
Beyond Hard Negative Mining:
Efficient Detector Learning via Block-Circulant Decomposition

João F. Henriques, João Carreira, Rui Caseiro and Jorge Batista
Institute of Systems and Robotics, University of Coimbra
{henriques,joaoluis,ruicaseiro,batista}@isr.uc.pt

Abstract

Competitive sliding window detectors require vast train-
ing sets. Since a pool of natural images provides a nearly
endless supply of negative samples, in the form of patches
at different scales and locations, training with all the avail-
able data is considered impractical. A staple of current ap-
proaches is hard negative mining, a method of selecting rel-
evant samples, which is nevertheless expensive. Given that
samples at slightly different locations have overlapping sup-
port, there seems to be an enormous amount of duplicated
work. It is natural, then, to ask whether these redundancies
can be eliminated.

In this paper, we show that the Gram matrix describing
such data is block-circulant. We derive a transformation
based on the Fourier transform that block-diagonalizes the
Gram matrix, at once eliminating redundancies and parti-
tioning the learning problem. This decomposition is valid
for any dense features and several learning algorithms, and
takes full advantage of modern parallel architectures. Sur-
prisingly, it allows training with all the potential samples
in sets of thousands of images. By considering the full set,
we generate in a single shot the optimal solution, which is
usually obtained only after several rounds of hard negative
mining. We report speed gains on Caltech Pedestrians and
INRIA Pedestrians of over an order of magnitude, allowing
training on a desktop computer in a couple of minutes.

1. Introduction

At the core of the most successful methods for object de-

tection, images are scanned using learned templates. These

templates may model whole objects [7], parts [14], more

general mid-level fragments [4, 27] or hierarchies of filters

capturing increasingly higher-level features [21]. The tem-

plates, most often HOG filters [7], are evaluated exhaus-

tively at all locations in an image over a discrete range of

scales, using fast convolution algorithms which exploit the

redundancy of overlapping image subwindows.

This type of dense search is very powerful but makes

it challenging to learn the filters: learning algorithms for

even the simplest models, linear classification and logistic

regression, scale to ∼ 106 training examples [13]; however,

a handful of test images can contain these many samples.

This asymmetry between the resolution of prediction and

learning has been tackled by mining for hard negative ex-

amples. In this iterative process, an initial model is trained

using all positive examples and a randomly selected subset

of negative examples, and this initial training set is progres-

sively augmented with false positive examples produced

while scanning the images with the model learned so far.

Hard negative mining is considered expensive, and this has

become less tolerable as the community has strived to scale

up to a large number of object models [22].

Some recent attempts at speeding up learning have fit

parametric models (Gaussians) to the background distribu-

tion [23, 18, 16], however some of these approaches are spe-

cific to particular models such as Linear Discriminant Anal-

ysis. Additionally, natural image statistics are known to be

characterized by long exponential tails [26] hence may not

be very faithfully represented by a Gaussian distribution.

Fourier transforms have long been used to perform fast

convolution, and were employed recently to accelerate de-

tectors at test time [11]. In concurrent work, they were also

used to accelerate detector training, yielding closed-form

solutions for Ridge Regression [3, 20], and faster gradient

computation by modifying an SVM solver [12]. A similar

idea was noted earlier in image interpolation [2], but again

by modifying the solver.

Here we propose instead to learn directly from a training

set comprising all image subwindows of a predetermined

aspect-ratio and show this is feasible for a rich set of popu-

lar models including Ridge Regression, Support Vector Re-

gression (SVR) and Logistic Regression. Intuitively, there

is much redundancy in the set of all image subwindows, be-

cause of their overlap [1]. The crux of our derivation is the

observation that the Gram matrix of a set of images and their

translated versions, as modeled by cyclic shifts, exhibits a

block-circulant structure. We demonstrate that this structure
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enables efficient learning in the Fourier domain for several

loss functions, with minimal to no change required in terms

of the solver (essentially using off-the-shelf solvers), and

for any feature that can be implemented as a linear filter.

We build on recent work that explores the circulant struc-

ture of translations in a single image [19] or in pairs (in the

temporal domain) [24]. In both cases, learning is limited

to Ridge Regression, while we generalize to other models

such as the SVR. Additionally, while the circulant matrices

used in these works model translations of one sample or a

pair of samples, our block-circulant formulation allows an

arbitrary number of samples.

Our closed-form decomposition is simple and can be im-

plemented with a few lines of code (Algorithm 1). Full

source code for fast training of linear detectors is available1.

1.1. Contributions

The contributions of this paper are as follows.

1. We show that the structure of overlapping image sub-

windows allows efficient training of a detector with all
subwindows of a set of negative images. This obviates

the need for expensive rounds of hard negative mining,

which only approximate the full problem.

2. A theoretical analysis of the influence of translated im-

ages over a learning problem, by proving that the re-

sulting Gram matrix is block-circulant (Section 2).

3. A closed-form transformation that eliminates re-

dundant degrees-of-freedom, and simultaneously de-

composes the problem into small independent sub-

problems (Sec. 2.2-3). The transformation is valid for

several algorithms (Sec. 3).

4. An explicit description of the data matrix which allows

the use of fast linear solvers [13], that scale linearly

with the number of training examples (Sec. 4-5).

Experiments show that it is possible to train with all sub-

windows of large training sets (INRIA and Caltech Pedes-

trians), achieving the same performance as several rounds

of hard negative mining in a single run.

1.2. Background

Learning a linear classifier is usually cast as a regularized

risk minimization problem [5]. Given n samples xi and

corresponding target labels yi, the goal is to find the optimal

weights w,

min
w
‖w‖2 + c

n∑
i

L
(
wTxi, yi

)
, (1)

1 www.isr.uc.pt/∼henriques/

where L is a loss function that depends on the training al-

gorithm, and c is the regularization parameter. Many popu-

lar algorithms, including SVM, SVR, Ridge Regression and

Logistic Regression can equivalently be expressed in their

dual form

min
α

1

2
αTGα+

n∑
i

D (αi, yi) , (2)

with a vector α containing n dual optimization variables

αi, a function D that depends on the training algorithm2,

and the n× n Gram matrix G, with elements

Gij = xT
i xj . (3)

The two solutions are related by w =
∑n

i αixi.

Typical solvers either accept the set of samples xi (and

thus can optimize the primal or dual), or accept the Gram

matrix G (restricting them to the dual optimization). For

datasets with many samples, the first is more advantageous.

Throughout this paper, we will prove most results us-

ing the dual formulation (Section 2-3). To avoid creating a

Gram matrix in practice, which scales asO (
n2

)
, we extend

our results by presenting an explicit data matrix (Section 4).

Most of the analysis is equally applicable to non-linear

problems, where G is a kernel matrix [5]. However, in this

paper we focus on the linear case.

2. Training sets of translated samples
In detection tasks, it is common to train a classifier with

negative examples that are cropped from a large set of im-

ages. Although they are usually treated as i.i.d. samples

[7, 14], they share an additional structure: samples from the

same image are translated versions of one another. This

means that overlapping pixels are constrained to be the

same, resulting in a reduced number of degrees of freedom.

Consider a sample x, consisting of dense features ex-

tracted inside a particular image subwindow. To simplify

the discussion, assume a 1D image and a single feature, so

x is an s× 1 vector; we will later show the extension to the

general case is trivial. We can translate x by one element,

by multiplying it with the s× s permutation matrix P ,

P =

[
0Ts−1 1
Is−1 0s−1

]
, (4)

where 0s−1 is a column-vector of s−1 zeros and Is−1 is an

(s− 1)× (s− 1) identity matrix. This operation is a cyclic
shift: all elements are shifted one place to the right, and

the element that exits the image on one side will reappear

on the other side. Shifting by u elements is achieved by

raising P to the uth power, Pux. Negative powers shift

2Algorithms, such as the SVM, that constrain αi to some set S can be

dealt with easily, by defining D (αi, yi) =∞ if αi /∈ S.
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(a) (b) (c)

Figure 1: (a) An augmented training set of n base samples, and s horizontal translations. Such data arises when training a classifier with

several subwindows from images. (b) Forming the ns × ns Gram matrix G, it is clear that there is some structure at the block level. We

prove G is block-circulant (Sec. 2.1). (c) Transforming by U block-diagonalizes G, resulting in s smaller and independent sub-problems

(one per block). Each sub-problem corresponds to a distinct frequency of the Fourier transform.

in the opposite direction. Since P 0 is always the identity

matrix, the original sample is recovered for u = 0.

Our goal, then, is to train a classifier not only with a set

of n samples xi, but also their translations, as modeled by

cyclic shifts. In the following sections, we will consider

an augmented training set X , with a total of ns samples: s
translations of n base samples. Fig. 1-a illustrates this idea.

X =
{
Pu−1xi | i = 1, . . . , n; u = 1, . . . , s

}
. (5)

2.1. The structure of the Gram matrix

As mentioned in Section 1.2, many learning algorithms

can be expressed in the dual, in terms of a Gram matrix G.

We will see how G is affected by translated samples.

For the training set in Eq. 5, each row of G corresponds

to a sample characterized by an index i and a translation u,

and each column to another sample with index j and trans-

lation v. To deal with this fact, we will partition G into

s × s blocks of size n × n. Each block (u, v) corresponds

to a pair of sample translations, and each element of a block

(i, j) corresponds to a pair of base samples (see Fig. 1-b).

We will denote the element (i, j) of block (u, v) by

G(u,v),(i,j). Given Eq. 5, the Gram matrix is

G(u,v),(i,j) =
(
Pu−1xi

)T
P v−1xj . (6)

Using known properties of permutation matrices [17],

G(u,v),(i,j) = xT
i P

v−uxj . (7)

Since the blocks (u, v) are not independent, but a function

of v − u,3 G is a block-circulant matrix [8].

3More precisely, P v−u is a function of (v − u) modulus n, because

of its cyclic nature: Pkn = P 0 for all integers k.

The structure of G can be made more evident as

G(u,v),(i,j) = gv−u(i, j), (8)

which resorts to n2 auxiliary vectors g(i, j), each with s
elements given by

gt(i, j) = xT
i P

txj . (9)

This reveals that storing the full G (which is ns×ns) is not

necessary, as only n2 vectors with s elements are required.

Another advantage is that, since Eq. 9 computes dot-

products between xi and all translations of xj , it is equiva-

lent to the correlation between vectors (denoted with �),

g(i, j) = xi � xj . (10)

Consequently, we can invoke the Convolution Theorem

[17] to compute these correlations faster in the Fourier do-

main:

g(i, j) = F−1 (F∗(xi)�F(xj)) , (11)

where � denotes the element-wise product, ∗ complex-

conjugation, F(·) denotes the Fourier transform, and

F−1(·) its inverse.

2.2. Block-diagonalization of G

Recall that each element of G encodes the interaction

between a pair of samples from X . Intuitively, if the inter-

actions between some groups of samples are set to 0, we

can treat each group independently in subsequent computa-

tions. This is proved in Section 3. For now, we will see a

transformation of G that achieves this goal.

Block-diagonalization consists of finding a matrix U
such that Ḡ = UGU−1 takes block-diagonal form:

2762



Ḡ =

⎡
⎢⎢⎢⎣

Ḡ(1)
Ḡ(2)

. . .

Ḡ(s)

⎤
⎥⎥⎥⎦ . (12)

The s diagonal blocks are denoted Ḡ(f), and the remaining

elements are 0. Each block is n× n.

Since G is block-circulant, a closed-form solution for U
exists [9]. It is given by

U = Fs ⊗ In (13)

where ⊗ is the Kronecker product, In an identity matrix,

and Fs is the s × s Discrete Fourier Transform (DFT) ma-

trix [8]. Multiplying any vector by the DFT matrix of cor-

responding size is equivalent to taking its Fourier transform

(Fsx = F(x)), so it is not surprising that we can block-

diagonalize G purely using Fourier transforms. Each Ḡ(f)
block has elements [9]

Ḡij(f) = ḡf (i, j), (14)

with ḡ(i, j) = F (g(i, j)). Plugging in Eq. 11, it simplifies

to

ḡ(i, j) = F∗(xi)�F(xj). (15)

3. Separability of learning problems
We now need to prove the intuition that the blocks of a

block-diagonal Gram matrix Ḡ indeed represent indepen-

dent learning problems. This can yield considerable com-

putation and storage savings, since the number of elements

under consideration is (s− 1) s times smaller than for the

full G. The exact partitioning into sub-problems is also suit-

able for parallel implementations that take full advantage of

modern architectures.

At this point, it is important to point out that the trans-

formation matrix U we used in Section 2.2 is unitary. This

implies that U−1 = UH , where (·)H is the Hermitian trans-

pose (transposition and complex-conjugation).4

The interest in unitary transformations lies in the fact that

they preserve dot-products: if ā = Ua and b̄ = Ub, then

āH b̄ = aHb. Because L2-norms are dot-products, they are

also preserved: aHa = ‖a‖2 = ‖ā‖2.

Theorem. Given a unitary matrix U such that Ḡ =
UGU−1 is block-diagonal, with s blocks Ḡf , then Eq. 2
can be decomposed into the s sub-problems

4The Hermitian transpose is the most natural extension of transposi-

tion to the complex domain, simplifying many expressions. In fact, many

numerical packages such as MATLAB use it as the default transposition

operator. This has no effect over real matrices.

min
ᾱf

1

2
ᾱH

f Ḡf ᾱf +
n∑
i

D (ᾱfi, ȳfi) , f = 1, . . . , s,

(16)

with the transformed variables ᾱ = Uα and ȳ = Uy. Both
ᾱ and ȳ are partitioned into s blocks ᾱf and ȳf , each with
n elements ᾱfi and ȳfi.

This relation is exact if the function D only depends on
dot-products of its arguments, and approximate otherwise.

The proof is given in Appendix A.1 (supplemental ma-

terial). We now discuss the implications for a number of

learning algorithms.

Ridge Regression. Ridge regression (RR) is a regularized

form of least-squares, with loss function

L
(
wTx, yi

)
=

(
wTx− yi

)2
. (17)

The dual has D (αi, yi) = 1
2cα

2
i − 1

cαiyi [25]. Since its

terms are all dot-products, the decomposition is exact.

Support Vector Regression. L2-SVR penalizes errors

with the squared epsilon-insensitive loss

L (f(x), y) =
∣∣wTx− y

∣∣2
ε
= max

(
0,

∣∣wTx− y
∣∣− ε

)2
.

(18)

The dual has D (αi, yi) = 1
2cα

2
i − αiyi + ε |αi| [28,

Section 6.2.2]. Only the last term, an L1-norm, is not a dot-

product. As such, the approximation error is bounded by

ε |‖ᾱ‖1 − ‖α‖1|.
The general case. The same analysis applies to L1-SVR,

Logistic Regression and other dual formulations, with vary-

ing degrees of approximation. It is also possible to char-

acterize the transformations that preserve L1 and L2-norms

exactly, but such a restriction makes them less useful (this is

explored in Appendix A1.1). We do not use SVM because it

restricts the labels to {−1, 1}, and a unitary transformation

would fall outside this set.

4. Explicit data matrix
The transformed Gram matrix for each of the s sub-

problems, Ḡ(f), can be used directly in a dual solver (e.g.,

libsvm [13]). However, if n is large, an explicit descrip-

tion of the transformed data matrix that generates such a

Gram matrix (through Eq. 3) would be more desirable.

By inspecting Eq. 14-15, it can be seen that each block

Ḡ(f) corresponds to a distinct Fourier frequency f , and

each of its elements (i, j) is simply the product of frequency

f of the Fourier transforms of samples xi and xj .

Because it is a simple product, it can be factorized into

Ḡ(f) = X̄(f)X̄H(f), (19)
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Algorithm 1 MATLAB code for the Circulant Decomposition.

Equivalent to solving a regression with all spatial translations of

the given samples. The independent regression sub-problems can

be solved in parallel. The full test suite can be downloaded at:

www.isr.uc.pt/∼henriques/
Inputs:

• X (m features on a s1 × s2 grid for n samples,

total size s1 × s2 ×m× n)

• Y (labels, size s1 × s2 × n)

• regression (a linear regression function)

Output:

• W (weights, size s1 × s2 ×m)

X = fft2(X) / sqrt(s1*s2);
Y = fft2(Y) / sqrt(s1*s2);
Y(1,1,:) = 0;
X = permute(X, [4, 3, 1, 2]);
Y = permute(Y, [3, 1, 2]);
for f1 = 1:s1

for f2 = 1:s2
W(f1,f2,:) = regression( ...

X(:,:,f1,f2), Y(:,f1,f2) );
end

end
W = real(ifft2(W)) * sqrt(s1*s2);

where X̄(f) is an n × 1 vector with the Fourier frequency

f of each sample. This explicit description of the data

matrix X̄(f) allows us to use a fast primal solver such as

liblinear [13].

Extension to two dimensions. All properties of the

Fourier transform (FT) and block-circulant matrices we

used have direct equivalents in 2D, i.e., when samples

contain s1× s2 spatial cells. We just have to replace the 1D

FT with the 2D FT, and set s = s1s2.

Extension for multiple features per cell. We can simply

extend X̄(f) to be a n × m matrix with the Fourier fre-

quency f of m features. By additivity of the dot-product,

the Gram matrix obtained this way is the sum of Gram ma-

trices over all m features, and all properties are preserved.

5. Complex-valued regression
The fact that the data matrices of Eq. 19 are complex

may apparently present some difficulties, since regression

is usually real-valued. In this section we discuss some solu-

tions. We consider a generic data matrix X and regression

targets y.

The simple algorithm of Ridge Regression is already pre-

pared to deal with complex values:

w∗ =
(
XHX + c−1I

)−1
XHy, (20)

where c is the regularization parameter (Section 1.2). The

only difference from the real case is that the solution must

be complex-conjugated. Ridge Regression usually performs

only slightly worse than SVR in many tasks, so it is useful

as a validation for more complicated approaches [25] .

The SVR can deal with the complex case by extending

its loss function (Eq. 18) from the real line to the complex

plane:

L
(
wHx, y

)
=

∣∣Re (wHx− y
)∣∣2

ε
+

∣∣Im (
wHx− y

)∣∣2
ε
,

(21)

where Re (·) extracts the real part of a complex number, and

Im (·) the imaginary part. For real arguments, this reduces

to the simple SVR. We can prove (Appendix A.2) that this is

equivalent to a simple SVR with the augmented data matrix

X ′ and augmented targets y′,

X ′ =
[

Re (X) Im (X)
Im (X) −Re (X)

]
, y′ =

[
Re (y)
Im (y)

]
,

(22)

and the complex solution w can be reconstructed from the

augmented real solution w′,

w′ =
[

Re (w)
Im (w)

]
. (23)

Note that this is not the same as simply concatenating the

real and imaginary parts as features. The structure of X ′ en-

sures that the properties of complex numbers are respected

(e.g., i.i = −1, with i the pure-imaginary unit).

6. Experiments
We tested the proposed decomposition on a number of

detection tasks. Recall that our method replaces the tra-

ditional hard negative mining steps with a single learning

phase. As such, the goal of these experiments is not to show

greater accuracy, but to verify that we can achieve accuracy

that is competitive with several rounds of hard negative min-

ing, all other components being constant. If we introduced

different variations (features, etc), results would be less con-

clusive. We chose the task of learning a single HOG filter

from full object exemplars, which captures the core compo-

nent shared by most modern object detectors [14, 4]. Note

that our contribution is orthogonal to other recent advances

in object detection, such as the use of part filters and multi-

ple object components [14, 4, 27].

In our tests, we will apply the Circulant Decomposition

(CD) to an SVR solver, as we found SVR to perform simi-

larly to regular SVM in practical object detection tasks. The

experiments will evaluate several aspects: 1) how detection

performance with the CD single-batch learning relates to

SVM learning as the number of rounds of hard negative
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Figure 2: Performance on the test set of INRIA Pedestrians using

a HOG detector. It takes several rounds of hard negative mining

to converge to the same results of the proposed Circulant Decom-

position, which is trained on the full set of negative windows. The

Circulant Decomposition allows training on the full set in one go.

(AP is shown in brackets.)
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Figure 3: Performance on the test set of the Caltech Pedestrians

Detection Benchmark (AP is shown in brackets) using a HOG de-

tector. The Circulant Decomposition is competitive with 3 expen-

sive rounds of hard negative mining.

mining increases, 2) the implicit ability of CD to enlarge

the training set with many translations, and its impact on

datasets with few positive samples and 3) the computational

savings of CD, compared to hard negative mining, which is

generally considered expensive.

6.1. Pedestrian detection

We experimented with pedestrian detection on two stan-

dard datasets: the well-known INRIA Pedestrians [7] and

the recent Caltech Pedestrian Detection Benchmark [10].

We will jump straight away to the main point of our pa-

per: that a Circulant Decomposition is equivalent to training

with all negative windows, a feat that can only be approx-

imated by several rounds of hard negative mining. Fig. 2

shows a comparison of CD and different numbers of hard

negative rounds for INRIA Pedestrians and Fig. 3 shows

the same comparison for the Caltech Pedestrian Detection

Benchmark. Average Precision (AP) is shown in brackets.

The results suggest that the Circulant Decomposition per-

forms on par with the slower and intrinsically less complete

process of learning with hard negative mining.

6.1.1 Implementation

We followed the original implementation of the HOG

pedestrian detector [7]. On INRIA Pedestrians the baseline

classifier is trained with 12180 random negative windows,

before mining hard negative examples from the set of 1218

negative images, which contains ∼ 108 potential windows.

For our method, which can train with all ∼ 108 windows

in this set, we consider a total of ∼ 105 base samples. The

finer translations within each patch are implicitly dealt with

by the Circulant Decomposition, which is the main advan-

tage of our approach. We proceed similarly on the “reason-

able” subset of the Caltech Pedestrian dataset, composed of

4250 training images obtained every 30 frames, of which

2217 are negative images, without pedestrians. All tests

were done on a quad-core 3.0Ghz desktop computer. Both

CD and mining implementations are parallelized, providing

a fair representation of a modern set-up.

An implementation of the proposed method using this

data matrix is given in Algorithm 1. For HOG descriptors,

m is the number of orientation bins, over an s1 × s2 grid.

The indexing operations to make each sub-problem work on

a different Fourier frequency f are performed by the built-in

function permute. The factors
√
s1s2 are needed because

most FFT implementations are only unitary if corrected by

this scalar factor. Recall that s = s1s2 when generalizing

from one to two-dimensions (Section 4).

Additionally, we verified experimentally that it is nec-

essary for the regression targets to have no DC component

(line 3 of Algorithm 1.) A possible reason is that the DC

component of the data, which corresponds to the mean in

the spatial domain, tipically has values several orders of

magnitude larger than the remaining frequencies. Model-

ing this effect properly may lead to better performance, but

will be left for future work.

6.1.2 Cyclic shifts as a model for translation

Since samples must have the same support as the learned

template w, cyclic shifts of a template-sized sample are less

accurate for large translations, due to wrap-around effects.

Thus in practice we collect base samples xi from negative

images in a grid, at regular intervals of 2/3 of the template
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Mining Circulant
Rounds 0 1 2 3 0

Time

(s)
IN

R
IA 7 159 312 463 35

AP 0.749 0.785 0.794 0.796 0.805
Time

(s)

C
al

te
ch 12 646 1272 1901 139

AP 0.165 0.268 0.365 0.368 0.380

Table 1: Performance and timing of the proposed method on the

INRIA and Caltech Pedestrians datasets, and the classical ap-

proach using increasing numbers of hard negative mining rounds.

The proposed method converges on the solution in one go, requir-

ing much less time than even a single round of mining.

size, which accounts for large translations. We verified ex-

perimentally that there is little impact in performance if we

assume cyclic shifts are accurate up to ∼1/3 of the template

size in all directions. The cyclic shifts Pu−1xi model the

finer translations, which comes at no additional cost when

using the Circulant Decomposition. This allows us to effec-

tively model a sliding window, while collecting only a few

dozen base samples per negative image.

To verify that the gain in performance is truly due to the

Circulant Decomposition and not the grid sampling scheme,

we trained a full SVM classifier with the same base samples.

The results in Fig. 4-a show that performance drops sig-

nificantly without the proposed decomposition, which also

makes training faster and easier to parallelize.

6.1.3 Positive samples

Another aspect of our method is that we must choose labels

for translations of positive samples, since they are implicitly

accounted for during training.

A translation of a positive sample at some point becomes

a false positive, so a simple choice is to assign it the label

+1 if t = 0 (aligned), and -1 if t �= 0 (misaligned). Al-

ternatively, and taking advantage of the fact that regression

allows labels outside the set {−1,+1}, we can use a Gaus-

sian function to interpolate smoothly between the two, ac-

cording to a Gaussian bandwidth σ. For σ = 0 the function

looks like a single peak, and we recover the first choice we

mentioned. This function plays a similar role to the training

output plane in correlation filters [19, 3].

Performance on INRIA Pedestrians as this parameter

varies is shown in Fig. 4-b. Larger bandwidths seem to

degrade performance, and the best performance is attained

near σ = 0. Since good localization (suppressing mis-

aligned detections) is important in detection tasks, this re-

sult agrees with intuition.
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Figure 4: INRIA Pedestrians. (a) Comparison of Circulant De-

composition and a full SVM (not decomposed) using the same

base samples. (b) Performance as spatial bandwidth σ is varied

(see text). Small values offer better performance because high

localization in detection tasks can be understood as suppressing

off-center detections.

6.2. ETHZ Shapes

As mentioned earlier, translations of positive samples

are also considered. It is possible that these “virtual sam-

ples” help regularize the solution in settings with a scarcity

of positive samples. To test this hypothesis, we followed

the same methodology as before but on the ETHZ Shapes

dataset [15]. This dataset has only between 22 and 45 pos-

itive examples for each of its 5 categories (Mugs, Bottles,

Swans, Giraffes and Apple Logos), evenly split into training

and testing sets. Unlike on the pedestrian detection bench-

marks, where positive examples abound, here results are

markedly improved using the proposed method, as visible

in Fig. 5. We conjecture, based on these results, that our

approach could also benefit applications such as one-shot

learning and transfer learning.

7. Conclusion

Supported by the observation that the Gram matrix of

the set of training images and their translations is block-

circulant, we have derived a closed-form decomposition

that allows for popular filter-based detectors to be efficiently

learned from all subwindows with fixed aspect-ratio ex-

tracted over predefined scales, in a single batch, on datasets

with a few thousand training images. This is surprising

since the number of subwindows is in the order of 108,

which seems to even preclude loading the data into the com-

puter’s memory, but is feasible using our proposed embed-

ding of the learning problem into the Fourier domain. Our

methodology is likely to have broad applicability, as it al-

lows for both a much more efficient and more complete

learning process than iterative hard negative mining, used

for learning virtually all modern object detectors.

As future work we plan to extend our experiments be-

yond single-HOG detectors, and learn the types of filter

collections employed by current state-of-the-art object de-
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Figure 5: Performance on ETHZ Shapes, a dataset with scarce training data (between 22 and 45 positive examples per class, with an equal

train-test split). In addition to allowing models to be trained faster, the Circulant Decomposition achieves higher performance in this case,

perhaps due to the implicit inclusion of translated positive samples. (Mean AP is shown in brackets.)

tectors [14, 4]. We believe prior knowledge such as invari-

ance is essential for efficient visual learning and are cur-

rently investigating avenues to broaden the proposed trans-

lation machinery to small in-plane rotations and local shape

deformations [6].
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