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Abstract

In this paper, we show how to train a deformable part
model (DPM) fast—typically in less than 20 minutes, or
four times faster than the current fastest method—while
maintaining high average precision on the PASCAL VOC
datasets. At the core of our approach is “latent LDA,”
a novel generalization of linear discriminant analysis for
learning latent variable models. Unlike latent SVM, latent
LDA uses efficient closed-form updates and does not re-
quire an expensive search for hard negative examples. Our
approach also acts as a springboard for a detailed experi-
mental study of DPM training. We isolate and quantify the
impact of key training factors for the first time (e.g., How
important are discriminative SVM filters? How important is
joint parameter estimation? How many negative images are
needed for training?). Our findings yield useful insights for
researchers working with Markov random fields and part-
based models, and have practical implications for speeding
up tasks such as model selection.

1. Introduction
Over the past several years deformable part models

(DPMs) [12, 14] have emerged as one of the leading meth-

ods for object detection [10]. Significant strides have been

made in accelerating DPM detection speed, further broad-

ening their appeal. Popular approaches include cascades

[11], coarse-to-fine processing [22], and sparse representa-

tions [23, 24]. In contemporaneous work, a hashing tech-

nique promises fast detection with 100,000 DPMs on a sin-

gle workstation [6]. In stark contrast, relatively little atten-

tion has been paid to accelerating DPM training. Yet slow

training is often a significant bottleneck in experimental re-

search.

Training a DPM involves optimizing a latent SVM

(LSVM). The LSVM objective function is not convex, and

in practice a stationary point is found by solving a sequence

of large-scale convex subproblems [1, 12]. This optimiza-

tion heuristic can be slow, with most of the time spent

searching for “hard negative” instances (a process com-

monly called bootstrapping or data mining).

Some of the aforementioned techniques can accelerate

training via fast detection. However, these methods of-

ten involve approximations (such as hard thresholds in the

DPM cascade [11]) that make learning unstable. In this pa-

per we take a more direct approach: we develop techniques

that accelerate training by avoiding most of the typically

requisite data mining. Around this core goal we present:

• fast, approximate DPM training using latent LDA—a

novel generalization of linear discriminant analysis;

• a detailed experimental study of what factors are im-

portant for training a DPM; and

• hybrid large-margin latent LDA training for learning

DPMs 4x faster than the current fastest method [14],

while maintaining high average precision.

Moreover, our approach is complementary to exact methods

for speeding up detection (e.g., [8]), making further accel-

eration possible.

Recently, Hariharan et al. [15] attacked the problem of

accelerated training for rigid (non-part-based) object detec-

tors. Their work introduced an efficient method for estimat-

ing the covariance matrix of nx × ny patches of histogram

of oriented gradients (HOG) features [5]. Using this tech-

nique, they learned the parameters of a HOG filter by lin-

ear discriminant analysis (LDA) instead of the usual, com-

paratively slow, SVM training route. Their experiments on

the INRIA pedestrian dataset [5] demonstrate that an LDA-

HOG filter can produce good results, with an average preci-

sion (AP) of 75% vs. the 80% achieved by SVM-HOG. The

main advantage of LDA-HOG over SVM-HOG is training

speed; the former approach does not require searching for

hard negative instances.

Can a similar technique accelerate DPM training, and if

so, what is the training-time vs. detection-accuracy trade-

off? This paper answers these questions and at the same

time presents a careful dissection of DPM training, provid-

ing new insight into which aspects are important for high

detection accuracy.

Our approach re-envisions the LSVM optimization prob-

lem so that it involves only positive examples and coarse

background statistics. Optimizing our proposed objective
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involves alternating between imputing latent labels and up-

dating model parameters, like an LSVM. However, when

the latent labels are fixed, the optimal parameter vector can

be solved for in closed form. To connect our optimization

problem to LDA, we show that if the input features are

whitened, then the optimal parameters form a set of LDA

classifiers. We call this natural counterpart to latent SVM

“latent LDA” (LLDA).

As foreshadowed by the INRIA pedestrian experiments

described above, we find that LLDA DPMs achieve surpris-

ingly good AP performance on the much more challenging

PASCAL VOC datasets [10], even though no hard negative
examples are used. Training an LLDA DPM with 600 ex-

amples takes less than 8 minutes on a six-core machine. For

comparison, training the recently proposed exemplar SVM

[17] with 600 examples takes about 4 hours on 100 cores,

and yields a similar mean AP (18.0% vs. 19.8%, respec-

tively).

However, there is still a sizable AP gap between DPMs

trained with LLDA and LSVM. The second contribution of

this paper is to experimentally analyze this difference. Our

analysis breaks the AP gap down into two factors: gener-

ative LDA vs. discriminative SVM training; and joint vs.

two-stage training [18, 20]. We find that each factor plays

an important role, and in particular, two-stage training (i.e.,

learning each filter independently and then stitching them

into a model) can dramatically underperform joint training.

This finding can be interpreted more broadly as a cautionary

tale showing that joint training of a Markov (or conditional)

random field can turn an underperforming technique into

one that is state-of-the-art.

Our analysis also uncovers a surprising result: even

though object detection performance with LLDA DPMs

trails behind LSVM, they impute equally good latent labels.

These labels (i.e., a choice of DPM mixture component and

filter positions for each positive example) are “good” in the

sense that if they are used as ground truth in large-margin

training, they yield performance equal to a DPM trained

end-to-end with LSVM. This observation leads to our third

contribution—a faster way to train DPMs with no loss in

mean AP performance. We “warm start” LSVM training by

replacing the usual sequence of convex subproblems with

latent LDA. Then, after LLDA has converged, we solve one
large-margin training problem with data mining. We call

this hybrid large-margin / LLDA method LM-LLDA.

A simple, alternative approach to speed up training is

to subsample the negative training images. Surprisingly,

no previous work has studied how DPM detection accuracy

varies as a function of the number of negative training ex-

amples (cf. [27]). We investigate this dependence both in

the case of single HOG filter models on the INRIA dataset

and with DPMs on the PASCAL VOC datasets. Interest-

ingly, very few negative images are needed to get good per-

formance. For INRIA, data mining from just 64 negative

images—instead of the customary 1218—yields 76.2% AP,

which slightly outperforms LDA-HOG. Similar results hold

true for DPMs. However, in LSVM training data mining is

performed many times, once for each subproblem solved,

making training slow even with subsampling. The LLDA

warm start can be viewed as subsampling to the limit where

no negative examples are used during all but the last itera-

tion of training. Naturally, the two methods can be com-

bined. Subsampling in the last iteration, after the warm

start, allows us to train DPMs achieving high performance

(32.3% mAP) with a median training time under 20 minutes

(4x faster than [14]).

2. Training without negative examples
In this section, we develop latent LDA, an alternative to

latent SVM that can quickly train DPMs without any hard

negative examples. We begin by reviewing latent SVM. A

more detailed account can be found in [12].

2.1. Latent SVM primer

Consider a set of labeled training examples D =
{(xn, yn)}Nn=1, where each xn comes from an input space

X and yn is a binary label in {−1, 1}. Each input element

x ∈ X also has an unobserved label z ∈ Z(x), which is

latent during both training and testing. Given a particular

x, the sign of fw(x) = maxz∈Z(x) w
Tϕ(x, z) is used to

classify it and simultaneously predict its hidden label (by

computing the argmax). Here, ϕ(x, z) is a vector-valued

function that computes features for the pair (x, z). LSVM

is a method for learning the parameters w of fw.

To ease our subsequent discussion of DPMs, we intro-

duce some notational conventions that are well-suited for

the DPM model parameterization. Without loss of general-

ity, we assume w is divided into K “mixture components”

such that w = (w1, . . . ,wK). Correspondingly, a latent

label is a pair z = (k, h), where k ∈ {1, . . . ,K} spec-

ifies a mixture component and h are additional latent la-

bels. For a DPM, k identifies a pose or viewpoint compo-

nent while h specifies the image position and scale place-

ment of each filter used by component k. Finally, we as-

sume the feature function ϕ(x, z) is block sparse, having

one non-zero block with values ϕk(x, h) such that the prop-

erty wTϕ(x, (k, h)) = wT
kϕk(x, h) holds (see Eq. 14).

Recent releases of the DPM code use a variant of LSVM

where the standard �2 regularization penalty is replaced by

the “max-component” regularizer [13], which penalizes the

mixture component wk with the largest �2 norm. This ob-

jective function can be written as

1

2
max

k
‖wk‖2 + C

N∑
n=1

max{0, 1− ynfw(xn)}, (1)
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where C is the usual regularization tradeoff. For training

sets that are not linearly separable, max-component regu-

larization equalizes the norms of the components. This can

be seen intuitively: if one component has a lower norm

than the max, and has non-zero hinge loss, it can grow a

bit without penalty in order to reduce its loss. Experimen-

tally, this equalization stabilizes LSVM training by prevent-

ing mixture components from losing all of their examples

and “evaporating” (cf. [16]).

The standard optimization heuristic for finding a station-

ary point of Eq. 1 is coordinate descent [1, 12]. The coor-

dinate descent algorithm alternates between fixing a single

labeling for each positive example (given a current estimate

of w), which results in a convex optimization subproblem,

and then updating w to be the solution to that subproblem.

These iterations are repeated until the process converges.

Unfortunately, the coordinate descent subproblems can

be very time consuming to solve. For example, when train-

ing a DPM each subproblem requires densely scanning a

large set of images in order to extract a small number of hard

negative examples. This process takes around 5-10 seconds

per image, and may require several passes over thousands

of images before converging.

2.2. What can we do with only positive examples?

Let P = {n : yn = 1} be the index set of positive ex-

amples inD. We define the following optimization problem

restricted to P .

min
w

−
∑
n∈P

fw(xn) (2)

s.t. ‖wk‖2 = 1, ∀k
We’ve intentionally maintained a direct parallel between

this objective and LSVM (Eq. 1): in place of max-

component regularization, we constrain all components to

have unit norm; we removed the per-example loss for the

negative training instances; and for each positive example,

the objective drives w towards a solution that gives at least

one latent labeling a high score under fw.

As with LSVM, the objective function in Eq. 2 is not

convex in w (due to the sum of piecewise-linear concave

functions in the objective and the quadratic constraints).

A stationary point can be found by applying the concave-

convex procedure (CCCP) [26] to the Lagrangian of Eq. 2.

Each CCCP iteration has two steps. In step (1) of iter-

ation t, we replace fw(xn) in Eq. 2 by wTϕ(xn, znw(t)
),

where znw(t)
= argmaxz∈Z(xn) w

T
(t)ϕ(xn, z) is the label

imputed with the current model parameters w(t). This sub-

stitution places a linear upper bound on −fw(xn) at w(t)

(up to a constant that does not depend on w), and results in

the linear objective

g(w;w(t)) = −
∑
n∈P

wTϕ(xn, znw(t)
). (3)

In step (2), we update the current solution according to

w(t+1) = argmin
w

g(w;w(t)) s.t. ‖wk‖2 = 1, ∀k. (4)

This optimization problem has an efficiently computable

closed-form solution. By adding a Lagrange multiplier λk

for each constraint and equating the gradient with respect to

each wk to zero, we arrive at

wk ∝
∑

n:knw(t)
=k

ϕk(xn, hnw(t)
), (5)

where we’ve explicitly written the current label predictions

as (knw(t)
, hnw(t)

) ··= znw(t)
and the summation is over ex-

amples assigned to component k. Computing wk as the sum

in Eq. 5 and then scaling it to unit �2 norm is equivalent to

selecting λk to satisfy its constraint. These two CCCP steps

are repeated until the linear upper bounds do not change (or

the relative change in Eq. 2 is small). This process mini-

mizes an upper bound on our original objective.

2.3. The LDA connection

The optimization algorithm just described is reminiscent

of spherical k-means clustering [7]. In each iteration, we

use fixed cluster “centers” wk to infer latent cluster assign-

ments (and, in our case, additional latent labels), and then

with those fixed, we update the centers wk to be the (nor-

malized) means of the new clusters. At a first glance it

seems doubtful that this algorithm will result in a reason-

able detector. However, we show that by applying a sim-

ple whitening transformation to the training features, the al-

gorithm’s output has an appealing connection to linear dis-

criminant analysis.

To achieve this goal we need to cheat slightly and com-

pute some coarse statistics of all training examples (includ-

ing those from the negative class). Specifically, we need

the sample mean μ of the negative examples and the sam-

ple covariance matrix S of the entire training set. Since,

by assumption, our feature vectors are non-zero within only

one component’s span, computing these statistics for each

mixture component independently is sufficient (S is block-

diagonal, with blocks Sk). In Section 3, we illustrate how

μk and Sk can be modeled and estimated efficiently in the

case of DPMs. Our estimates will come in the form of basic

building blocks that can synthesize the mean and covari-

ance for a mixture component with any number of filters,

each with any shape. Moreover, our estimates are class in-

dependent: in datasets with large class imbalance, such as

any typical detection dataset, the negative examples’ sample

mean μ can be computed from all examples, since the mi-

nority class lends a negligible contribution. Together, these

observations allow us to compute μk and Sk offline, once-

and-for-all, for all classes.
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Assuming for now that we have these statistics in hand,

we apply a whitening transformation to (approximately)

decorrelate the features of the positive examples:

ϕ̃k(x, h) = S
− 1

2

k (ϕk(x, h)− μk) . (6)

By convention, variables topped with a tilde reside in the

whitened feature space. Plugging the transformed features

into the update for wk (Eq. 5), we see that each model com-

ponent w̃k takes the form

w̃k = Z−1
k

∑
n:kn=k

ϕ̃k(xn, hn) (7)

= Z−1
k S

− 1
2

k

∑
n:kn=k

(ϕk(xn, hn)− μk) , (8)

where Z−1
k scales w̃k to unit length and the summation is

over examples assigned to component k.

Given parameters w̃ learned in the whitened space,

an input x is classified according to fw̃(x) =
max(k,h)∈Z(x) w̃

T
kϕ̃k(x, h). Looking into the dot product,

some basic algebra shows that

w̃T
kϕ̃k(x, h) = wT

kϕk(x, h) + bk, (9)

where

wk = Z−1
k S−1

k

∑
n:kn=k

(ϕ(xn, zn)− μk) (10)

bk = −wT
kμk. (11)

Recall that in standard two-class LDA we assume the

classes have a shared covariance matrix S, but with sepa-

rate class means μ0 and μ1. The general form of the re-

sulting LDA classifier is w ∝ S−1(μ1 − μ0) [2]. Eq. 10

says a dot product with w̃k in the whitened feature space is

equivalent to a dot product with a vector wk—which has the
form of an LDA classifier—in the unwhitened feature space,

plus a bias (Eq. 11). Under this interpretation, the function

fw(x) = max(k,h)∈Z(x) w
T
kϕk(x, h) scores an example by

picking the best LDA component classifier and latent label

pair. Overall, the classifier can be thought of as the “latent

LDA” counterpart to a latent SVM.

2.4. Large-margin LLDA (LM-LLDA)

One immediate application of latent LDA is as a fast ini-

tialization, or “warm start,” for latent SVM training. We

can use LLDA to quickly generate the unobserved labels

(kn, hn) for each positive example, and then treat those la-

bels as if they were the observed ground truth in the convex

large-margin objective

1

2
max

k
‖wk‖2 + C

∑
n∈P

{
1−wT

kn
ϕk(xn, hn)

}
+

(12)

+ C
∑
n∈N

{
1 + max

z∈Z(xn)
wTϕ(xn, z)

}
+
,

where N = {n : yn = −1} is the index set of negative

examples and {m}+ denotes max{0,m}. This objective

is exactly the subproblem solved in coordinate descent for

LSVM. Optionally, one could run multiple LSVM coordi-

nate descent iterations after the warm start, similar to how

expectation maximization is used to initialize a latent struc-

tural SVM in [21]. But our experiments in Section 4 show

that minimizing Eq. 12 without further iterations already

yields excellent results. We dub this method LM-LLDA.

3. Application to deformable part models
We now describe how LLDA and its whitening transfor-

mation can be applied to deformable part models. We begin

with a brief overview of DPM weight vector and feature

function parameterization.

DPM weight vector parameterization. A DPM is com-

posed of K mixture components, each of which has a root

filter and P part filters. Each part filter has a canonical off-

set (“anchor”) relative to its root filter. During detection,

the parts can shift relative to their anchor positions at a cost.

This cost is modeled independently for each part as an axis-

aligned, convex quadratic function. This structure is en-

coded in a model’s weight vector, which is parameterized

as w = (w1, . . . ,wK), where each per-component weight

vector wk is composed of the parameter blocks:

wk = ( fk0, . . . , fkP ,︸ ︷︷ ︸
filter weights

dk1, . . . ,dkP ,︸ ︷︷ ︸
deformation weights

βk︸︷︷︸
bias

). (13)

DPM feature parameterization. Matching the weight

vector parameterization, the feature function has the form

ϕ (x, (k, h)) = ( 0, . . . , 0, ϕk(x, h)︸ ︷︷ ︸
span of wk

, 0, . . . , 0 ). (14)

Each per-component feature function ϕk(x, h) contains:

HOG features φkp extracted from image x at the filter

placements listed in h; and deformation features δkp(h) =
−(d2x, dx, d2y, dy), where (dx, dy) are displacements rela-

tive to the p-th part’s anchor, yielding

ϕk(x, h) =
(
φk0(x, h), . . . ,φkP (x, h)︸ ︷︷ ︸

HOG features

, (15)

δk1(h), . . . , δkP (h)︸ ︷︷ ︸
deformation features

, 1︸︷︷︸
bias

)
.

Modeling and estimating Sk and μk. In principle, we

would like to compute

μk =
1

|N |
∑
n∈N

1

|Hk(xn)|
∑

h∈Hk(xn)

ϕk(xn, h) (16)

Sk =
1

|D|
N∑

n=1

1

|Hk(xn)|
∑

h∈Hk(xn)

ϕ̊k(xn, h)ϕ̊k(xn, h)
T
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where Hk(x) specifies all valid filter configurations for x
and ϕ̊k(x, h) = ϕk(x, h)− μk are centered features.

For a typical DPM, a full covariance matrix would have

around 109 parameters, per component, which is clearly in-

feasible to work with. We sidestep this problem with the fol-

lowing modeling assumptions: (1) HOG features and defor-

mation features are uncorrelated; (2) deformation features

are uncorrelated across parts; and (3) HOG features are un-

correlated across parts. The last assumption is somewhat

coarse since DPM parts are spatially adjacent and some-

times overlap. However it has a significant computational

advantage: we can model the covariance matrix of each part

independently. These assumptions give Sk a block-diagonal

structure, which allows us to carry out the required matrix

computations on relatively small matrices, block-by-block.

For blocks corresponding to HOG features φkp, we use

Hariharan et al.’s [15] method for estimating the mean and

covariance matrix of nx × ny rectangular patches of HOG

features. Their approach assumes translational invariance,

so all HOG cells separated by a fixed spatial offset share

the same covariance parameters. These covariance “build-

ing blocks” are computed for all offsets within a fixed radius

(e.g., 10 cells), and can then be used to synthesize the diago-

nal blocks of Sk corresponding to the HOG features of each

part. This flexibility decouples the estimation of the HOG

covariance parameters from the structure (i.e., number of

filters and their shapes) of any particular mixture compo-

nent. For μk, we follow [15] and use the mean of a single

HOG cell, repeated the appropriate number of times. These

parameters were estimated on PASCAL VOC 2010 trainval.

The deformation features δkp are low-dimensional, but

present a different challenge: unlike the natural images used

for HOG feature statistics, there is no source of “natural”

deformations for computing their background model. We

take a simple approach to this problem: fix the deformation

costs to (0.01, 0, 0.01, 0) for all parts, and do not update

them during LLDA training. These values are the initializa-

tion used in the DPM code [14].

The per-component biases βk do not need to be modeled,

and are set equal to the sum of the biases (Eq. 11) coming

from each filter p in component k, i.e., βk =
∑P

p=0 bkp.

4. Experimental results and analysis
We implemented our experiments on top of the publicly

available DPM software [14] with one novel modification.

By default the DPM code pads each level of a HOG feature

pyramid with several cells that are set to zero. This padding

allows filters to slide outside the image, enabling detection

of partially truncated objects. Motivated by the intuition

that a filter placed outside the image should have the same

expected score as a filter placed in background, we pad with

the mean HOG feature vector, instead of zero. This insight

boosts the baseline system from 33.7% to 34.5% mAP on

PASCAL 2007 (Table 1 LSVM-μ vs. LSVM).1 All timed

experiments were performed on one reference machine with

a six-core 3.2GHz Intel i7 processor. All design decisions

were validated on PASCAL 2007, fixed, and then run once

on PASCAL 2011. Source code will be available.

LLDA DPMs (LLDA-0). With these preliminaries in

place we evaluate our first method, LLDA-0—pure la-

tent LDA without any hard negative examples. Executing

the same initialization routine as the default DPM train-

ing pipeline2 (i.e., clustering positives into three aspect ra-

tios and automatically grouping each aspect into a left/right

split), LLDA-0 achieves remarkably good performance,

18.0% mAP (Table 1), considering that training takes less

than 8 minutes for a class with 600 examples on a single

six-core machine. As a reference point, exemplar SVM [17]

does only slightly better, 19.8% mAP, even though it makes

extensive use of hard negatives and training 600 exemplars

takes about 4 hours on a 100-core cluster. LLDA-0 DPMs

are also competitive with the multi-component (MC) LDA

(17.0% mAP) and exemplar LDA detectors (19.1% mAP)

[15]. Both systems in [15] rescore LDA-HOG filter detec-

tions using a second-layer SVM trained with negative ex-

amples, and thus are not “pure” LDA methods.

4.1. Analyzing the LLDA-LSVM performance gap

Our LLDA-0 DPM is different from an LSVM DPM in

four fundamental respects: (1) deformation costs are not

learned; (2) filters are estimated by LDA; (3) furthermore,

the filters are learned independently due to our modeling

assumptions; and (4) the labels imputed by LLDA might

differ from those imputed by LSVM. We designed experi-

ments to isolate the effects of these differences using two

tools: large-margin LLDA and two-stage training.

LM-LLDA (Section 2.4) naturally bridges the gap be-

tween LLDA and LSVM training, up to differences in im-

puted labels. Our second tool is two-stage training (see

[20] for an overview), which allows us to hold subsets of

DPM parameters fixed while optimizing the others in the

large-margin phase of LM-LLDA (i.e., minimizing Eq. 12).

Originally designed as a technique to speed up training of

graphical models [18], two-stage training is also an ideal

tool for understanding what makes a model perform well.

By holding strategic subsets of parameters fixed we can “in-

terpolate” between LLDA and LSVM.

In the following experiments, we use the latent labels

generated by LLDA-0. This implies each experiment uses

exactly the same feature vectors for the positive examples

(as determined by the LLDA labeling). We also fix a set of

negative training images, with an average of 2300 per class.

1By default [14] includes a feature set to 1 inside the padding and 0

inside the image. This feature is designed to allow filters to learn a score

bias for placements outside the image. Our results indicate it is insufficient.
2To be pedantic: we use LLDA (not LSVM) for all initialization steps.
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our methods baselines

LLDA-0 LLDA-1 LLDA-2 LLDA-3 LSVM-μ LSVM [14] MC-LDA [15] ELDA [15] ESVM [17]

mAP ‘07 test (%) 18.0 24.4 30.7 34.5 34.5 33.7 17.0 19.1 19.8

mAP ‘11 val (%) 13.2 19.9 25.4 28.6 28.2 27.4 n/r n/r n/r

joint training? no no no yes yes yes no no no

hard neg? no yes yes yes yes yes yes yes yes

Table 1. Performance of our methods and baselines on PASCAL VOC 2007 test and 2011 val [10] in mean AP (n/r: not reported). Method

summary. LLDA-0: latent LDA (no negative examples). LLDA-1: LLDA-0 followed by large-margin training of deformation costs, filter

calibration weights, and biases. LLDA-2: same as the LLDA-1, but with independently trained SVM filters replacing the LDA filters.

LLDA-3: LLDA-0 followed by large-margin training of all parameters (equivalent to LM-LLDA). LSVM-μ: [14] with mean HOG

padding. MC-LDA and ELDA: multi-component and exemplar LDA from [15]. All results are without context rescoring [12, 15, 17].
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Figure 1. Absolute improvement in average precision from (a) SVM vs. LDA filters and (b) joint vs. two-stage (independent) training.

The boost from discriminative filters is substantial, and likely greater than one might expect from experiments in [15]. Independent filter

learning dramatically underperforms joint training, suggesting other part-based models (e.g., poselets [4]) may benefit from joint learning.

Calibrating deformations, filters, and biases (LLDA-1).
In two-stage training of a graphical model, the unary poten-

tials (i.e., a DPM’s filters) are learned independently during

a “first stage” of training. Then, keeping the unaries fixed,

their real-valued outputs are used as features in a “second

stage” model. Our second stage model is parameterized by

one scalar multiplier per unary feature, deformation costs,

and per-component biases. This two-stage approach allows

us to adjust the relative magnitudes of the filters, without

changing their directions, as well as to tune deformation

costs and component biases.

Our unaries are the LLDA-0 filters. Discriminatively cal-

ibrating these fixed filters boosts mAP substantially from

18.0% to 24.4% (Table 1 LLDA-1). A more fine-grained ab-

lation shows learning only the per-component biases yields

19.4% mAP; biases plus deformation costs gives 23.0%

mAP; and biases plus filter multipliers produces 23.2%

mAP. LLDA-1 is similar to the multi-component and ex-

emplar LDA detectors since all systems use a second stage

to discriminatively calibrate LDA-HOG filter responses, but

achieves a much higher mAP due to the DPM’s parts.

One subtle, but important point, is that we need to regu-

larize each second stage unary multiplier such that its cost is

equal to the cost of scaling the original filter. For a scalar α
that multiplies the output of a fixed filter f , we set the regu-

larization penalty for α to ‖f‖2. To verify this approach, we

performed two-stage training using the jointly trained filters

from the LSVM-μ models as unaries. With regularization

penalties correctly set, two-stage training matches the orig-

inal mAP (34.8% vs. 34.5%).

LDA vs. SVM filters (LLDA-2). We use the same two-

stage training methodology as before, but this time we re-

place each LDA filter with a linear SVM. For training these

SVMs, the positive examples come from the labels gener-

ated by LLDA-0 (thus the LDA and SVM filters use ex-

actly the same positive feature vectors). The negative ex-

amples are all subwindows of the negative images. The sec-

ond stage model parameterization is the same as in LLDA-

1, making discriminative SVM filters the only difference.

Table 1 shows that SVM filters boost mAP from 24.4% to

30.7%. The relative change is much larger than what was

observed in the single filter experiments on INRIA pedes-

trians [15]. Figure 1(a) shows the per-class breakdown.

Independent vs. joint training (LLDA-3). Discrimina-

tive calibration and replacing LDA filters with SVM fil-

ters substantially closes the gap between LLDA and LSVM.

These results suggest the remaining difference stems from

either a less effective latent labeling of the positives or from

302130213021



2 20 200 2300
0

5

10

15

20

25

30

35

number of negative images (log scale)

m
A

P 
(%

)
mAP versus negative image subsampling

 

 

LSVM−μ

LM−LLDA (LLDA−3)
LLDA−0 (0 neg im)

Figure 2. Mean average precision decays gracefully as the num-

ber of negative images decreases (note the log scale). LM-LLDA

performs better than LSVM-μ when very few negative images are

available. See text for discussion.

independent filter training. We can easily remove the inde-

pendence assumption by optimizing all model parameters

jointly (i.e., one-stage instead of two-stage training when

minimizing Eq. 12). Our final variant, LLDA-3, is there-

fore exactly the same as LM-LLDA.

Joint training completely closes the AP gap (Table 1

LLDA-3 and Figure 2). This implies that the latent la-

bels imputed by LLDA-0 are equivalent, from a final mAP

perspective, to the ones obtained by coordinate descent

with LSVM. Figure 1(b) shows the improvement from joint

training on a per-class basis. On average, joint parameter

estimation boosts AP by 4 points, absolute. The difference

is dramatic for some classes, such as motorbike and person,

where the improvement is nearly 10 points. Our findings

agree with Endres et al.’s [9] and Yang and Ramanan [25]

and add a note of caution to the suggestion in [19] that joint

and two-stage training perform equally well.

4.2. Subsampling negative images

LDA-HOG [15] and LLDA DPM can be seen as meth-

ods for training detectors in the limit of subsampling where

no negative images are used. Surprisingly, the question of

how detector accuracy varies with the number of negative

training examples has not been carefully studied. The focus

is typically on positive examples (e.g., [27]).

Effect on AP. We first look at a Dalal and Triggs style

detector on the INRIA pedestrian dataset [5]. Data mining

from two negative images yields an AP of 29.6% (20.4%3).

With eight images, AP ascends to 67.4% (7.1%). At 64 im-

ages, the detector surpasses LDA-HOG, achieving an AP

of 76.2% (0.7%). AP slowly climbs to 80% while increas-

ing the number of negative images 20-fold to the full set

of 1218. In retrospect, the steep gradient of this curve and

saturation at a small number of images is not surprising.

3Standard deviation over 20 draws of negative images.
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Figure 3. LM-LLDA spends one-third as much time on data min-

ing and convex optimization compared to LSVM-μ across various

levels of negative image subsampling. The boxes span the 25th,

50th, and 75th percentiles of the time distribution over 20 classes.

The success of LDA-HOG implies that coarse background

statistics, which the SVM efficiently extracts from a small

set of images, are sufficient to get most of the way toward

maximum performance on INRIA.

Curves showing a similar story for DPMs are readily vis-

ible in Figure 2. Using only 200 negative images—an order
of magnitude fewer than typically used—results in 32.3%

mAP for LM-LLDA and 31.9% mAP for LSVM-μ. Both

are close to the maximum performance of 34.5% achieved

using around 2300 negative images. Even with few negative

images, mAP is relatively stable over random draws due to

averaging (in contrast with the single-class INRIA experi-

ments). At two negative images, LM-LLDA had a standard

deviation of only 0.6% mAP over five samples.

Another notable trend is LM-LLDA gains further ad-

vantage over LSVM as the number of negative images de-

creases. Our hypothesis is that with very few (e.g., 2) neg-

ative images LSVM training begins to impute noisy labels

for the positive examples. The positive labels used by LM-

LLDA, in contrast, are invariant to the number of negatives.

A final pattern, which might not even appear worth men-

tioning at first, is that mAP increases with the number of

negative examples. Moreover, this trend holds for each class

on its own. However, this finding contradicts [3], where

Blaschko et al. find that AP decreases as the number of neg-

ative examples increases when binary hinge loss is used in-

stead of their proposed ranking loss. One conjecture is that

the models in [3] did not have a learnable bias.

Effect on training time. Figure 3 shows that LM-LLDA

reduces the time spent in data mining and convex optimiza-

tion by a factor of three averaged over all classes. The rest

of training is spent imputing labels for the positives, which

takes the same amount of time in both cases. The overhead

from LLDA parameter estimation is less than 10 seconds.

End-to-end training time acceleration ranges from a factor
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of 1.6x with two negative images to 2.0x with 200 negative

images. Relative to the publicly available DPM code [14],

which is currently the fastest option for training DPMs, we

can learn models nearly 4x faster (with median training wall

times of 19.9 minutes vs. 77.9 minutes) while maintaining a

high mAP of 32.3%. Our results compare favorably with

Vedaldi and Zisserman [24], for example, who speed up

training by less than a factor of two, using product quan-

tization, and have a final mAP of 27.7%.

5. Conclusion
Long training times are often a bottleneck in experimen-

tal research. Even modest improvements accelerate exper-

imentation, and in turn, research progress. The four-fold

speedup for DPM training achieved in this paper will al-

low researchers working to improve DPMs, using them as

building blocks in a larger system, or applying them to

new datasets, to iterate more quickly. Moreover, our la-

tent LDA approach is general and applies to latent variable

models beyond DPM. Latent LDA also provides the basis

for deconstructing DPM training in order to gain experi-

mental insight into part-based models. Notably, we find

that joint parameter estimation is fundamental. Existing ap-

proaches that train parts independently, such as poselets [4],

will likely benefit from joint learning. Secondly, we often

waste significant time mining hard negative examples from

excessively large image sets. Model selection, for instance,

should be performed using a small set of negative images

(while achieving nearly full AP performance), while only

the final model should be trained on the full set, if at all.
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