
Unsupervised Visual Domain Adaptation Using Subspace Alignment

Basura Fernando1, Amaury Habrard2, Marc Sebban2, and Tinne Tuytelaars1

1KU Leuven, ESAT-PSI, iMinds, Belgium
2Laboratoire Hubert Curien UMR 5516, 18 rue Benoit Lauras, 42000 St-Etienne, France

Abstract

In this paper, we introduce a new domain adaptation
(DA) algorithm where the source and target domains are
represented by subspaces described by eigenvectors. In this
context, our method seeks a domain adaptation solution by
learning a mapping function which aligns the source sub-
space with the target one. We show that the solution of the
corresponding optimization problem can be obtained in a
simple closed form, leading to an extremely fast algorithm.
We use a theoretical result to tune the unique hyperparam-
eter corresponding to the size of the subspaces. We run our
method on various datasets and show that, despite its intrin-
sic simplicity, it outperforms state of the art DA methods.

1. Introduction

In classification, it is typically assumed that the labeled
training data comes from the same distribution as that of the
test data. However, many real world applications, especially
in computer vision, challenge this assumption (see, e.g., the
study on dataset bias in [15]). In this context, the learner
must take special care during the learning process to infer
models that adapt well to the test data they are deployed
on. For example, images collected from a web camera are
different from those taken with a DSLR camera. A classi-
fier that would be trained on the former would likely fail to
classify the latter correctly if applied without adaptation.

We refer to these different but related marginal distribu-
tions as domains. In order to build robust classifiers, it is
necessary to take into account the shift between these two
distributions. This issue is known as domain adaptation
(DA). DA typically aims at making use of information com-
ing from both source and target domains during the learning
process to adapt automatically. We usually differentiate two
different scenarios: (1) the unsupervised setting where the
training data consists of labeled source data and unlabeled
target examples (see [11] for a survey); and (2) the semi-
supervised case where a large number of labels is available

for the source domain and only a few labels are provided
for the target domain. In this paper, we focus on the most
difficult, unsupervised scenario.

As illustrated by recent results [7, 8], subspace based do-
main adaptation seems a promising approach to tackle un-
supervised visual DA problems. In [8], Gopalan et al. gen-
erate intermediate representations in the form of subspaces
along the geodesic path connecting the source subspace and
the target subspace on the Grassmann manifold. Then, the
source data are projected onto these subspaces and a classi-
fier is learned. In [7], Gong et al. propose a geodesic flow
kernel which aims to model incremental changes between
the source and target domains. In both papers, a set of in-
termediate subspaces is used to model the shift between the
two distributions.

In this paper, we also make use of subspaces (composed
of 𝑑 eigenvectors induced by a PCA), one for each domain.
However, following the theoretical recommendations of [1],
we rather suggest to directly reduce the discrepancy be-
tween the two domains by moving closer the source and
target subspaces. This is achieved by optimizing a mapping
function that transforms the source subspace into the target
one. From this simple idea, we design a new DA approach
based on subspace alignment. The advantage of our method
is two-fold: (1) by adapting the bases of the subspaces, our
approach is global. This allows us to induce robust classi-
fiers not subject to local perturbations; and (2) by aligning
the source and target subspaces, our method is intrinsically
regularized: we do not need to tune regularization param-
eters in the objective as imposed by a lot of optimization-
based DA methods.

Our subspace alignment is achieved by optimizing a
mapping function which takes the form of a transformation
matrix 𝑀 . We show that the optimal solution corresponds
in fact to the covariance matrix between the source and tar-
get eigenvectors. From this transformation matrix, we de-
rive a similarity function 𝑆𝑖𝑚(yS,yT) to compare a source
data yS with a target example yT. Thanks to a consistency
theorem, we prove that 𝑆𝑖𝑚(yS,yT), which captures the
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idiosyncrasies of the training data, converges uniformly to
its true value. We show that we can make use of this the-
oretical result to tune the hyperparameter 𝑑, that tends to
make our method parameter-free. The similarity function
𝑆𝑖𝑚(yS,yT) can be used directly in a nearest neighbour
classifier. Alternatively, we can also learn a global classifier
such as support vector machines (SVM) on the source data
after mapping them onto the target subspace.

As suggested by Ben-David et al. [1], a reduction of the
divergence between the two domains is required to adapt
well. In other words, the ability of a DA algorithm to
actually reduce that discrepancy is a good indication of
its performance. A usual way to estimate the divergence
consists in learning a linear classifier ℎ to discriminate
between source and target instances, respectively pseudo-
labeled with 0 and 1. In this context, the higher the error of
ℎ, the smaller the divergence. While such a strategy gives
us some insight about the ability for a global learning algo-
rithm (e.g. SVM) to be efficient on both domains, it does
not seem to be suited to deal with local classifiers, such as
the 𝑘-nearest neighbors. To overcome this limitation, we
introduce a new empirical divergence specifically dedicated
to local classifiers. We show through our experimental re-
sults that our DA method allows us to drastically reduce
both empirical divergences.

The rest of the paper is organized as follows. We present
the related work in section 2. Section 3 is devoted to the pre-
sentation of our DA method and the consistency theorem on
the similarity measure deduced from the learned mapping
function. In section 4, a comparative study is performed on
various datasets. We conclude in section 5.

2. Related work

DA has been widely studied in the literature and is of
great importance in many areas such as natural language
processing [4] or computer vision [15]. In this paper, we
focus on the unsupervised domain adaptation setting that is
well suited to vision problems since it does not require any
labeling information from the target domain. This setting
makes the problem very challenging and an important issue
is to find out a relationship between the two domains. A
common approach is to assume the existence of a domain
invariant feature space and the objective of a large range of
DA work is to approximate this space.

A classical strategy related to our work consists of learn-
ing a new domain-invariant feature representation by look-
ing for a new projection space. PCA based DA methods
have then been naturally investigated [6, 12, 13] in order to
find a common latent space where the difference between
the marginal distributions of the two domains is minimized
with respect to the Maximum Mean Discrepancy (MMD)
divergence. Other strategies have been explored as well
such as using metric learning approaches [10, 14] or canon-

ical correlation analysis methods over different views of the
data to find a coupled source-target subspace [3] where one
assumes the existence of a performing linear classifier on
the two domains.

In the structural correspondence learning method [4],
Blitzer et al. propose to create a new feature space by iden-
tifying correspondences among features from different do-
mains by modeling their correlations with pivot features.
Then, they concatenate source and target data using this fea-
ture representation and apply PCA to find a relevant com-
mon projection. In [5], Chang transforms the source data
into an intermediate representation such that each trans-
formed source sample can be linearly reconstructed by the
target samples. This is however a local approach that may
fail to capture the global structure information of the source
domain. Moreover it is sensitive to noise and outliers of
the source domain that have no correspondence in the target
one.

Our method is also related to manifold alignment [16,
17, 18] whose main objective is to align two datasets from
two different manifolds such that they can be projected to
a common subspace. Most of these methods [17, 18] need
correspondences from the manifolds and all of them exploit
the local statistical structure of the data.

Recently, subspace based DA has demonstrated good
performance in visual DA [7, 8]. These methods share
the same principle: first they compute a domain specific
d-dimensional subspace for the source data and another one
for the target data, independently created by PCA. Then,
they project source and target data into intermediate sub-
spaces along the shortest geodesic path connecting the two
d-dimensional subspaces on the Grassmann manifold. They
actually model the distribution shift by looking for the best
intermediate subspaces. These approaches are the closest to
ours but, as mentioned in the introduction, it is more appro-
priate to align the two subspaces directly, instead of com-
puting a large number of intermediate subspaces which can
potentially be a costly tuning procedure. The effectiveness
of our idea is supported by our experimental results.

As a summary, our approach has the following differ-
ences with existing methods:

We exploit the global covariance statistical structure of
the two domains during the adaptation process in contrast
to the manifold alignment methods that use local statistical
structure of the data [16, 17, 18]. We project the source
data onto the source subspace and the target data onto the
target subspace in contrast to methods that project source
data to the target subspace or target data to the source sub-
space such as [3]. Moreover, we do not project data to a
large number of subspaces as in [7, 8]. Our method is to-
tally unsupervised and does not require any target label in-
formation like constraints on cross-domain data [10, 14] or
correspondences from across datasets [17, 18]. We do not
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apply PCA on cross-domain data like in [6, 12, 13] as these
approaches exploit only shared features in both domains. In
contrast, we make use of the correlated features in both do-
mains. Some of these features can be specific to one domain
yet correlated to some other features in the other one allow-
ing us to use both shared and domain specific features. As
far as we know, this is the first attempt to use a subspace
alignment method in the context of domain adaptation.

3. DA using unsupervised subspace alignment

In this section, we introduce our new subspace based DA
method. We assume that we have a set 𝑆 of labeled data
(resp. a set 𝑇 of unlabeled data) both lying in a given 𝐷-
dimensional space and drawn i.i.d. according to a fixed but
unknown source (resp. target) distribution 𝒟𝑆 (resp. 𝒟𝑇 ).
We denote the transpose operation by ′.

In section 3.1, we explain how to generate the source and
target subspaces of size 𝑑. Then, we present our DA method
in section 3.2 which consists in learning a transformation
matrix 𝑀 that maps the source subspace to the target one.
From 𝑀 , we design a similarity function for which we de-
rive a consistency theorem in section 3.3. This upper bound
gives us some insight about how to tune the parameter 𝑑.

3.1. Subspace generation

Even though both the source and target data lie in the
same 𝐷-dimensional space, they have been drawn accord-
ing to different marginal distributions. Consequently, rather
than working on the original data themselves, we suggest
to handle more robust representations of the source and tar-
get domains and to learn the shift between these two do-
mains. First, we transform every source and target data in
the form of a 𝐷-dimensional z-normalized vector (i.e. of
zero mean and unit standard deviation). Then, using PCA,
we select for each domain 𝑑 eigenvectors corresponding to
the 𝑑 largest eigenvalues. These eigenvectors are used as
bases of the source and target subspaces, respectively de-
noted by 𝑋𝑆 and 𝑋𝑇 (𝑋𝑆 , 𝑋𝑇 ∈ ℝ

𝐷×𝑑). Note that 𝑋 ′
𝑆 and

𝑋 ′
𝑇 are orthonormal (thus, 𝑋 ′

𝑆𝑋𝑆 = 𝐼𝑑 and 𝑋 ′
𝑇𝑋𝑇 = 𝐼𝑑

where 𝐼𝑑 is the identity matrix of size 𝑑). In the follow-
ing, 𝑋𝑆 and 𝑋𝑇 are used to learn the shift between the two
domains.

3.2. Domain adaptation with subspace alignment

As presented in section 2, two main strategies are used in
subspace based DA methods. The first one consists in pro-
jecting both source and target data to a common shared sub-
space. However, since this only exploits shared features in
both domains, it is not always optimal. The second one aims
to build a (potentially large) set of intermediate representa-
tions. Beyond the fact that such a strategy can be costly,
projecting the data to an intermediate common shared sub-

space may lead to information loss in both source and target
domains.

In our method, we suggest to project each source (yS)
and target (yT) data (where yS,yT ∈ ℝ

1×𝐷) to its re-
spective subspace 𝑋𝑆 and 𝑋𝑇 by the operations yS𝑋𝑆 and
yT𝑋𝑇 , respectively. Then, we learn a linear transforma-
tion function that align the source subspace coordinate sys-
tem to the target one. This step allows us to directly com-
pare source and target samples in their respective subspaces
without unnecessary data projections. To achieve this task,
we use a subspace alignment approach. We align basis vec-
tors by using a transformation matrix 𝑀 from 𝑋𝑆 to 𝑋𝑇 .
𝑀 is learned by minimizing the following Bregman matrix
divergence:

𝐹 (𝑀) = ∣∣𝑋𝑆𝑀 −𝑋𝑇 ∣∣2𝐹 (1)

𝑀∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑀 (𝐹 (𝑀)) (2)

where ∣∣.∣∣2𝐹 is the Frobenius norm. Since 𝑋𝑆 and 𝑋𝑇

are generated from the first 𝑑 eigenvectors, it turns out that
they tend to be intrinsically regularized. Therefore, we do
not add a regularization term in the equation 1. It is thus
possible to obtain a simple solution of equation 2 in closed
form. Because the Frobenius norm is invariant to orthonor-
mal operations, we can re-write equation 1 as follows:

𝐹 (𝑀) = ∣∣𝑋 ′
𝑆𝑋𝑆𝑀 −𝑋 ′

𝑆𝑋𝑇 ∣∣2𝐹 = ∣∣𝑀 −𝑋 ′
𝑆𝑋𝑇 ∣∣2𝐹 . (3)

From this result, we can conclude that the optimal 𝑀∗

is obtained as 𝑀∗ = 𝑋 ′
𝑆𝑋𝑇 . This implies that the new

coordinate system is equivalent to 𝑋𝑎 = 𝑋𝑆𝑋
′
𝑆𝑋𝑇 . We

call 𝑋𝑎 the target aligned source coordinate system. It is
worth noting that if the source and target domains are the
same, then 𝑋𝑆 = 𝑋𝑇 and 𝑀∗ is the identity matrix.

Matrix 𝑀 transforms the source subspace coordinate
system into the target subspace coordinate system by align-
ing the source basis vectors with the target ones. If a source
basis vector is orthogonal to all target basis vectors, it is ig-
nored. On the other hand, a high weight is given to a source
basis vector that is well aligned with the target basis vectors.

In order to compare a source data yS with a target data
yT, one needs a similarity function 𝑆𝑖𝑚(yS,yT). Project-
ing yS and yT in their respective subspace 𝑋𝑆 and 𝑋𝑇 and
applying the optimal transformation matrix 𝑀∗, we can de-
fine 𝑆𝑖𝑚(yS,yT) as follows:

𝑆𝑖𝑚(yS,yT) = (yS𝑋𝑆𝑀
∗)(yT𝑋𝑇 )

′ = yS𝑋𝑆𝑀
∗𝑋 ′

𝑇yT
′

= yS𝐴yT
′, (4)

where 𝐴 = 𝑋𝑆𝑋
′
𝑆𝑋𝑇𝑋

′
𝑇 . Note that Eq. 4 looks like a

generalized dot product (even though 𝐴 is not necessarily
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Figure 1. Classifying ImageNet images using Caltech-256 images
as the source domain. In the first row, we show an ImageNet query
image. In the second row, the nearest neighbour image selected by
our method is shown.

positive semidefinite) where 𝐴 encodes the relative contri-
butions of the different components of the vectors in their
original space.

We use 𝑆𝑖𝑚(yS,yT) directly to perform a 𝑘-nearest
neighbor classification task. On the other hand, since
𝑆𝑖𝑚(yS,yT) is not PSD we can not make use of it to learn
a SVM directly. As we will see in the experimental sec-
tion, an alternative solution will consist in (i) projecting the
source data via 𝑋𝑎 into the target aligned source subspace
and the target data into the target subspace (using 𝑋𝑇 ), (ii)
learn a SVM from this 𝑑-dimensional space. The pseudo-
code of our algorithm is presented in Algorithm 1.

Data: Source data 𝑆, Target data 𝑇 , Source labels 𝐿𝑆 ,
Subspace dimension 𝑑

Result: Predicted target labels 𝐿𝑇

𝑋𝑆 ← 𝑃𝐶𝐴(𝑆, 𝑑) ;
𝑋𝑇 ← 𝑃𝐶𝐴(𝑇, 𝑑) ;
𝑋𝑎 ← 𝑋𝑆𝑋

′
𝑆𝑋𝑇 ;

𝑆𝑎 = 𝑆𝑋𝑎 ;
𝑇𝑇 = 𝑇𝑋𝑇 ;
𝐿𝑇 ← 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑆𝑎, 𝑇𝑇 , 𝐿𝑆) ;

Algorithm 1: Subspace alignment DA algorithm

3.3. Consistency theorem on 𝑆𝑖𝑚(yS,yT)

The unique hyperparameter of our algorithm is the num-
ber 𝑑 of eigenvectors. In this section, inspired by concen-
tration inequalities on eigenvectors [19], we derive an up-
per bound on the similarity function 𝑆𝑖𝑚(yS,yT). Then,
we show that we can make use of this theoretical result to
efficiently tune 𝑑.

Let 𝐷̃𝑛 be the covariance matrix of a sample 𝐷 of size
𝑛 drawn i.i.d. from a given distribution and 𝐷̃ its expected
value over that distribution.

Theorem 1. We start by using a theorem from [19]. Let
𝐵 be s.t. for any vector x, ∥x∥ ≤ 𝐵, let 𝑋𝑑

𝐷̃
and 𝑋𝑑

𝐷̃𝑛
be

the orthogonal projectors of the subspaces spanned by the
first d eigenvectors of 𝐷̃ and 𝐷̃𝑛. Let 𝜆1 > 𝜆2 > ... >
𝜆𝑑 > 𝜆𝑑+1 ≥ 0 be the first 𝑑+1 eigenvalues of 𝐷̃, then for

any 𝑛 ≥
(

4𝐵
(𝜆𝑑−𝜆𝑑+1)

(
1 +

√
ln(1/𝛿)

2

))2

with probability

at least 1− 𝛿 we have:

∥𝑋𝑑
𝐷̃
−𝑋𝑑

𝐷̃𝑛
∥ ≤ 4𝐵√

𝑛(𝜆𝑑 − 𝜆𝑑+1)

(
1 +

√
ln(1/𝛿)

2

)
.

From the previous theorem, we can derive the following
lemma for the deviation between 𝑋𝑑

𝐷̃
𝑋𝑑

𝐷̃

′
and 𝑋𝑑

𝐷̃𝑛
𝑋𝑑

𝐷̃𝑛

′
.

For the sake of simplification, we will use in the following
the same notation 𝐷 (resp. 𝐷𝑛) for defining either the sam-
ple 𝐷 (resp. 𝐷𝑛) or its covariance matrix 𝐷̃ (resp. 𝐷̃𝑛).

Lemma 1. Let 𝐵 s.t. for any x, ∥x∥ ≤ 𝐵, let 𝑋𝑑
𝐷 and 𝑋𝑑

𝐷𝑛

the orthogonal projectors of the subspaces spanned by the
first d eigenvectors of 𝐷 and 𝐷𝑛. Let 𝜆1 > 𝜆2 > ... >
𝜆𝑑 > 𝜆𝑑+1 ≥ 0 be the first 𝑑+1 eigenvalues of 𝐷, then for

any 𝑛 ≥
(

4𝐵
(𝜆𝑑−𝜆𝑑+1)

(
1 +

√
ln(1/𝛿)

2

))2

with probability

at least 1− 𝛿 we have:

∥𝑋𝑑
𝐷𝑋𝑑

𝐷

′−𝑋𝑑
𝐷𝑛

𝑋𝑑
𝐷𝑛

′∥ ≤ 8
√
𝑑√
𝑛

𝐵

(𝜆𝑑 − 𝜆𝑑+1)

(
1 +

√
ln(1/𝛿)

2

)

Proof.

∥𝑋𝑑
𝐷𝑋𝑑

𝐷

′ −𝑋𝑑
𝐷𝑛

𝑋𝑑
𝐷𝑛

′∥
=∥𝑋𝑑

𝐷𝑋𝑑
𝐷

′ −𝑋𝑑
𝐷𝑋𝑑

𝐷𝑛

′
+𝑋𝑑

𝐷𝑋𝑑
𝐷𝑛

′ −𝑋𝑑
𝐷𝑛

𝑋𝑑
𝐷𝑛

′∥
≤∥𝑋𝑑

𝐷∥∥𝑋𝑑
𝐷

′ −𝑋𝑑
𝐷𝑛

′∥+ ∥𝑋𝑑
𝐷 −𝑋𝑑

𝐷𝑛
∥∥𝑋𝑑

𝐷𝑛

′∥

≤2
√
𝑑√
𝑛

4𝐵

(𝜆𝑑 − 𝜆𝑑+1)

(
1 +

√
ln(1/𝛿)

2

)

The last inequality is obtained by the fact that the eigenvec-
tors are normalized and thus ∥𝑋𝐷∥ ≤

√
𝑑 and application

of Theorem 1 twice.

We now give a theorem for the projector of our DA
method.

Theorem 2. Let 𝑋𝑑
𝑆𝑛

(resp. 𝑋𝑑
𝑇𝑛

) be the d-dimensional
projection operator built from the source (resp. target)
sample of size 𝑛𝑆 (resp. 𝑛𝑇 ) and 𝑋𝑑

𝑆 (resp. 𝑋𝑑
𝑇 ) its ex-

pected value with the associated first 𝑑 + 1 eigenvalues
𝜆𝑆
1 > ... > 𝜆𝑆

𝑑 > 𝜆𝑆
𝑑+1 (resp. 𝜆𝑇

1 > ... > 𝜆𝑇
𝑑 > 𝜆𝑇

𝑑+1),
then we have with probability at least 1− 𝛿

∥𝑋𝑑
𝑆𝑀𝑋𝑑

𝑇

′−𝑋𝑑
𝑆𝑛

𝑀𝑛𝑋
𝑑
𝑇𝑛

′∥ ≤ 8𝑑3/2𝐵

(
1 +

√
ln(2/𝛿)

2

)

×
(

1√
𝑛𝑆(𝜆𝑆

𝑑 − 𝜆𝑆
𝑑+1)

+
1√

𝑛𝑇 (𝜆𝑇
𝑑 − 𝜆𝑇

𝑑+1)

)

where 𝑀𝑛 is the solution of the optimization problem of
Eq 2 using source and target samples of sizes 𝑛𝑆 and 𝑛𝑇

respectively, and 𝑀 is its expected value.
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Proof.

∥𝑋𝑑
𝑆𝑀𝑋𝑑

𝑇

′ −𝑋𝑑
𝑆𝑛

𝑀𝑛𝑋
𝑑
𝑇𝑛

′∥ =
∥𝑋𝑑

𝑆𝑋
𝑑
𝑆

′
𝑋𝑑

𝑇𝑋
𝑑
𝑇

′ −𝑋𝑑
𝑆𝑛

𝑋𝑑
𝑆𝑛

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′∥
=∥𝑋𝑑

𝑆𝑋
𝑑
𝑆

′
𝑋𝑑

𝑇𝑋
𝑑
𝑇

′ −𝑋𝑑
𝑆𝑋

𝑑
𝑆

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′
+

𝑋𝑑
𝑆𝑋

𝑑
𝑆

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′ −𝑋𝑑
𝑆𝑛

𝑋𝑑
𝑆𝑛

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′∥
≤∥𝑋𝑑

𝑆𝑋
𝑑
𝑆

′
𝑋𝑑

𝑇𝑋
𝑑
𝑇

′ −𝑋𝑑
𝑆𝑋

𝑑
𝑆

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′∥+
∥𝑋𝑑

𝑆𝑋
𝑑
𝑆

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′ −𝑋𝑑
𝑆𝑛

𝑋𝑑
𝑆𝑛

′
𝑋𝑑

𝑇𝑛
𝑋𝑑

𝑇𝑛

′∥
≤∥𝑋𝑑

𝑆∥∥𝑋𝑑
𝑆

′∥∥𝑋𝑑
𝑇𝑋

𝑑
𝑇

′ −𝑋𝑑
𝑇𝑛

𝑋𝑑
𝑇𝑛

′∥+
∥𝑋𝑑

𝑆𝑋
𝑑
𝑆

′ −𝑋𝑑
𝑆𝑛

𝑋𝑑
𝑆𝑛

′∥∥𝑋𝑑
𝑇𝑛
∥∥𝑋𝑑

𝑇𝑛

′∥

≤8𝑑3/2𝐵
(
1 +

√
ln(2/𝛿)

2

)
×

(
1√

𝑛𝑆(𝜆𝑆
𝑑 − 𝜆𝑆

𝑑+1)
+

1√
𝑛𝑇 (𝜆𝑇

𝑑 − 𝜆𝑇
𝑑+1)

)
.

The first equality is obtained by replacing 𝑀 and
𝑀𝑛 by their corresponding optimal solutions 𝑋𝑑

𝑆𝑋
𝑑
𝑇

′
and

𝑋𝑑
𝑆𝑛

𝑋𝑑
𝑇𝑛

′
from Eq 3. The last inequality is obtained by

applying twice Lemma 1 and bounding the projection oper-
ators.

From Theorem 2, we can deduce a bound on the devia-
tion between two successive eigenvalues. We can make use
of this bound as a cutting rule for automatically determin-
ing the size of the subspaces. Let 𝑛𝑚𝑖𝑛 = min(𝑛𝑆 , 𝑛𝑇 ) and
(𝜆𝑚𝑖𝑛

𝑑 − 𝜆𝑚𝑖𝑛
𝑑+1) = min((𝜆𝑇

𝑑 − 𝜆𝑇
𝑑+1), (𝜆

𝑆
𝑑 − 𝜆𝑆

𝑑+1)) and let
𝛾 > 0 be a given allowed deviation such that:

𝛾 ≥
(
1 +

√
ln 2/𝛿

2

)(
16𝑑3/2𝐵√

𝑛𝑚𝑖𝑛(𝜆𝑚𝑖𝑛
𝑑 − 𝜆𝑚𝑖𝑛

𝑑+1)

)
.

Given a confidence 𝛿 > 0 and a fixed deviation 𝛾 > 0, we
can select the maximum dimension 𝑑𝑚𝑎𝑥 such that:

(𝜆𝑚𝑖𝑛
𝑑𝑚𝑎𝑥

− 𝜆𝑚𝑖𝑛
𝑑𝑚𝑎𝑥+1) ≥

(
1 +

√
ln 2/𝛿

2

)(
16𝑑3/2𝐵

𝛾
√
𝑛𝑚𝑖𝑛

)
.

(5)
For each 𝑑 ∈ {𝑑∣1 . . . 𝑑𝑚𝑎𝑥}, we then have the guarantee

that ∥𝑋𝑑
𝑆𝑀𝑋𝑑

𝑇

′ −𝑋𝑑
𝑆𝑛

𝑀𝑛𝑋
𝑑
𝑇𝑛

′∥ ≤ 𝛾. In other words, as
long as we select a subspace dimension d such that 𝑑 ≤
𝑑𝑚𝑎𝑥, the solution 𝑀∗ is stable and not over-fitting.

3.4. Divergence between source and target domains

The pioneer work of Ben-David et al. [1] provides a gen-
eralization bound on the target error which depends on the
source error and a measure of divergence, called the 𝐻Δ𝐻
divergence, between the source and target distributions 𝒟𝑆

and 𝒟𝑇 .

𝜖𝑇 (ℎ) = 𝜖𝑆(ℎ) + 𝑑𝐻Δ𝐻(𝒟𝑆 ,𝒟𝑇 ) + 𝜆, (6)

where ℎ is a learned hypothesis, 𝜖𝑇 (ℎ) the generalization
target error, 𝜖𝑆(ℎ) the generalization source error, and 𝜆 the
error of the ideal joint hypothesis on 𝑆 and 𝑇 , which is sup-
posed to be a negligible term if the adaptation is possible.
Eq. 6 tells us that to adapt well, one has to learn a hypoth-
esis which works well on 𝑆 while reducing the divergence
between 𝒟𝑆 and 𝒟𝑇 . To estimate 𝑑𝐻Δ𝐻(𝒟𝑆 ,𝒟𝑇 ), a usual
way consists in learning a linear classifier ℎ to discriminate
between source and target instances, respectively pseudo-
labeled with 0 and 1. In this context, the higher the error of
ℎ, the smaller the divergence. While such a strategy gives
us some insight about the ability for a global learning algo-
rithm (e.g. SVM) to be efficient on both domains, it does
not seem to be suited to deal with local classifiers, such as
the 𝑘-nearest neighbors. To overcome this limitation, we
introduce a new empirical divergence specifically dedicated
to local classifiers. Based on the recommendations of [2],
we propose a discrepancy measure to estimate the local den-
sity of a target point w.r.t. a given source point. This dis-
crepancy, called Target density around source TDAS counts
how many target points can be found on average within a 𝜖
neighborhood of a source point. More formally:

𝑇𝐷𝐴𝑆 =
1

𝑛𝑆

∑
∀yS

∣{yT∣𝑆𝑖𝑚(yS,yT) ≥ 𝜖}∣. (7)

Note that TDAS is associated with similarity measure
𝑆𝑖𝑚(yS,yT) = yS𝐴yT

′ where 𝐴 is the learned metric.
As we will see in the next section, TDAS can be used to
evaluate the effectiveness of a DA method under the co-
variate shift assumption and probabilistic Lipschitzness as-
sumption [2]. The larger the TDAS, the better the DA
method.

4. Experiments

We evaluate our method in the context of object recog-
nition using a standard dataset and protocol for evaluating
visual domain adaptation methods as in [5, 7, 8, 10, 14]. In
addition, we also evaluate our method using various other
image classification datasets.

4.1. DA datasets and data preparation

We provide three series of experiments on different
datasets. In the first series, we use the Office dataset [14]
and Caltech10 [7] dataset that contain four domains alto-
gether to evaluate all DA methods. The Office dataset con-
sists of images from web-cam (denoted by W), DSLR im-
ages (denoted by D) and Amazon images (denoted by A).
The Caltech10 images are denoted by C. We follow the
same setup as in [7]. We use each source of images as a
domain, consequently we get four domains (A, C, D and
W) leading to 12 DA problems. We denote a DA problem
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by the notation 𝑆 → 𝑇 . We use the image representations
provided by [7] for Office and Caltech10 datasets (SURF
features encoded with a visual dictionary of 800 words). We
follow the standard protocol of [7, 8, 10, 14] for generating
the source and target samples1.

In a second series, we evaluate the effectiveness of our
DA method using other datasets, namely ImageNet (I), La-
belMe (L) and Caltech-256 (C). In this setting we consider
each dataset as a domain. We select five common objects
(bird, car, chair, dog and person) for all three datasets lead-
ing to a total of 7719 images. We extract dense SIFT fea-
tures and create a bag-of-words dictionary of 256 words us-
ing kmeans. Afterwards, we use LLC encoding and a spatial
pyramid (2× 2 quadrants + 3× 1 horizontal + 1 full image)
to obtain a 2048 dimensional image representation (similar
data preparation as in [9]).

In the last series, we evaluate the effectiveness of our DA
method using larger datasets, namely PASCAL-VOC-2007
and ImageNet. We select all the classes of PASCAL-VOC-
2007. The objective here is to classify PASCAL-VOC-2007
test images using classifiers that are built from the ImageNet
dataset. To prepare the data, we extract dense SIFT features
and create a bag-of-words dictionary of 256 using only Im-
ageNet images. Afterwards, we use LLC encoding and spa-
tial pyramids (2×2 + 3×1 + 1) to obtain a 2048 dimensional
image representation.

4.2. Experimental setup

We compare our subspace DA approach with two other
DA methods and three baselines. Each of these methods
defines a new representation space and our goal is to com-
pare the performance of a 1-Nearest-Neighbor (NN) classi-
fier and a SVM classifier on DA problems in the subspace
found.

We consider the DA methods Geodesic Flow Kernel
(GFK [7]) and Geodesic Flow Sampling (GFS [8]). They
have indeed demonstrated state of the art performances
achieving better results than metric learning methods [14]
and better than those reported by Chang’s method in [5].
Moreover, these methods are the closest to our approach.
We also report results obtained by the following three base-
lines: Baseline 1: where we use the projection defined
by the PCA subspace 𝑋𝑆 built from the source domain to
project both source and target data and work in the result-
ing representation. Baseline 2: where we use similarly the
projection defined by the PCA subspace 𝑋𝑇 built from the
target domain. No adaptation NA: where no projection is
made, we use the original input space without learning a
new representation.

For each method, we compare the performance of a 1-
Nearest-Neighbor (NN) classifier and of a SVM classifier

1See supplementary material section 1.1 for the experimental details
and additional results.

(with C parameter set to the mean similarity value ob-
tained from the training set) in the subspace defined by
each method. For each source-target DA problem in the
first two series of experiments, we evaluate the accuracy
of each method on the target domain over 20 random tri-
als. For each trial, we consider an unsupervised DA setting
where we randomly sample labeled data in the source do-
main as training data and unlabeled data in the target do-
main as testing examples. In the last series involving the
PASCAL-VOC dataset, we rather evaluate the approaches
by measuring the mean average precision over target data
using SVM.

We have also compared the behavior of the approaches
in a semi-supervised scenario by adding 3 labelled target
examples to the training set for Office+Caltech10 series and
50 for the PASCAL-VOC series. This can be found in the
supplementary material.

4.3. Selecting the optimal dimensionality

In this section, we present our procedure for selecting the
space dimensionality d in the context of our method. The
same dimensionality is used for Baseline1 and Baseline2.
For GFK and GFS we follow the published procedures to
obtain optimal results as presented in [7]. First, we per-
form a PCA on the two domains and compute the deviation
𝜆𝑚𝑖𝑛
𝑑 − 𝜆𝑚𝑖𝑛

𝑑+1 for all possible 𝑑 values. Then, using the the-
oretical bound of Eq: 5, we can estimate a 𝑑𝑚𝑎𝑥 << 𝐷 that
provides a stable solution with fixed deviation 𝛾 > 0 for a
given confidence 𝛿 > 0. Afterwards, we consider the sub-
spaces of dimensionality from 𝑑 = 1 to 𝑑𝑚𝑎𝑥 and select the
best 𝑑∗ that minimizes the classification error using a 2 fold
cross-validation over the labelled source data. This proce-
dure is founded by the theoretical result of Ben-David et al.
of Eq 6 where the idea is to try to move the domain dis-
tribution closer while maintaining a good accuracy on the
source domain. As an illustration, the best dimensions for
the Office dataset vary between 10 − 50. For example, for
the DA problem W → C, taking 𝛾 = 105 and 𝛿 = 0.1, we
obtain 𝑑𝑚𝑎𝑥 = 22 (see Figure 2) and by cross validation we
found that the optimal dimension is 𝑑∗ = 20.

4.4. Evaluating DA with divergence measures

Here, we propose to evaluate the capability of our
method to move the domain distributions closer according
to the measures presented in Section 3.4: the TDAS adapted
to NN classification where a high value indicates a better
distribution closeness and the 𝐻Δ𝐻 using a SVM where a
value close to 50 indicates close distributions. We compute
these discrepancy measures for the 12 DA problems coming
from the Office and Caltech datasets and report the mean
values over the 12 problems for each method in Table 1.
We can remark that our approach reduces significantly the
discrepancy between the source and target domains com-
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Figure 2. Finding a stable solution and a subspace dimensionality
using the consistency theorem.

Method NA Baseline 1 Baseline 2 GFK OUR
TDAS 1.25 3.34 2.74 2.84 4.26
HΔH 98.1 99.0 99.0 74.3 53.2

Table 1. Several distribution discrepancy measures averaged over
12 DA problems using Office dataset.

pared to the other baselines (highest TDAS value and low-
est 𝐻Δ𝐻 measure). Both GFK and our method have lower
𝐻Δ𝐻 values meaning that these methods are more likely
to perform well2.

4.5. Classification Results

Visual domain adaptation performance with Of-
fice/Caltech10 datasets: In this experiment we evaluate the
different methods using Office [14]/Caltech10 [8] datasets
which consist of four domains (A, C, D and W). The re-
sults for the 12 DA problems in the unsupervised setting
using a NN classifier are shown in Table 2. In 9 out of the
12 DA problems our method outperforms the other ones.
The results obtained in the semi-supervised DA setting (see
supplementary material) confirm this behavior. Here our
method outperforms the others in 10 DA problems.

The results obtained with a SVM classifier in the unsu-
pervised DA case are shown in Table 3. Our method out-
performs all the other methods in 11 DA problems. These
results indicate that our method works better than other DA
methods not only for NN-like local classifiers but also with
more global SVM classifiers.

Domain adaptation on ImageNet, LabelMe and
Caltech-256 datasets : Results obtained for unsupervised
DA using NN classifiers are shown in Table 4. First, we can
remark that all the other DA methods achieve poor accu-
racy when LabelMe images are used as the source domain,
while our method seems to adapt the source to the target
reasonably well. On average, our method significantly out-
performs all other DA methods.

A visual example where we classify ImageNet images

2See section 1.4 of supplementary material for more details.

Method C→A D→A W→A A→C D→C W→C

NA 21.5 26.9 20.8 22.8 24.8 16.4
Baseline 1 38.0 29.8 35.5 30.9 29.6 31.3
Baseline 2 40.5 33.0 38.0 33.3 31.2 31.9
GFS [8] 36.9 32 27.5 35.3 29.4 21.7
GFK [7] 36.9 32.5 31.1 35.6 29.8 27.2

OUR 39.0 38.0 37.4 35.3 32.4 32.3

Method A→D C→D W→D A→W C→W D→W

NA 22.4 21.7 40.5 23.3 20.0 53.0
Baseline 1 34.6 37.4 71.8 35.1 33.5 74.0
Baseline 2 34.7 36.4 72.9 36.8 34.4 78.4
GFS [8] 30.7 32.6 54.3 31.0 30.6 66.0
GFK [7] 35.2 35.2 70.6 34.4 33.7 74.9

OUR 37.6 39.6 80.3 38.6 36.8 83.6
Table 2. Recognition accuracy with unsupervised DA using a NN
classifier (Office dataset + Caltech10).

Method C→A D→A W→A A→C D→C W→C

Baseline 1 44.3 36.8 32.9 36.8 29.6 24.9
Baseline 2 44.5 38.6 34.2 37.3 31.6 28.4

GFK 44.8 37.9 37.1 38.3 31.4 29.1
OUR 46.1 42.0 39.3 39.9 35.0 31.8

Method A→D C→D W→D A→W C→W D→W

Baseline 1 36.1 38.9 73.6 42.5 34.6 75.4
Baseline 2 32.5 35.3 73.6 37.3 34.2 80.5

GFK 37.9 36.1 74.6 39.8 34.9 79.1
OUR 38.8 39.4 77.9 39.6 38.9 82.3

Table 3. Recognition accuracy with unsupervised DA using a SVM
classifier(Office dataset + Caltech10).

Method L→C L→I C→L C→I I→L I→C AVG

NA 46.0 38.4 29.5 31.3 36.9 45.5 37.9
Baseline1 24.2 27.2 46.9 41.8 35.7 33.8 34.9
Baseline2 24.6 27.4 47.0 42.0 35.6 33.8 35.0

GFK 24.2 26.8 44.9 40.7 35.1 33.8 34.3
OUR 49.1 41.2 47.0 39.1 39.4 54.5 45.0

Table 4. Recognition accuracy with unsupervised DA with NN
classifier (ImageNet (I), LabelMe (L) and Caltech-256 (C)).

using Caltech-256 images is shown in Figure 1. The near-
est neighbor coming from Caltech-256 corresponds to the
same class, even though the appearance of images are very
different from the two datasets.

In Table 5 we report results using a SVM classifier for
the unsupervised DA setting. In this case our method out-
performs all other DA methods, confirming the good behav-
ior of our approach.

Classifying PASCAL-VOC-2007 images using classi-
fiers built on ImageNet : In this experiment, we compare
the average precision obtained on PASCAL-VOC-2007 by
a SVM classifier in both unsupervised and semi-supervised
DA settings. We use ImageNet as the source domain and
PASCAL-VOC-2007 as the target domain. The results are
shown in Figure 3 for the unsupervised case and in the sup-

2966



Method L→C L→I C→L C→I I→L I→C AVG

NA 49.6 40.8 36.0 45.6 41.3 58.9 45.4
Baseline1 50.5 42.0 39.1 48.3 44.0 59.7 47.3
Baseline2 48.7 41.9 39.2 48.4 43.6 58.0 46.6

GFK 52.3 43.5 39.6 49.0 45.3 61.8 48.6
OUR 52.9 43.9 43.8 50.9 46.3 62.8 50.1

Table 5. Recognition accuracy with unsupervised DA with SVM
classifier (ImageNet (I), LabelMe (L) and Caltech-256 (C)).

Figure 3. Train on ImageNet and classify PASCAL-VOC-2007 im-
ages using unsupervised DA with SVM.

plementary material for the semi-supervised one.
Our method achieves the best results for all the cate-

gories in both settings and outperforms all the methods on
average. The semi-supervised DA seems to improve unsu-
pervised DA by 10% (relative) in mAP. In the unsupervised
DA setting, GFK improves by 7% in mAP over no adapta-
tion while our method improves by 27% in mAP over GFK.
In the semi-supervised setting our method improves by 13%
in mAP over GFK and by 46% over no adaptation.

5. Conclusion

We present a new visual domain adaptation method us-
ing subspace alignment. In this method, we create sub-
spaces for both source and target domains and learn a linear
mapping that aligns the source subspace with the target sub-
space. This allows us to compare the source domain data
directly with the target domain data and to build classifiers
on source data and apply them on the target domain. We
demonstrate excellent performance on several image classi-
fication datasets such as Office dataset, Caltech, ImageNet,
LabelMe and Pascal-VOC. We show that our method out-
performs state of the art domain adaptation methods using
both SVM and nearest neighbour classifiers. We experi-
mentally show that our method can be used on tasks such
as labelling PASCAL-VOC images using ImageNet dataset
for training. Due to its simplicity and theoretically founded
stability, we believe that our method has the potential to be
applied on large datasets consisting of millions of images.
As future work we plan to extend our domain adaptation
method to large scale image retrieval and on the fly learning
of classifiers.
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