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Abstract

We present a novel framework to estimate detailed shape
of diffuse objects with uniform albedo from a single RGB-D
image. To estimate accurate lighting in natural illumination
environment, we introduce a general lighting model consist-
ing of two components: global and local models. The global
lighting model is estimated from the RGB-D input using
the low-dimensional characteristic of a diffuse reflectance
model. The local lighting model represents spatially vary-
ing illumination and it is estimated by using the smoothly-
varying characteristic of illumination. With both the global
and local lighting model, we can estimate complex light-
ing variations in uncontrolled natural illumination condi-
tions accurately. For high quality shape capture, a shape-
from-shading approach is applied with the estimated light-
ing model. Since the entire process is done with a single
RGB-D input, our method is capable of capturing the high
quality shape details of a dynamic object under natural illu-
mination. Experimental results demonstrate the feasibility
and effectiveness of our method that dramatically improves
shape details of the rough depth input.

1. Introduction

Shape estimation is one of the most important problems

in computer vision and graphics, and its goal is to recover

3D shape from images. For high quality shape capture,

many conventional algorithms apply photometric methods

such as shape-from-shading and photometric stereo which

often assume controlled and calibrated illumination. Such

an assumption often limits the applicability of the photo-

metric approaches to the controlled environments. To over-

come the limitation, Johnson and Adelson [12] exploit nat-

ural illumination in shape-from-shading, and they show the

complexity of natural illumination is beneficial for shape es-

timation. Shape-from-shading can be performed under un-

controlled complex illumination in their method, however it

requires a careful calibration of illumination before captur-

(a) (b)

(c) (d)

Figure 1: Our result from an RGB-D image. (a) input im-

age under uncalibrated natural illumination. (b) input depth

from a commercial Kinect depth sensor. (c) our result with

the global lighting model only. (d) our result with both the

global and local lighting models. Note that the result in (c)

is distorted while the result in (d) shows detailed shape.

ing the image of a target object.

Recently, RGB-D sensors (e.g., Kinect) consisting of

a color camera and a depth sensor have become popular.

While they give video-rate depth information, the depth

quality is not good enough for 3D modeling applications

as shown in Figure 1 (b). To improve the depth quality of

RGB-D sensors, Zhang et al. [19] present a fusion frame-

work that uses photometric stereo under different illumina-

tion conditions. While they show significantly improved

depth quality, it requires more than two images with con-

trolled illumination. Therefore, their system has shown
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some limited performance in both dynamic shape estima-

tion and working under uncontrolled natural illumination.

In this paper, we present a novel method to estimate

both natural lighting conditions and high quality shape from

a single RGB-D image of diffuse objects with uniform

albedo. We assume the input depth data of an RGB-D im-

age exhibits quite accurate low-frequency structures while

high-frequency details are not presented. With this assump-

tion, our goal is to recover the shape information having fine

depth details without causing a large displacement from the

input depth. Figure 1 shows an example of an input RGB-

D image and our result. The result shows that our method

can recover high quality shape from a single RGB-D image

without any additional information.

The technical contributions of our work include: (1) We

show that natural lighting conditions can be estimated from

the rough geometry obtained by a depth sensor. (2) Un-

like typical photometric methods that account for a global

lighting model only, our method models both global and

local lighting variations based on the smoothness of shad-

ing in small neighborhood. (3) We show that the rough ge-

ometry reduces the local ambiguity in shape-from-shading,

which enables us to recover the accurate 3D shape details.

(4) Overall, we present a framework for high quality shape

estimation from a single RGB-D image which is applicable

to dynamic shape capture outside a laboratory environment.

2. Related Work
Our work is related to both photometric methods for

shape estimation and fusion of geometric and photometric

data for recovering depth details. We briefly review funda-

mental works and recent advances in both areas.

Photometric methods for shape estimation There are

two major categories in photometric methods for shape

estimation; shape-from-shading and photometric stereo.

Shape-from-shading (SFS) introduced by Horn [10] com-

putes surface normals from one image of that surface. Many

SFS algorithms typically make strong assumptions on imag-

ing conditions like a distant point light source and calibrated

illumination. In-depth reviews are presented in [20, 7]. Re-

cently, Johnson and Adelson [12] demonstrate natural light-

ing environment gives better constraint on surface orienta-

tion than a distant point light source. Huang and Smith [11]

use the normals at the boundaries of an object to determine a

natural lighting model without an additional calibration ob-

ject. Forsyth [8] presents a variable source shading model

that accounts for spatially varying illumination.

Woodham [16] presents photometric stereo that recovers

shape using multiple images taken from a fixed view point

in different lighting conditions. It resolves multiple albedo

and local ambiguity while requiring more than three images

with different illuminations. Several methods are presented

to deal with dynamic scenes [9, 6, 1]. Hernández et al. [9]

use colored lights to capture dynamic scenes with a uniform

albedo assumption. The assumption is relaxed by the addi-

tion of either time multiplexing [6] or stereo camera [1].

These methods allow photometric stereo to be applied for

dynamic shape capture, however they require more complex

lighting setup.

Geometric and photometric data fusion There are

many approaches to obtain depth information such as multi-

view stereo, structured light and various depth sensors. To

improve depth details, geometric and photometric data fu-

sion methods are presented. The idea of surface reconstruc-

tion by fusing stereo and shape-from-shading is introduced

in [4]. Nehab et al. [13] show precise 3D geometry can

be obtained by combining positions and normals. They ef-

ficiently solve the problem by designing a linear formula-

tion. Bohme et al. [5] use a shading constraint to improve

the accuracy of range maps of a time-of-flight (ToF) cam-

era. Barron and Malik [3] address the problem of shape

and albedo from shading using natural image statistics and

show the performance can be improved by incorporating

low-frequency priors on shape. Wu et al. [18] use a shad-

ing constraint for improving multi-view-stereo results under

general illumination. They model general illumination us-

ing spherical harmonics. This work is extended to a multi-

view video system with a temporal constraint [17]. Zhang et
al. [19] perform photometric stereo to improve the depth

quality of RGB-D sensors. They present photometric stereo

with two light sources by depth fusion.

3. Shape Estimation in Natural Illumination
In this section, we present a shape estimation algorithm

from a single frame input from an RGB-D sensor. We as-

sume object has a diffuse surface with uniform albedo and

a camera is calibrated both geometrically and radiometri-

cally. Under these assumptions, our goal is to estimate high

quality shape of an object under uncalibrated natural illumi-

nation.

Depth data from RGB-D sensors are typically very noisy

due to the limited resolution of the depth sensor. To reduce

depth noise and obtain smooth surface, we first apply bi-

lateral filtering to the given depth map. In the following

explanation, we consider a depth map as a smoothed one

and initial normals as normals calculated from a bilateral

filtered depth map.

Our method consists of the following steps. We ex-

ploit the given color and depth to estimate a global light-

ing model. It is followed by local lighting model estimation

that models spatially varying illumination. We determine

surface normals with the estimated lighting, and then high

quality shape is obtained by fusing the given geometry with

the estimated normals.
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3.1. Global Lighting Model

Image intensity is determined by a shading function s
applied to the surface normal n. As studied in [14, 15], the

intensity of convex diffuse objects is insensitive to high fre-

quencies in lighting environment. Therefore, the intensity

of diffuse objects can be explained by a low-dimensional

global lighting model such as spherical harmonics and

quadratic function [12]. We use the quadratic function as

a global lighting model, which is defined as

Ip = s(np) = nT
p Anp + bTnp + c, (1)

where Ip and np are intensity and unit normal vector at the

pixel p respectively, and the parameters of the lighting func-

tion are composed of a symmetric matrix A ∈ R
3×3, a vec-

tor b ∈ R
3×1 and a constant c ∈ R. The quadratic lighting

model is determined by ten parameters.

For estimating the model parameters, we rearrange the

shading function as a function of the parameters. By stack-

ing m (� 10) pairs of intensity I and normal n, we write

the estimation problem into a matrix form as

⎡
⎢⎣
vec(n1n

T
1 )

T nT
1 1

...

vec(nmnT
m)T nT

m 1

⎤
⎥⎦
⎡
⎣vec(A)b

c

⎤
⎦ =

⎡
⎢⎣
I1
...

Im

⎤
⎥⎦ , (2)

where vec represents a vectorization operator of a matrix.

We estimate the global lighting parameters from the ob-

served intensities and the rough depth. Although the nor-

mals of the rough geometry are inaccurate and possibly con-

tain outliers, the object provides enough information for es-

timating the low-dimensional lighting model. Therefore we

estimate the global lighting parameters for each color chan-

nel by solving an over-determined linear system in Eq. (2).

We have two advantages by directly estimating the

global lighting from the given RGB-D image. First, we can

deal with dynamic lighting environments since the light cal-

ibration is done with the input. Second, we can handle a va-

riety of diffuse objects while conventional methods [12] re-

quire a calibration object which has the same material prop-

erty as a target object.

3.2. Local Lighting Model

The global lighting model explains diffuse surface un-

der natural illumination with a small number of parameters.

However, there are local lighting variations due to attached

shadows, interreflections and near lighting. Since the global

lighting model basically assumes distant lighting, it cannot

represent the spatially varying illumination even after an ac-

curate model estimation from a calibration object. Also, the

global lighting estimation in Section 3.1 could have estima-

tion errors in the presence of the local lighting variations.

To account for the problems, we add a local lighting param-

eter α for each pixel into the shading function as

Ip = s̃p (np) = αps (np) . (3)

We define the local lighting model from the residual er-

ror in the global lighting model, which can be decomposed

into two factors; local lighting variations from the global

model estimate, and initial normal deviations from the true

normals. The goal of the local lighting model estimation is

to separate the local lighting variations from the total error.

The initial normal deviations corresponding to the missing

detailed shape in the rough geometry is recovered in a sub-

sequent optimization step, which will be presented in Sec-

tion 3.3.

The key idea for estimating the local lighting parameter

is to exploit different frequency characteristics in the two er-

ror factors. The initial normal deviations from the true nor-

mals have a high-frequency characteristic when compared

to the accurate low-frequency structures of input depth.

However, the local lighting variations have a low-frequency

characteristic because illumination in small neighborhood

is smoothly varying [8].

Since the global lighting model is estimated in the faith

of global accuracy of the rough geometry, the observed

intensities should be similar to the estimated intensities.

Hence, we enforce a lighting constraint as

El
1(α) =

∑
p

‖Ip−αps(np)‖2 =
∑
p

‖Ip− s̃(np)‖2. (4)

To separate high-frequency information from the resid-

ual error, we enforce an adaptive smoothness of local light-

ing parameters in neighboring pixels with a color similarity

weight. The constraint is denoted by

El
2(α) =

∑
p

∑
q∈Ωp

‖ωl
(p,q) (αp − αq) ‖2, (5)

where Ωp represents a set of all neighboring pixels of p and

ωl
(p,q) represents a weighting function for color similarity.

The weighting function ωl
(p,q) is defined as

ωl
(p,q) =

{
0 if ‖Ip − Iq‖2 > τ l

exp(−‖Ip−Iq‖2
2σ2

l
) otherwise

, (6)

where τ l is a threshold value and σl is a control parame-

ter. The color similarity is especially useful when the initial

normals are locally distorted due to the smoothing of large

noise or outliers in input depths. With the color similarity

weight, we can compute local lighting parameters robust to

the local geometry distortion.

To suppress an abrupt change in local lighting parame-

ters among neighboring pixels, an additional smoothness is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: An example of a local lighting parameter esti-
mation. The input image (a) and depths are generated by

rendering a synthetic object, and the initial normals (b) are

calculated from the noisy input depth map. Local lighting

maps (c,d) are estimated from the ground-truth and the ini-

tial normals, respectively. The error maps (e-h) are calcu-

lated by comparing the input image to the reproduced image

using the shading function, Eq. (1) for (e,f) and Eq. (3) for

(g,h), with the ground-truth normals. For the model param-

eter estimation, the ground-truth normals are used for (e,g),

and the initial normals of the rough geometry are used for

(f,h).

enforced by

El
3(α) =

∑
p

‖∇2αp‖2, (7)

where ∇2 denotes a Laplacian operator on four neighbors.

By combining all the constraints, the local lighting pa-

rameter α is determined by minimizing:

argmin
α

λl
1E

l
1(α) + λl

2E
l
2(α) + λl

3E
l
3(α), (8)

where λl
1, λl

2 and λl
3 are weighting parameters to control in-

fluence of each constraint. Since all the constraints are lin-

ear, the entire optimization can be formulated as linear sys-

tems and efficiently solved by least squares. An example of

a local lighting parameter estimation is shown in Figure 2,

and a detailed explanation will be given in Section 4.1.

3.3. Normal Estimation

With the quadratic lighting model in Eq. (1), normal es-

timation becomes a nonlinear optimization problem. While

the previous method [12] shows the nonlinear problem can

be solved, it still suffers from local ambiguity, which means

that the resulting surface normal is not unique. In our ap-

proach, the additional depth information greatly reduces the

local ambiguity.

The lighting model relates an observed intensity to a sur-

face normal. With an accurate lighting model, normal esti-

mation is done by minimizing differences between observed

intensities and estimated intensities from the shading func-

tion. It leads a shading constraint denoted as

En
1 (n) =

∑
p

‖Ip − s̃(np)‖2. (9)

We have the initial normals from the given depth. While

a single initial normal is not accurate, a group of initial nor-

mals is reliable especially in flat regions in which previous

methods suffer from the local ambiguity. The initial nor-

mals highly constrain the solution space of normals. To pe-

nalize normal deviations from the initial normals, we put a

normal constraint defined as

En
2 (n) =

∑
p

‖1− np · n0
p‖2, (10)

where n0
p is an initial normal at p.

The surface orientations should satisfy the integrability

constraint on the smooth surface. We enforce the integrabil-

ity constraint by penalizing on the curl of local neighboring

pixels as

En
3 (n) =

∑
p

‖∇ × np‖2, (11)

where ∇× is the curl operator.

With three constraints, an objective function for normal

estimation is formulated as

argmin
n

λn
1E

n
1 (n) + λn

2E
n
2 (n) + λn

3E
n
3 (n), (12)

where each term represents shading, normal and integra-

bility constraint, respectively. λn
1 , λn

2 and λn
3 are weight-

ing parameters of each constraint. The normals of a given

rough geometry are used as initial values in the nonlinear

optimization.

Optimizing normals for the whole pixels is not feasible

due to its complexity, and estimating a single surface nor-

mal is not robust due to the local ambiguity. We optimize

normals for image patches of k× k pixels with one or more

pixels overlap. Each patch is independently optimized, and

normals in the overlapping region are averaged. To enforce

a unit size constraint on normals, we optimize normals on

the gradient space (pq plane) defined as

(p, q,−1)=(
nx

nz
,
ny

nz
,−1) s.t. n=(nx, ny, nz). (13)

We estimate surface normals by solving Eq. (12). In

our experiments, normal estimation is robustly done with-

out any additional technique like multi-scale propagations

since the normal constraint significantly reduces the local

ambiguity. After normal estimation, high quality depth is

obtained by fusing depth information with the estimated

normals. We use the fusion algorithm described in [13] 1.

1http://w3.impa.br/ diego/software/NehEtAl05/
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(a) (b) (c)

Figure 3: Synthetic data. (a) 3D objects for synthetic ex-

periments; (b) three environment maps; (c) rendering setup

for generating synthetic data

(a) Initial depth (b) Our result

Figure 4: Qualitative comparison between (a) and (b) of
PALM dataset.

4. Experiments

To evaluate the proposed method, we perform experi-

ments using both synthetic and real-world data. Using syn-

thetic data, we validate the local lighting parameter estima-

tion and conduct quantitative evaluations on the accuracy of

estimated shape. Using real-world data, we show results of

our method that estimate high quality shape under natural

illumination.

While the problem in Eq. (12) is nonlinear, we have

found the optimization can be effectively performed us-

ing various optimizers since we have good initial estimates

from an input depth image. In our implementation, we use

the Levenberg-Marquardt (LM) method in Matlab. We set

τ l = 0.8, σl = 0.05, λl
1 = 1, λl

2 = 10, λl
3 = 5, λn

1 = λn
2 =

λn
3 = 1, and fix the parameters during whole experiments.

Computations were carried on Intel i7 3.2GHz processor

with 8GB of memory. The processing time takes about 10

seconds for light estimation, about 20 minutes for normal

estimation at the resolution of 800×600 with unoptimized

Matlab implementation.

4.1. Simulation

Simulation using synthetic data is performed for quan-

titative evaluations of our method. For quantitative eval-

uations, we measure angular normal errors using the fol-

lowing three metrics; “Average.”, “RX” and “AX” as used

in [2]. As robust measures, “RX” denotes the percentage of

pixels that have an angular normal error above X degrees

and “AX” denotes the angular normal error at the Xth per-

centile after sorting the errors from low to high. For all

metrics, the smaller value means the better result.

To perform a quantitative comparison of shape estima-

tion accuracy, we generate synthetic data with four public

3D objects, ANGEL, BUNNY, FACE and PALM as shown

in Figure 3. All objects are assumed as Lambertian objects

and are rendered under three different natural lighting en-

vironments from the sIBL Archive 2. Though the environ-

ment maps are still challenging, we put an additional near

light source to simulate more realistic illumination condi-

tion. The color and depth images are rendered by mental
ray renderer of the Autodesk Maya 3. The rendered RGB-

D images have the resolution of 640×512. For simulating

sensor noise, Gaussian noise is added to depth maps. The

initial depth images are obtained after applying bilateral fil-

tering to the noisy depth maps.

To evaluate the suitability of our lighting estimation pro-

cess, we perform lighting estimation with synthetic data in

Figure 2. As shown in (e), the global lighting model cannot

account for local lighting variations even using the ground-

truth normals. Also, we observe that the shading function,

Eq. (1) and Eq. (3), can be accurately estimated from the

noisy input depth map in (f,h) likewise from the ground-

truth normals in (e,g), respectively.

We summarize the quantitative comparison in Table 1. In

the table, we report angular normal errors by comparing to

the ground-truth. “GL” and “GC” represent the results us-

ing the global lighting model with the given rough geome-

tries and with a calibration sphere rendered in the same il-

lumination likewise [12], respectively. With only the global

lighting model as “GL” and “GC”, normal estimation re-

sults have large deviations from the ground-truth. The re-

sult shows that the global lighting model cannot account for

local lighting variations even if careful lighting calibration

is done using a calibration object. For the global lighting

parameter estimation, “GL” using the rough geometry di-

rectly achieves comparable or even better performance than

“GC” that use a calibration sphere. On the other hand, our

method using both the global and local lighting model re-

covers high-quality details without large distortion from the

ground-truth.

Figure 4 shows the initial depth and our result of PALM

under Env1 in Table 1. Even the absolute difference of an

average angle error between two data is not big, however

the visual quality is very different.

2http://www.hdrlabs.com/sibl/archive.html
3http://www.autodesk.com/products/autodesk-maya/overview
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Average (◦) R10 (%) A75 (◦)

initial GL GC Ours initial GL GC Ours initial GL GC Ours

ANGEL

Env1 6.360 7.216 7.553 6.099 17.54 21.18 25.61 14.31 7.950 9.284 10.139 7.587
Env2 6.360 6.765 7.292 5.577 17.54 19.62 24.18 13.11 7.950 8.893 9.825 6.777
Env3 6.360 7.541 6.923 6.118 17.54 19.99 18.79 15.02 7.950 9.120 8.620 7.604

BUNNY

Env1 4.933 6.633 8.413 4.857 7.72 17.65 31.33 7.20 6.396 8.699 10.989 6.286
Env2 4.933 6.590 8.872 4.826 7.72 18.32 33.73 7.40 6.396 8.828 11.476 6.170
Env3 4.933 6.203 6.467 4.893 7.72 11.96 16.72 7.18 6.396 7.854 8.418 6.307

FACE

Env1 4.513 6.080 6.466 3.648 4.85 9.84 13.68 4.16 5.756 7.714 8.486 4.525
Env2 4.513 5.948 6.610 3.815 4.85 8.75 15.47 3.56 5.756 7.440 8.702 4.830
Env3 4.513 5.324 5.198 3.887 4.85 6.63 6.77 3.63 5.756 6.663 6.698 4.845

PALM

Env1 4.679 6.288 6.244 3.463 5.55 13.30 16.68 2.50 6.059 8.319 8.612 4.562
Env2 4.679 6.856 6.590 3.522 5.55 17.54 20.58 3.02 6.059 8.951 9.238 4.625
Env3 4.679 5.415 5.577 3.213 5.55 7.76 9.12 1.51 6.059 7.081 7.480 4.171

Table 1: Quantitative comparison using synthetic data. “GL” and “GC” represent the results using the global lighting

model with the given rough geometries and with a calibration sphere rendered in the same illumination likewise [12], respec-

tively.

Figure 5: System setup for real-world shape capture.
(left) Flea3 for color images + Kinect for depth images;

(right) Flea3 for color images + structured light for depth

images

(a) (b) (c)

Figure 7: Result using the structured light-based system.
(a) high quality input; (b) our result; (c) enlarged parts

4.2. Real-World Shape Capture

To show the performance of our method using real-world

data, we capture various objects under different illumination

conditions. We have two systems for real-world shape cap-

ture as shown in Figure 5. For RGB images, we use Point-

Grey Flea3 camera that has linear radiometric response. For

depth images, both Kinect and structured light system are

used as low- and high-quality depth sensor, respectively.

The results of real-world shape capture using the Kinect-

based system are presented in Figure 1 and Figure 6. All

(a) (b) (c)

Figure 8: Result of a multi-albedo shape estimation. (a)

input image and depth; (b) albedo map and shading map;

(c) Our result

the data is captured under uncontrolled natural illumination.

In Figure 1, the resulting shape is distorted without the lo-

cal lighting model, while the result with the local lighting

model recovers extremely detailed shape. Figure 6 shows

more results under challenging environment that contains

complex near light sources. Our method successfully esti-

mates high quality shape of target objects in the presence of

spatially varing illumination.

Figure 7 shows a shape estimation using the structured

light-based system. While the structured light system gives

accurate depth data, our method recovers more detailed

shape information.

Figure 8 shows simple adaptation of our method to

multi-albedo shape estimation. While our method assumes

uniform albedo, we can opt for intrinsic image decom-

position algorithms [3] for handling multi-albedo surface.

In this experiment, we simply use k-means clustering for

albedo grouping with chromaticity. After albedo group-
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(a) Input image (b) Input depth (c) Our result

Figure 6: Results of real-world shape capture using the Kinect-based system.

ing, we use the dominant albedo group for estimating the

global lighting model in Eq. (2), and then determine albedo

of other group using the estimated global model. A shading

map is obtained from the observed intensity divided by the

estimated albedo, and the shading map is used as the input

image of the remaining steps. In this way, we obtain the

detailed shape of a multi-albedo surface in Figure 8.

In Figure 9, we compare detailed shape estimation to the

result of [18] . The method in [18] is based on multi-view

stereo, therefore it takes multiple input images for gener-

ating their result. For fair comparison, we make an initial

depth for our method by smoothing their result as Figure 9

(b). With a single RGB-D image, our method shows even

better quality result than [18] as shown in Figure 9.

5. Conclusion
In this paper, we have presented a novel framework to

estimate extremely detailed shape from a single RGB-D

image under uncalibrated natural illumination. The key

component of the framework is the general lighting model

that consists of the global and local models. The global

model represents distant lightings and is estimated with the

low-dimensional characteristic of diffuse objects. The local

model represents spatially varying illuminations that cannot

be modeled in the global model, and it is efficiently solved

by a linear solver. With the accurate light modeling, we re-

cover high quality shape details using shape-from-shading

approach. Various experimental results using real-world

data demonstrate that our method is able to compute ac-

curate shape details of diffuse objects outside a laboratory

environment.
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(a) Input image (b) Initial depth

(c) Wu et al. [18] (d) Our result

Figure 9: Comparison to the method [18]. With a single

RGB-D image, our method shows even better quality result

than the method using multi-view images in [18].

References
[1] R. Anderson, B. Stenger, and R. Cipolla. Color photomet-

ric stereo for multicolored surfaces. In Proceedings of In-
ternational Conference on Computer Vision (ICCV), pages

2182–2189, 2011.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and

R. Szeliski. A database and evaluation methodology for op-

tical flow. International Journal on Computer Vision (IJCV),
92(1):1–31, 2011.

[3] J. T. Barron and J. Malik. high-frequency shape and albedo

from shading using natural image statistics. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2521–2528, 2011.

[4] A. Blake, A. Zisserman, and G. Knowles. Surface descrip-

tions from stereo and shading. Image and Vision Computing,

3(4):183 – 191, 1985.

[5] M. Bohme, M. Haker, T. Martinetz, and E. Barth. Shad-

ing constraint improves accuracy of time-of-flight measure-

ments. Computer Vision and Image Understanding (CVIU),
114(12):1329–1335, 2010.

[6] B. De Decker, J. Kautz, T. Mertens, and P. Bekaert. Cap-

turing multiple illumination conditions using time and color

multiplexing. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2536–

2543. IEEE, 2009.

[7] J.-D. Durou, M. Falcone, and M. Sagona. Numerical meth-

ods for shape-from-shading: A new survey with bench-

marks. Computer Vision and Image Understanding (CVIU),
109(1):22–43, 2008.

[8] D. A. Forsyth. Variable-source shading analysis. Inter-
national Journal on Computer Vision (IJCV), 91(280-302),

2011.

[9] C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and

R. Cipolla. Non-rigid photometric stereo with colored lights.

In Proceedings of International Conference on Computer Vi-
sion (ICCV), pages 1–8, 2007.

[10] B. K. P. Horn. Shape from shading; a method for obtaining
the shape of a smooth opaque object from one view. PhD

thesis, MIT, 1970.

[11] R. Huang and W. A. P. Smith. Shape-from-shading under

complex natural illumination. In Proceedings of Interna-
tional Conference on Image Processing (ICIP), pages 13–16,

2011.

[12] M. K. Johnson and E. H. Adelson. Shape estimation in

natural illumination. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages

2553–2560, 2011.

[13] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi.

Efficiently combining positions and normals for precise 3D

geometry. In Proceedings of ACM SIGGRAPH, pages 536–

543, 2005.

[14] R. Ramamoorthi and P. Hanrahan. An efficient represen-

tation for irradiance environment maps. In Proceedings of
ACM SIGGRAPH, pages 497–500, 2001.

[15] R. Ramamoorthi and P. Hanrahan. On the relationship be-

tween radiance and irradiance: determining the illumination

from images of a convex lambertian object. Journal of the
Optical Society of America A (JOSA A), 18(10):2448–2459,

2001.

[16] R. J. Woodham. Photometric method for determining sur-

face orientation from multiple images. Optical Engineering,

19(1):139–144, 1980.

[17] C. Wu, K. Varanasi, Y. Liu, H.-P. Seidel, and C. Theobalt.

Shading-based dynamic shape refinement from multi-view

video under general illumination. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV), pages 1108–

1115, 2011.

[18] C. Wu, B. Wilburn, Y. Matsushita, and C. Theobalt. High-

quality shape from multi-view stereo and shading under gen-

eral illumination. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages

969–976, 2011.

[19] Q. Zhang, M. Ye, R. Yang, Y. Matsushita, B. Wilburn, and

H. Yu. Edge-preserving photometric stereo via depth fusion.

In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2472–2479, 2012.

[20] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from

shading: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 21(8):690–706, 1999.

16241624


