that the selected samples by

CCAL can have information overlap and are not necessar-

ily representing the distribution of unlabeled samples with
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Figure 7. Classification accuracy of different active learning algorithms

on the Fifteen Scene Categories dataset as a function of the total number

of labeled training samples selected by each algorithm.

low confidence scores. Also, RAND ignores all confidence

scores and obtains, in general, lower classification accuracy

than CCAL.

Figure 6 shows the total number of samples selected by

our method from each class. Although our active learning

algorithm is unaware of the separation of unlabeled samples

into classes, it consistently selects about the same number

of samples from each class. Notice also that our method

selects a bit more samples from the nonperson class, since,

as expected, the negative images have more variation than

the positive ones.

4.2. Scene Categorization

In this section, we consider the problem of scene cate-

gorization in images. We use the Fifteen Scene Categories

dataset [19] that consists of images from L = 15 differ-

ent classes, such as coasts, forests, highways, mountains,

stores, etc (see Figure 1). There are between 210 and 410
images in each class, making a total of 4, 485 images in the

dataset. We randomly select 80% of images in each class to

form the pool of unlabeled samples and use the rest of the

20% of images in each class for testing. We use the kernel

SVM classifier (one-versus-rest) with the Spatial Pyramid

Match (SPM) kernel, which has been shown to be effective

for scene categorization [19]. More specifically, the SPM

kernel between a pair of images is given by the weighted

intersection of the multi-resolution histograms of the im-

ages. We use 3 pyramid levels and 200 bins to compute the

histograms and the kernel. As the SPM is itself a similar-

ity between pairs of images, we also use it to compute the

dissimilarities by negating the similarity matrix and shifting

the elements to become non-negative.

Figure 7 shows the accuracy of different active learning

methods on the test set as a function of the total number of

selected samples. Our method consistently performs better

than other approaches. Unlike the experiment in the pre-
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Figure 8. Classification accuracy of different active learning algorithms

on the Extended YaleB Face dataset as a function of the total number of

labeled training samples selected by each algorithm.

vious section, here the RAND method, in general, has a

better performance than CCAL method that selects multi-

ple samples with low confidence scores. A careful look into

the selected samples by different methods shows that, this

is due to the fact that CCAL may repeatedly select similar

samples from a fixed class while a random strategy, in gen-

eral, does not get stuck to repeatedly select similar samples

from a fixed class.

4.3. Face Recognition

Finally, we consider the problem of active learning for

face recognition. We use the Extended YaleB Face dataset

[20], that consists of face images of L = 38 individuals

(classes). Each class consists of 64 images captured un-

der the same pose and varying illumination. We randomly

select 80% of images in each class to form the pool of unla-

beled samples and use the rest of the 20% of images in each

class for testing. We use the Sparse Representation-based

Classification (SRC), which has been shown to be effective

for the classification of human faces [35]. To the best of our

knowledge, our work is the first one addressing the active

learning problem in conjunction with SRC. We downsam-

ple the images and use the 504-dimensional vectorized im-

ages as the feature vectors. We use the Euclidean distance

to compute dissimilarities between pairs of samples.

Figure 8 shows the classification accuracy of different

active learning methods as a function of the total number of

labeled training samples selected by each algorithm. One

can see that our proposed algorithm performs better than

other methods. With a total of 790 labeled samples (aver-

age of 21 samples per class), we obtain the same accuracy

(about 97%) as reported in [35] for 32 random samples per

class. It is important to note that the performances of RAND

and CCAL are very close. This comes from the fact that the

space of images from each class are not densely sampled.

Hence, samples are typically dissimilar from each other. As
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a result, samples with low confidence scores are generally

dissimilar from each other.

5. Conclusions
We proposed a batch mode active learning algorithm

based on simultaneous sparse recovery that can be used

in conjunction with any classifier type. The advantage of

our algorithm with respect to the state of the art is that

it incorporates classifier uncertainty and sample diversity

principles via confidence scores in a convex programming

scheme. Thus, it selects the most informative unlabeled

samples for classification that are sufficiently dissimilar

from each other as well as the labeled samples and repre-

sent the distribution of the unlabeled samples. We demon-

strated the effectiveness of our approach by experiments on

person detection, scene categorization and face recognition

on real-world images.
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