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Abstract

Many standard computer vision datasets exhibit biases

due to a variety of sources including illumination condi-

tion, imaging system, and preference of dataset collectors.

Biases like these can have downstream effects in the use

of vision datasets in the construction of generalizable tech-

niques, especially for the goal of the creation of a classifi-

cation system capable of generalizing to unseen and novel

datasets. In this work we propose Unbiased Metric Learn-

ing (UML), a metric learning approach, to achieve this

goal. UML operates in the following two steps: (1) By

varying hyperparameters, it learns a set of less biased can-

didate distance metrics on training examples from multiple

biased datasets. The key idea is to learn a neighborhood

for each example, which consists of not only examples of the

same category from the same dataset, but those from other

datasets. The learning framework is based on structural

SVM. (2) We do model validation on a set of weakly-labeled

web images retrieved by issuing class labels as keywords to

search engine. The metric with best validation performance

is selected. Although the web images sometimes have noisy

labels, they often tend to be less biased, which makes them

suitable for the validation set in our task. Cross-dataset im-

age classification experiments are carried out. Results show

significant performance improvement on four well-known

computer vision datasets.

1. Introduction

Over the last decades object recognition systems have

been improved dramatically [26][19][6]. One of the forces

driving the development is the availability of medium or

large size high quality image datasets (e.g., Caltech 101 [7],

PASCAL VOC [4], LabelMe [20] and SUN09 [3]) that en-

able researchers to evaluate and practice sophisticated fea-

ture designing and machine learning techniques. However,

Torralba and Efros [23] point out that every dataset carries

bias in its own way, which can be caused by various rea-

sons, such as illumination condition, different imaging sys-

tem and preference of database collectors. Bias inevitably

leads learning algorithms to overfit for the training set to

the detriment of any ability to generalize to other datasets.

In other words, an object recognition system trained solely

on one dataset tends to perform poorly on unseen and novel

datasets at test time, because the underlying bias is incor-

porated into the learning algorithm. This is an important is-

sue, because most image classification systems are required

to handle all kinds of test examples, regardless of where the

test examples are drawn from. For example, it’s rare to see

a question like “Can you classify a dog image from Cal-

tech101?”.

The new challenge now is to build a system that per-

forms well on unseen datasets. This requires the learned

model to capture the general class knowledge, while dis-

carding the information reflective of the bias. Note that this

problem is potentially more general than a challenge facing

researchers performing image analysis. Microarray analy-

sis is one context in which this issue has received significant

attention (see e.g., [1]).

Failing the ability to create a vision dataset free of bias,

it is of interest to address the assumption of bias directly. To

this end we introduce Unbiased Metric Learning (UML),

which learns an unbiased metric using multiple biased

datasets and web images. Our approach operates in the

following two steps:

Step 1 – we learn a set of distance metrics on train-

ing examples from multiple biased datasets. The key idea

is that in the learned feature spaces, the neighborhoods

of training examples should consist of not only examples

of the same category from the same dataset, but those

examples of the same category from other datasets. We

call this property “neighborhood diversity.” In such a
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way, datasets (or domains) are bridged together via these

neighborhoods. By varying related hyperparameters, we

learn a set of distance metrics, each of which bears a

specific degree of “neighborhood diversity.” In other words,

the training data is distributed differently in the spaces

defined by these metrics. We form a candidate set of these

metrics for Step 2 (below), in which a novel validation

is performed. Technically, we cast it as a learning to

rank problem [11][27], and solve it with structural metric

learning [15].

Step 2 – we do model validation to identify the met-

ric with best generalization ability. Conventionally, the

validation set is from the same source as the training set,

for example, cross-validation. However, in our case, a good

validation performance on seen datasets does not necessar-

ily generalize to unseen datasets. Therefore conventional

validation may fail to uncover the desired model. So,

instead of using images from seen datasets, we propose to

use a set of weakly-labeled web images retrieved from the

Internet by issuing class labels as keywords to the search

engine. Those images are less biased and have higher

intra-class variability than human collected datasets, which

makes it suitable to be used as our validation set.

We do image classification experiments, and use cross-

dataset performance to measure a model’s ability to gen-

eralize to unseen datasets. Experiments show the follow-

ing facts: (1) In Step 1, by varying hyperparameters, our

learning framework is capable of producing models with

superior cross-dataset classification performance. (2) In the

validation step, the model selected by our novel validation

method significantly outperforms those selected by conven-

tional validation procedures.

In the rest of the paper, we will first review related work,

discuss the advantages of our framework, then cover tech-

nical details. We then follow this with experiments demon-

strating the effectiveness of our approach.

2. Related Work

The issue of dataset bias in vision datasets was first

raised by Torralba and Efros [23]. Since then, Khosla et

al. [12] has proposed a solution to improve cross-dataset

generalization ability for an object recognition system. The

approach in [12] learns a common weight vector which is

expected to work well on unseen datasets, in a way that is

similar to regularized multi-task learning [5]. Our method

adopts a metric learning solution to this problem.

Metric learning methods have been popular in the

machine learning community as well as computer vi-

sion [25][18]. Most of them can be categorized as either

learning a “global” metric or a “local” metric. Our approach

is closer to the former category, where a single paramet-

ric transformation is learned to map data from the original

space to a new space, where the data distribution exhibits

some desired properties. Weinberger et al. [24] propose a

large margin method to group together examples with the

same label and separate the ones with different labels. In [9]

a metric is learned by collapsing all examples in a class to

a single point. However, these methods are not designed

to utilize domain information. As shown in later experi-

ments, this results in poor cross-dataset generalization per-

formance.

Because our approach utilizes domain information in

training data, it is related to domain adaptation and multi-

task learning. In domain adaptation, the goal is to transfer

knowledge from the source domain to help perform a task in

the target domain, and multi-task learning aims at good per-

formance simultaneously in multiple domains. Among the

large range of work in this area, [21] and [17] are both met-

ric learning-based. [21] learns a metric to transfer knowl-

edge to the target domain by randomly sampling pairs con-

sisting of a labeled example from the source domain and

another from the target domain, and constraining their dis-

tance to be no greater (less) than a bound if the labels are

the same (different). In [17], the metric is decomposed into

a domain specific part and a global part, which is shared

among all domains. Recent work by Tommasi et al. [22]

proposes to learn general knowledge from multiple datasets,

which will be transferred to a target test dataset later with

the help of a few labeled examples from the target dataset.

Although related, our problem is different. In our prob-

lem, there is no target dataset where the task will be per-

formed, not to mention labeled examples to assist in knowl-

edge transfer. This means that incoming test examples may

come from any domains, although most are unseen at train-

ing time. Therefore, the goal is to learn a transformed new

space, where all the training examples are less biased. So

any classification system trained on it will generalize better

to novel datasets.

3. Approach Overview

Our approach tackles the problem from a learning-to-

rank perspective. First, we consider each training example

as a query and rank in ascending order the other training ex-

amples based on their L2 distances to the query. We want

a high precision among top-k positions. This is essentially

constructing a label-coherent neighborhood. Then, beyond

the neighborhood label coherence, we look at the domain

information of the positive examples within the neighbor-

hood. We encourage to include more positive examples

from multiple domains, which was mentioned before as

“neighborhood diversity.” From a ranking perspective, this

is inserting into the top-k positions, those positive exam-

ples from domains other than the current query’s. Fig.1

gives a schematic comparison of the case in which “neigh-

borhood diversity” is enforced and the case in which it is
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Figure 1. Schematic illustration of neighborhoods without (top-

left) and with (top-right) “neighborhood diversity” (best viewed

in color). (a) The distribution of data in different learned fea-

ture spaces (Left: a normal feature space. Right: a feature space

learned by UML). Color and shape represent dataset and category,

respectively. Squares with colored boundaries are the correspond-

ing queries of the two local neighborhoods in circle. In the top

right figure, data from different datasets are linked at circled neigh-

borhoods. (b) A look at the local neighbors in Fig.1a from a rank-

ing perspective. The ranking on the right, unlike the one on the

left, exhibits both label coherence and neighborhood diversity.

not. As the top right figure illustrates, examples of the same

category from different datasets are linked together via di-

versified neighborhood, which is constructed automatically

in the learning procedure by discovering and grouping ap-

propriate pairs of positive examples from different datasets.

However, we still let each dataset keep its own distributional

independence, since we do not want to overly “merge” the

data. We let the hyperparameters vary, so as to produce a set

of metrics with different levels of “neighborhood diversity”

which later will be screened by validation procedure.

As for model validation, we use weakly-labeled web im-

ages as the validation set. Images returned by search en-

gines are sometimes loosely related to textual query (key-

word), compared to human-labeled datasets. Therefore, if

used as training set, in order to get comparable results, ex-

tra labor is needed to remove noise and build a robust learn-

ing algorithm [8][10]. However, studies have shown that

they serve well as a relatively noisy validation set [8]. In

our case, we are interested in the fact that web images tend

to be less biased, since they are implicitly sampled from

a countless number of unknown sources and there is less

human intervention during collection process. Our experi-

ments support the claim that web images serve better as a

validation set for our problem.

4. Technical Details

In this section, we will discuss the formulation of the

structural metric learning (SML) framework as well as Un-

biased Metric Learning (UML). Technical details will be

covered.

4.1. Notations and preliminaries

LetD = {D1, . . . , DQ} denote the set of biased datasets

that share a set of common classes C = {c1, . . . , cK}. The

training set is denoted as X with |X | = n. Each training

example i ∈ X is a triplet (xi, li, di), where xi ∈ R
d is

the feature vector of item i, li ∈ C is the corresponding

class label and di ∈ D indicates the dataset that i is from.

For a query q, we use X+
q /X−q to denote the set of posi-

tive/negative examples in X . Y will be the set of permu-

tations/rankings of items in X . Similarly, Y+
q is the set of

permutations/rankings of items in X+
q . If i is ranked before

(after) j in some ranking y ∈ Y , we say i ≺y j (i �y j).

For a matrixW ⊂ R
d×d,W � 0 means it is a symmetric

and positive semidefinite matrix. The Mahalanobis distance

defined by W is dW(i, j) =
√
(xi − xj)TW(xi − xj).

This is equivalent to applying a transformation L ⊂ R
d′×d

to the original feature space and calculating the L2 distance

in the new space. Thus, W = LT × L. The Frobenius

inner product of two matrices A,B ∈ R
d×d is denoted as

〈A,B〉F = tr(ATB). Finally, 1(X) is the indicator func-

tion of event X.

4.2. Structural metric learning

We now review the structural metric learning (SML)

framework [15]. The goal is to learn a positive semidefi-

nite matrix W , so that when a query q is issued, the corre-

sponding ranking or ordering yq, which is produced based

on the Mahalanobis distance defined by W , will have some

desiring properties, such as high Precision@k, Mean Aver-

age Precision or ROC area. This can be solved via struc-

tural learning and its mathematical formulation is similar to

structural SVM [11]. The following objective function is

minimized:

min
W�0,ξ≥0

tr (W ) +
C

n

∑
q∈X

ξq (1)

subject to constraints as follows:

∀q ∈ X , ∀y ∈ Y\y∗q : (2)

〈W,ψpo(q, y
∗
q )− ψpo(q, y)〉F ≥ Δ(y, y∗q )− ξq .

in Eq.1 tr (W ) is the regularizer. In Eq.2, y∗q is the

ground truth ranking for query q. The right-hand side of

Eq.2 includes the slack variable ξq and the structural loss

function Δ(y, y∗q ), which encodes the structural informa-

tion in Y . Thus, the margin is rescaled to be Δ(y, y∗q ). The

Frobenius inner product term on the left is the discrimi-

native score difference between current ranking y and y∗q .
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ψ(q, y) is the partial order feature [11] with the following

form:

ψpo(q, y) =
∑
i∈X+

q

∑
j∈X−q

yij

(
φ (q, i)− φ (q, j)

|X+
q | · |X

−
q |

)
(3)

where

yij =

{
+1 i ≺y j

−1 i �y j
(4)

φ (q, i) is a feature map that captures how q and i are related.

Thus, a ranking y for query q is encoded by ψpo(q, y) in a

feature space by examining all possible relevant/irrelevant

pairs. At prediction time, given a fixed W , the ranking

y that maximizes the discriminative score 〈W,ψpo(q, y)〉F
is simply the collection of i ∈ X sorted by descending

〈W,φ(q, i)〉F . Now choose φ to be φ(q, i) = −(xq −
xi)(xq − xi)

T. Because d2
W
(q, i) = 〈W, (xq − xi)(xq −

xi)
T〉F , we see that the y that maximizes 〈W,ψpo(q, y)〉F

is simply i ∈ X sorted by ascending d2
W
(q, i).

4.3. Unbiased Metric Learning

Learning model Our model extends the original SML.

First, note that the neighborhood label coherence is already

forced by Eq.2, if we set the loss function Δ to be the fol-

lowing form:

Δ(y, y∗q ) = 1− Prec@k(y) (5)

where Prec@k(y) gives the percentage of positive exam-

ples among the top-k positions of ranking y, which is equiv-

alent to the notion of label coherence in a neighborhood. To

incorporate the “neighborhood diversity” property, the fol-

lowing constraint is added to the SML formulation:

∀q ∈ X , ∀y+ ∈ Y+\y+∗q : (6)

〈W,ψpo(q, y
+∗
q )− ψpo(q, y

+)〉F ≥ Δ̂(y+, y+∗q )− ξ+q

Assume the current query is q = (xq, lq, dq). In

Eq.6, y+ ∈ Y+
q is a subset ranking of only i ∈ X+

q . We let

y+∗q be the ground truth ranking in Y+
q with the following

property:

∀i, j ∈ X+
q : i ≺y+∗

q
j, if (di �= dq ∧ dj = dq) (7)

where di indicates the dataset containing example i. Eq.7

means the all the positive examples not in dq precede those

in dq . We also have a new objective function by adding the

slack variable ξ+q to Eq.1:

min
W�0,ξ≥0

tr (W ) +
C1

n

∑
q∈X

ξq +
C2

n

∑
q∈X

ξ+q (8)

Now let us tentatively assume that Δ̂(y+, y+∗q ) measures

the “neighborhood diversity” score difference between y+

and the ground truth. Then Eq.6 encourages any ranking

predicted by W to have a neighborhood as diverse as the

ground truth.

To measure “neighborhood diversity” we introduce a

new function:

Div(q, y+, k′) =
1

k′

k′∑
i∈y+,i=1

1(di �= dq) (9)

which is the percentage of items not in dq among the top-

k′ positions of y+. Based on Eq.9, the following diversity

score function is devised:

DivS(q, y+, k′) =
1

1 + e−Div(q, y+, k′)/η
(10)

where η is, mathematically, a hyperparameter controlling

the shape of this sigmoid-like function. Eq.10 is needed be-

cause setting the ground truth y+∗q to have the property in

Eq.7 may dangerously overconnect or overmerge datasets.

The degree to which we can connect the data is data depen-

dent. If the data resists merging, we need to set η to be a

small value, so that even a tiny increase of Eq.9 leads to a

gigantic boost in Eq.10., resulting in a score very close to

ground truth. At a higher level, η is a hyperparameter that

we should vary and one that depends on the intrinsic prop-

erty of training data. Finally, a natural choice for Δ̂ is the

score difference:

Δ̂(y+, y+∗q ) = DivS(q, y+∗q , k′)−DivS(q, y+q , k
′). (11)

Optimization When solving for the optimal W in Eq.8,

we can not enumerate the entireY andY+ to list all the con-

straints. To optimize for UML, we use an efficient cutting-

plane algorithm, which is slightly different from [15][11]

due to the additional constraint of Eq.6. The general idea

is that for each training example, maintain one set Si of ac-

tive constraints corresponding to Eq.2, and another set S+

i

of active constraints corresponding to Eq.6. The algorithm

alternates between solving for W under current active con-

straints, and updatingSi and S+

i by adding to them the most

violated constraint ŷi and ŷ+i of each training example un-

der current W . If a newly found ŷi (ŷ+i ) has a violation,

which is the value of its slack variable indeed, greater than

current violation ξi (ξ+i ) by some threshold ε, then it will be

added, otherwise discarded. This iteration keeps going un-

til no new constraint needs to be added. Gradient descent is

used to solve for W , and the solution at each gradient step

will be projected to its positive semidefinite (PSD) cone so

that W is a feasible metric. Algorithm 1 is a high level il-

lustration of the optimization procedure for UML.

Notice that in order to further speed up the optimization

process, two modification are made in our implementation.
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First, as in [15][11] the problem is reformulated so that only

one or two global slack variables are maintained. Second, as

in [13], we use the alternating direction method of multipli-

ers [2] to reduce the number of times eigen-decomposition

is performed, which is done when projecting the solution to

its PSD cone.

Algorithm 1 Optimization Algorithm

Input: training dataX , positive/negative setX+

i /X−i , rank-

ing y∗i and y+∗i , hyperparamters: C1 > 0, C2 > 0 and

η > 0, stop threshold ε > 0
Output: W � 0 and slack variables ξi and ξ+i

1: for all i = 1, . . . , n, Si ← ∅,S+

i ← ∅, ξi ← 0, ξ+i ← 0
2: repeat

3: for i = 1, . . . , n do

4: ŷi ← argmaxy∈Y〈W,ψpo(i, y)〉F+ Δ(y, y∗i )
5: ŷ+i ← argmaxy+∈Y+〈W,ψpo(i, y

+)〉F+

6: Δ̂(y+, y+∗i )
7: if the slack of ŷi is greater than ξi + ε then

8: Si ← Si ∪ {ŷi}
9: end if

10: if the slack of ŷ+i is greater than ξ+i + ε then

11: S+

i ← S+

i ∪ {ŷ
+

i }
12: end if

13: Solve for Eq.8

14: subject to Si and S+

i for all i = 1, . . . , n
15: end for

16: until no Si and S+

i has changed during iteration

5. Experiments

In this section, we evaluate our approach on the image

classification task.

5.1. Data

We used four standard datasets: Caltech101 [7], PAS-

CAL VOC [4], LabelMe [20] and SUN09 [3]. The follow-

ing five common categories were selected: bird, car, chair,

dog and person.

Training set The training set contains images from the four

datasets. For each category in each dataset, we randomly

selected up to 100 images, so that we could vary the num-

ber of training examples per category per dataset. In cross-

dataset classification experiments one dataset will be held

out as unseen dataset. Therefore, we remove its images

from the pool of training images to form a subset (denoted

as Trunseen) and the rest of the images form another subset

called Tr
seen. In practice, only Tr

seen was used

Validation set This validation set contains images from the

four datasets. The 20 images per category per dataset are

randomly selected. Similar to the training set, in cross-

dataset experiments one dataset will be held out, so we have

two subsets as Va
unseen and Va

seen.

Web validation set In order to carry out our novel valida-

tion method, we constructed another validation set with web

images. We issued the class labels as keyword to Google

and downloaded the top 50 returned images. After remov-

ing duplicates with regard to the training set, 20 images

were randomly selected for each class to form the set. We

will refer to it as Va
web.

Test set There are 20 images per class per dataset. Similar

to training set, the test set was divided into Te
unseen and

Te
seen in cross-dataset evaluation.

We generated 3 different copies of the above sets, so that

all of our following experiments are carried out 3 times on

different data and the mean results are reported. For each

image, grayscale SIFT descriptors [14] were extracted at in-

terest points detected with the Hessian-Affine detector [16].

Then we quantized these descriptors to bag-of-words repre-

sentation using a vocabulary of size 500 at 3 spatial pyramid

levels and the feature representation is of 10, 500 dimen-

sions. Eventually, PCA was applied to reduce the dimen-

sionality to 800.

We started with an experiment to validate the existence

of bias in our datasets. Then we applied our method to

cross-dataset classification task. Finally, we compare our

approach with other metric learning methods. A simple k-

nearest neighbor classifier is used in all classification ex-

periments. Details and results are shown in the following

sections.

5.2. Existence of bias

In this first experiment we show that our four datasets

are strongly biased, in the sense that a model trained on

one dataset is ineffective (due to bias) on the other datasets.

We do this by using SML to learn a metric on each dataset

individually and then test it on each dataset individually.

For each metric, the classification accuracy on each dataset

is reported. We used 20 images per category per dataset

to form the training set, as well as the validation and test

sets. The hyperparameter C in Eq.1 was selected from the

following values {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

Train
Test

Cal Pas SUN Lab

Cal 0.87 0.33 0.24 0.39

Pas 0.31 0.40 0.32 0.30

SUN 0.11 0.23 0.37 0.22

Lab 0.24 0.25 0.18 0.47
Table 1. Classification accuracy on all datasets. Metrics are

learned on each dataset individually. The left-most column speci-

fies the training dataset where the metric is learned, while the up-

permost row specifies the test dataset. Cal, Pas, SUN and Lab

stand for Caltech101, PASCAL VOC, SUN09 and LabelMe re-

spectively.
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Table 1 shows clearly that our datasets are highly bi-

ased. With the same test example, the performance of mod-

els trained on different datasets varies widely (read Table 1

vertically). For example, when tested on Caltech101 (see

column 1), the best classification performance is achieved

by the model trained on the same dataset, while the lowest

accuracy comes from the model trained on SUN09 images.

5.3. Cross-dataset classification

In this experiment, our goal is to measure the true gener-

alizability of the model learned by UML with cross-dataset

performance. We should point out that cross-dataset classi-

fication does not completely measure a model’s true gener-

alizability, but it is a reasonable indicator.

Since the performance of UML is subject to model train-

ing as well as validation, our experiment is composed of

two stages, where we evaluate them separately. Finally, we

will do full evaluation and compare UML to other metric

learning methods.

5.3.1 Training stage

In this experiment, we want to test the effectiveness of the

UML learning framework, so the question for this stage

is whether UML can produce models with better general-

izability. Recall that by varying hyperparameters we will

learn a set of metrics with different levels of “neighborhood

label coherence” and “neighborhood diversity”. These met-

rics will be validated by the validation procedure. How-

ever, if the validation is carried out improperly (e.g., using

a validation set that is not related to the target task) then

a bad metric can be selected. For example, in our case, it

would be bad to use Va
seen, since the goal is to general-

ize to every possible unseen datasets/domains, not only the

three seen datasets. The corresponding consequence is that

it is impossible to tell the quality of models produced by

UML training step. Clearly, in this stage, we need a valida-

tion set that is closely related to the target task, which is, in

the cross-dataset setting, generalizing to the unseen dataset.

The choice is obvious: using Va
unseen as the validation set

at this stage. In this way, the effect of the validation proce-

dure on the final performance is minimized, thus resulting

in a better evaluation of UML’s learning step.

In detail, when a dataset was marked as unseen, the cor-

responding Tr
seen and Te

unseen denote the training set

and test set respectively. There were 20 images per class

per dataset in Va
unseen and we let the number of training

examples per class per dataset in Tr
seen to be the follow-

ing values {15, 20, 30, 50, 70, 100}. The validation set, as

explained above, was Va
unseen, which was of the same

size as Te
unseen. The k in Eq.5 and the k′ in Eq.11 was

set to be the same as current number of training examples.

The neighborhood size of the k-nearest neighbor classifier

was determined via validation. We let each dataset be un-

seen once, and report in Fig.2 the test accuracy on the corre-

sponding Te
unseen, as well as the average performance of

these individual experiments. From the top figure in Fig.2

we can tell that the models produced by UML have better

cross-dataset generalizability than SML. This suggest that

utilizing domain information (such as the source of the ex-

ample dataset), in learning can be helpful to extract more

general knowledge. The bottom figures report the results of

individual experiments. As shown, UML still gives better

results most times. One observation we found is that UML

has fewer advantages over baseline when fewer (e.g., 15)

training examples are used, but benefits more from more

training examples. This is because UML can not enforce

“neighborhood diversity” due to the lack of good pairs to

pull together, and with more examples at hand, better pairs

can be found and this in turn give rise to “better” neighbor-

hoods can be constructed. There are certain points at which

both methods do not benefit from more training examples.

This is due to the fact that newly added examples can bring

in more bias, which will then further bias the derived learn-

ing algorithm.

5.3.2 Validation stage

The goal of the second stage is to evaluate how different

validation sets affect the final performance. Two validation

sets were used, Vaweb and the correspondingVa
seen in in-

dividual experiments. The set of metrics produced by UML

in the training stage was the input, thus with the same in-

put, our expectation was that our validation procedure with

Va
web would consistently outperform the other. This is

proved by results reported in Fig.3, in which metrics se-

lected by Va
web not only outperform metrics selected by

Va
seen, but almost matches the ones selected byVa

unseen.

An additional question we ask is whether web images

can help conventional metric learning method to generalize.

To answer it, we applied Va
seen and Va

web to metrics pro-

duced by SML, and found that metrics selected by Va
web

outperform those of Va
seen. Due to the lack of space, we

leave the corresponding figure in the supplementary mate-

rial.

5.3.3 Full evaluation

In this experiment, we compared our approach, UML, to

the following baseline methods: Structural Metric Learning

(SML) [15], Large Margin Nearest Neighbor (LMNN) [24],

Maximally Collapsing Metric Learning (MCML) [9] and

Large Margin Multi-Task Metric Learning (mtLMNN) [17].

In mtLMNN, a task was to classify on one of seen train-

ing sets, and the learned shared metric, which encodes the

knowledge shared among different tasks, was applied to

unseen test set. We vary hyperparameters for all baseline

16621662



0 20 40 60 80 100

0.3

0.32

0.34

0.36

0.38

0.4

0.42
Average Results

# of training examples per class

A
cu

rr
ac

y

UML+Trseen+Vaunseen+Teunseen

SML+Trseen+Vaunseen+Teunseen

0 20 40 60 80 100
0.25

0.3

0.35

0.4

0.45
Caltech 101

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100
0.3

0.32

0.34

0.36

0.38

0.4
PASCAL VOC

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100
0.25

0.3

0.35

0.4

0.45
SUN09

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100

0.3

0.32

0.34

0.36

0.38

0.4

LabelMe

# of training examples per class

A
cc

ur
ac

y

Figure 2. Cross-dataset classification accuracy on Te
unseen with

validation on Va
unseen. Top: the figure reports the average ac-

curacy over four individual experiments in the bottom. Bottom:

individual classification accuracy on hold-out dataset.

methods and validate the produced metrics on Va
seen. As

Fig.4 demonstrates our approach significantly outperforms

all the baseline methods.

6. Discussion

The goal of this paper is to learn a less biased distance

metric that generalizes better to unseen datasets. First, we

introduced the notion of “neighborhood diversity” to better

connect examples from different datasets and extract gen-

eral knowledge. We then proposed to use web images as

a validation set to select metrics with better generalizabil-

ity. We have shown that our approach is able to produce

superior performance in cross-dataset image classification

experiments on four popular datasets.

The contributions of this paper are two-fold. We demon-

strated that by tuning the distribution of data from differ-
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Figure 3. Cross-dataset classification accuracy on unseen test sets.

Different validation methods are compared. Top: the figure re-

ports the average accuracy over four individual experiments in the

bottom. Bottom: individual classification accuracy on hold-out

dataset. The green curve is our validation method using Va
web

and the blue one is conventional validation using Va
seen. The

magenta dash line is validated on Va
unseen (the same as in Fig.2).

ent domains, more generalizable models can be produced.

We also showed the advantage of using weakly-labeled web

images as validation set to select model with better general-

ization ability. Web images are known to be easy and cheap

to obtain. Our work uncovers another nice property: less

biased.

Acknowledgements

We are grateful to Aditya Khosla for sharing data.

Thanks to Alessandro Bergamo and Yuting Sun for proof-

reading drafts. The authors were partly supported by

AFOSR Award FA9550-11-1-0166 and the Neukom Insti-

tute for Computational Science.

16631663



0 20 40 60 80 100
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
Average Results

# of training examples per class

A
cu

rr
ac

y

UML        +Trseen+Vaweb +Teunseen

LMNN      +Trseen+Vaseen+Teunseen

mtLMNN +Trseen+Vaseen+Teunseen

MCML     +Trseen+Vaseen+Teunseen

SML        +Trseen+Vaseen+Teunseen

0 20 40 60 80 100

0.2

0.25

0.3

0.35

0.4

0.45
Caltech 101

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100
0.25

0.3

0.35

0.4
PASCAL VOC

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45
SUN09

# of training examples per class

A
cc

ur
ac

y

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45
LabelMe

# of training examples per class

A
cc

ur
ac

y

Figure 4. Cross-dataset classification accuracy on unseen test sets.

UML (green curve) is compared with baselines. Top: the average

accuracy over four individual experiments in the bottom. Bottom:

individual classification accuracy on hold-out dataset.
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