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Abstract

We describe a structure-from-motion framework that
handles “generalized” cameras, such as moving rolling-
shutter cameras, and works at an unprecedented scale—
billions of images covering millions of linear kilometers
of roads—by exploiting a good relative pose prior along
vehicle paths. We exhibit a planet-scale, appearance-
augmented point cloud constructed with our framework and
demonstrate its practical use in correcting the pose of a
street-level image collection.

1. Introduction

Google Street View has a repository of billions of 2D

images captured with rolling-shutter camera rigs along ve-

hicle trajectories. Although we use GPS and inertial sensors

to estimate the pose of this imagery, it still contains low-

frequency error due to challenging GPS environments in

cities and elsewhere. To improve the pose of these images,

we have extended traditional Structure from Motion (SfM)

techniques to construct a point-based model of the street-

level world where each point carries both its geometric po-

sition as well as its local appearance from several views (see

Figure 1). We use the appearance information from this

model to find corresponding 3D points viewed from nearby

images, and the geometric information to align the cameras

that view them, thereby globally correcting the imagery’s

pose: motion-from-structure-from-motion.

To create our SfM model, we must overcome two impor-

tant challenges not encountered in typical SfM problems:

rolling-shutter cameras and planet-wide scale. We use the

same tool to tackle both: a good initial estimate of the local

vehicle trajectory. Although GPS may introduce global er-

ror of many meters in our estimate of the trajectory, the local

shape is determined almost entirely by integration of inertial

sensors. These sensors are trustworthy over short distances

and they give us an accurate estimate of the vehicle’s motion

during image capture as well as the relative pose of images

nearby each other in the trajectory, as depicted in Figure 2.

In Sections 3 and 4, we present a generalized camera model

that uses this local pose to handle rolling shutters in the

Figure 1. An appearance-augmented point cloud comprising 404

billion tracked features, computed from street-level imagery. Ev-

ery point in the cloud carries with it local appearance descriptors

from at least three different viewpoints. Frames zoom successively

closer to a detail of Sydney harbor.

context of projection, triangulation, and bundle adjustment.

Then, in Section 5, we use local pose to overcome superlin-

ear matching cost and achieve planet scale. In Section 6, we

descibe how we apply the resulting appearance-augmented

SfM model to reduce the global pose error of our imagery

by more than 85% in the densest urban environments in the

world.
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Figure 2. The vehicle’s path establishes good relative pose and

natural connectivity for the panoramic imagery we capture.

2. Related work

Perspective cameras and SfM for perspective cameras

are well studied [14]. Generalized cameras, with arbitrary

relationships between points in the world and the image,

were formalized by Grossberg and Nayar [12]. A corre-

sponding generalized epipolar constraint and optical flow

are treated by Pless [22]. Rigorous efforts to solve for gen-

eralized camera models exist: 8 solutions for 3 camera rays

to intersect 3 known world points [21], 64 solutions for 6

corresponding camera ray pairs [25]. The latter technique

can be used with RANSAC for motion estimation between

two generalized cameras, but the method is complex and ul-

timately unnecessary with a good relative pose prior, which

we possess.

Rolling-shutter cameras are a particularly common type

of generalized camera, and have a literature of their own.

Moving, rolling-shutter cameras are studied and modeled

by Geyer et al. [10]. Much work has been done to re-

cover object motion and shape from rolling-shutter images

and video taken from fixed viewpoints [3] [4] [20]. Com-

plementary work has been done to remove rolling shutter

distortion from images and video created when the camera

moves [18] [7] [9] [5] [13].

Perhaps the most directly related work on bundle adjust-

ment is that of Hedborg et al. [15], which aims to bundle

adjust rolling-shutter video sequences. As we do, it approx-

imates the complex rolling-shutter camera model as locally

linear near points of interest. We consider static images in-

stead of video, which makes tracking harder, but we have

the advantage of starting with a better high-frequency pose

prior.

Large-scale (i.e., many-camera) SfM reconstruction is a

hot topic in computer vision research, with most efforts aim-

ing to tackle ever more cameras in a single problem [24] [2].

Our approach is unlike these efforts: we deliberately limit

our BA to a modestly sized (1500-camera) window. Global

accuracy is achieved through loop closing as described in

Section 6.

Our use of appearance-augmented 3D points is not un-

precedented. Such points are employed for for image local-

ization relative to an SfMmodel by Se et al. [23], Gordon &

Lowe [11], Irschara et al. [16], and Li et al. [17]. In those

works, each 3D point is augmented with SIFT descriptors

(perhaps averaged, perhaps quantized). We similarly aug-

Figure 3. Example panoramic rosettes with 6, 9, and 15 cameras.

ment our 3D SfM points with descriptors from all views.

Instead of matching an image to a 3D model, we match 3D

models to each other for the purpose of loop closing.

3. Generalized camera model
Most of our images come from rolling-shutter cameras.

Rolling-shutter cameras do not capture all pixels of an im-

age instantaneously. Instead, the exposure “rolls” across

the image sensor, often column-by-column. If the camera

moves while the shutter rolls, different pixels in the image

have different projection centers. Moving, rolling-shutter

cameras are an example of a generalized camera [12].
In addition, our camera rigs consist of a rigid assembly,

or rosette, of cameras. Figure 3 shows some of our camera
rigs, with rosettes composed of between 6 and 15 cameras.

Figure 4 shows how the rolling shutter complicates pixel

projection for the 15 camera rig. In our rigs, rosette intrin-

sics and rolling shutter timings are calibrated. We require a

generalized camera model for these moving rosettes of cal-

ibrated rolling-shutter cameras.

Notation: Let xa denote a point x in frame “a” and let b�a
denote a possibly non-linear transform� from frame “a” to
frame “b”. Thus, xb= b�a·xa, inv b�a= a�b, c�b·b�a= c�a, and
so on.

We may write the generalized camera model as a non-

3
0
cm

≈ 3m

Figure 4. Left: a visualization of pixel rays from our 15-camera

rosette, with each camera’s rays assigned a different color. Right:

the same rays when the rosette undergoes typical vehicle motion

(30kph). Each pixel has a different projection center, in this case

spread over several meters of vehicle trajectory. Traditional multi-

view geometry algorithms do not work with such cameras.
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t(k)t1 t2

Figure 5. A rolling shutter exposure that starts at t1 and ends at
t2. The vehicle moves so each image column may have a different
projection center.

linear transform im�w(t) from the world frame “w” to the

image frame “im”. Due to the rolling shutter, this transform

is a function of time t:

xim = im�w(t) · xw (1)

We decompose the world-to-image transform in order to

separate the non-linear component (lens model) from the

time-dependent component (rosette pose):

im�w(t) =
Lens Model︷︸︸︷
im�c · c�r ·

Rosette Pose︷︸︸︷
r�w(t)︸�����������︷︷�����������︸

Camera Pose

(2)

where “c” is the camera frame and “r” is the rosette frame.

The non-linear transform im�c represents the lens model.
All frames are in motion, but the image and camera

frames are fixed relative to the rosette. Thus, the only time-

dependent component of the camera model is the world-

to-rosette transform r�w(t) because the rosette is moving
rigidly through the world frame. The quantity r�w(t) rep-
resents the 6 DOF pose of the rosette in the world frame.

The rolling shutter model relates pixel coordinates and

time as some function t(xim). In our case, t(xim) is a linear
function of the column index (see Figure 5).

3.1. Projection

Mapping from the image frame to the world frame is

straightforward. The image point xim yields an exposure
time t(xim) from the rolling shutter, which in turn sets the

rosette pose w�r:
xw = w�r(t(xim)) · r�c · c�im · xim (3)

Projection from the world frame into the image, however,

is not well defined for a generalized camera. Some world

points may be imaged multiple times, whereas other world

points may not be imaged at all. Figure 6 depicts this issue

(a) (b)

Figure 6. Because the projection center may move in a generalized

camera, some points may be exposed multiple times (a) or not at

all (b), making world-to-camera projection ill-defined.

geometrically. In a rolling-shutter camera in particular, im-
age coordinates and time are interchangeable. The world-
to-image projection equation is therefore implicit in xim:

xim = im�c · c�r · r�w(t(xim)) · xw (4)

In practice, if the speed of the camera in the world is slow

relative to the speed of the rolling shutter across objects in
the scene, which is generally the case for a vehicle-mounted
camera that rotates slowly, the mapping is well behaved.

The circularity in the equation may be broken by estimat-

ing the exposure time and iterating on the solution. In-

stead, in the following sections, we show how the gener-

alized camera model may be approximated effectively by

local linearization at feature locations.

3.2. Triangulation

A fundamental operation in bundle adjustment is trian-

gulation from multiple views. Given multiple image obser-

vations x̂k
im
(superscripts hereafter dropped for clarity) of an

unknown 3D world point, we wish to find the world point

xw that minimizes reprojection error:

argmin
xw

∑
views

‖xim − x̂im‖2 s.t. Equation 4 (5)

The constraint is implicit in xim, but we can make the con-
straint explicit with a simple assumption. Because rolling

shutters tend to be fast, t(xim) is a slowly changing function
and therefore t(xim) ≈ t(x̂im). Then we may avoid comput-
ing t(xim) entirely: the projection of x̂w into each camera
may be done at the a priori known exposure times t(x̂im) for
each feature location x̂im. The optimization problem is now:

argmin
xw

∑
views

‖
Lens︷︸︸︷
im�c ·

Camera Pose︷������������︸︸������������︷
c�r · r�w(t(x̂im)) ·xw︸���������������������������︷︷���������������������������︸

xim

−x̂im‖2 (6)

which is a standard triangulation problem with known cam-

era poses. As the rolling shutter approaches an instanta-

neous shutter, t(xim) becomes constant, and the equation
simplifies to that of standard multi-view triangulation.

This approximation degrades as x̂im and xim diverge, but,
critically for optimization, the approximation is exact at
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Figure 7. We establish a virtual, linear “feature camera” at each

feature whose optical axis is the projection of the feature center

through the generalized camera model.

the feature location. Moreover, the approximation diverges
slowly in practice: For our cameras, over a very large fea-

ture of diameter 100 pixels, lens distortion varies by a few

percent and pose varies by ∼1 cm at 30 kph.
3.3. Feature cameras

In addition to the simplification that t(xim) ≈ t(x̂im),
we may further simplify triangulation by linearizing the

(smooth) lens model at each feature location. The mono-

lithic, generalized camera model is thereby shattered into

a constellation of simple, global-shutter, linear perspective

feature cameras, depicted in Figure 7. This constellation
would appear as a denuded porcupine,1 like that in Figure 4

but with only the quills that survive feature tracking. To

project a world point into a feature camera,

xf = f�c · c�r · r�w(t(x̂im))︸������������������︷︷������������������︸
f�w

·xw (7)

where the f�w transform is both linear and constant given the
rosette pose. It is as if each feature has its own linear lens.

The feature frame “f” is centered on the feature point x̂im,
so if x̂im is an exact view of xw, then xf is (0, 0). Thus, the
projection coordinates xf directly yield reprojection error,
and the triangulation problem is simply:

argmin
xw

∑
views

‖xf‖2 s.t. Equation 7 (8)

To control for varying magnification across the image due to

lens distortion, we sample the angular resolution of the lens

model at the feature location and scale the feature camera

focal length so that all feature camera frames have compat-

ible pixel scale.

4. Generalized bundle adjustment
The previous section provides the essential elements re-

quired for bundle adjustment with general cameras. How-

1Not shown in the expurgated version of this paper.

ever, in contrast to global shutter cameras, the triangulation

sub-problems of bundle adjustment are coupled through the

camera trajectory r�w(t). Using feature cameras, the bundle
adjustment optimization for generalized cameras is:

argmin
{xw, r�w(t)}

∑
points

∑
views

‖xf‖2 s.t. Equation 7 (9)

The twist with bundle adjustment using generalized cam-

eras is that the camera trajectory influences the camera

model. With traditional cameras, only the instantaneous
pose of the camera is used (as camera extrinsics). For gen-

eralized cameras, the trajectory of the camera during the
rolling shutter becomes part of the camera intrinsics. In the
context of bundle adjustment and triangulation, one must

choose a representation for the trajectory that constrains the

feature cameras’ relative poses.

In the work of Hedborg et al. [15], for rolling-shutter

video, the trajectory is represented by a single key pose for

each frame, with the pose during the rolling shutter linearly

interpolated between successive key poses. In general, one

may insert as many key poses as the tracked features sup-

port.

If a relative pose prior is available, for example from a

calibrated IMU, then the prior may be used to constrain bun-

dle adjustment in a variety of ways depending on the accu-

racy of the prior and the nature of the camera motion. For

example, one may model low-order deviations from the rel-

ative pose prior as a way of both constraining the number of

free pose variables and regularizing the bundled pose.

We use calibrated camera rigs with an IMU rigidly at-

tached, mounted on a vehicle. From a separate pose opti-

mization step, which is outside the scope of this paper but

locally dominated by the IMU, we have accurate relative

pose on the timescale of the rosette exposure. We there-

fore “bake in” to the camera model the relative pose that

spans the rosette exposure so that bundling does not adjust

the known high frequencies of pose.

To that end, we factor r�w(t(x̂im)) in Equation 7 by intro-
ducing a time-dependent nominal rosette frame “n” and a
nominal rosette exposure time tn:

xf = f�c · c�r ·
r�w(t(x̂im))︷������������������������︸︸������������������������︷

r�n(t(x̂im) − tn) · n�w(tn) ·xw (10)

The quantity t(x̂im) − tn represents the rolling shutter delay
from the nominal rosette exposure time tn for pixel x̂im. Be-
cause we are using a feature camera, t(x̂im) is constant and
the lens model is linear. Thus, all transform components in

Equation 10 are linear. Combining the quantities that are

contant during bundling yields:

xf =

Feature Camera︷������������︸︸������������︷
f�n(t(x̂im) − tn) ·

Rosette Pose︷�︸︸�︷
n�w(tn) ·xw (11)
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and during bundling we solve for the nominal rosette poses

n�w(tn) rather than for the full camera trajectory r�w(t):
argmin
{xw, n�w(tn)}

∑
points

∑
views

‖xf‖2 s.t. Equation 11 (12)

This now has the form of traditional bundle adjustment with

linear cameras:

• The first term f�n(t(x̂im) − tn) represents the linear fea-
ture camera model for pixel x̂im in the nominal rosette
frame. The relative pose of the feature camera from

tn to t(x̂im) due to motion during the rolling shutter is
baked into this term.

• The second term represents the 6 DOF pose of the

rosette in the world frame at the constant nominal

rosette exposure time tn; this pose is a free variable.

• The third term xw is the world point, also a free vari-
able.

The result xf is the projection of the world point into the
feature camera for pixel x̂im; because the feature camera is
centered on pixel x̂im, xf is literally the reprojection residual.
With this approach, all the feature cameras within each

panorama form a rigid assembly (porcupine) given by the

relative pose prior. This assembly may move rigidly dur-

ing bundling by changing the nominal rosette pose. Thus,

the highest frequencies of pose are baked into the cam-

era model; the medium frequency errors are reduced by

bundling; the lowest frequency errors remain and must be

addressed via loop closing. Figure 8 shows an example

point cloud before and after bundle adjustment. Section 6

discusses loop closing.

5. SfM at scale with feature cameras
The previous section assembles many of the pieces re-

quired for SfM with generalized cameras, in particular the

use of feature cameras and a relative pose prior for bundle

adjustment. In this section, we leverage the relative pose

prior for the other half of SfM, track generation.

5.1. Managing scale with vehicle paths

The scale of SfM is limited by the complexity of match-

ing features between images to establish tracks. For n un-
posed proximal images, O(n2) image pairs generally must
be compared to identify matches. As the density of imagery

increases, this superlinear factor dominates computation, so

we must sidestep it to achieve planet scale.

We capture images using vehicles outfitted with sensors

in addition to cameras: accelerometers, gyroscopes, wheel

speed sensors and GPS receivers. We fuse this sensor data

to establish an initial trajectory for the vehicle uninformed

by the imagery. This initial pose has two interesting prop-

erties:

Unbundled

Bundled

Figure 8. A comparison of an unbundled (top) to bundled (bottom)

SfM point cloud, including top-down, block-level details of the

clouds and inset histograms of reprojection error for all tracked

feature points.

• The absolute pose of the vehicle path is accurate to
about 10 meters in the worst case, due to multipath

GPS issues in dense urban cores.

• The relative pose along the vehicle path is extremely
accurate (sub-centimeter) because it is dominated by

calibrated IMU integration over short time scales.

We leverage this second strength of our pose prior to scale

our SfM reconstruction. Similar to SfM with video, the nat-

ural linear path of the vehicle trajectory establishes potential

connectivity between images: only images within a fixed

window of each other along the path are considered for joint

participation in image tracks. This puts a constant bound on

matching and tracking effort per image.

5.2. Tracking

A strong relative pose prior lets us avoid visual odometry

via RANSAC-based relative pose estimation, which is often

the first step in an SfM system. Instead, we get odometry

from independent sensors. The relative pose is good enough

for triangulation along this trajectory, so we can bootstrap

the system by tracking features rather than by matching im-
ages.

First, we extract invariant local features similar to

SIFT [19], SURF [6], and HOG [8] from each image and

construct feature cameras for each feature. We link features
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into tracks—a track represents a 3D world point—along the

trajectory incrementally. Given incoming tracks from pre-

vious panoramas in a trailing window, and given the set of

features in the current panorama, a track is extended only if

we have both visual and geometric confirmation:

• Visual confirmation: The feature visually matches a
feature in the track better than any other track. Match-

ing is strict: the two features must be mutual 1-NN

matches between the two images, and they must also

pass a Lowe threshold test [19] of 0.7.2

• Geometric confirmation: The track triangulates with
a 3D triangulation error below 1 meter and a reprojec-

tion error below 1 degree. Triangulation is done using

standard methods with the track’s set of feature cam-

eras. The pose prior permits geometric verification of

matches without RANSAC-based model estimation or

heuristic outlier rejection.

Further, all 2-view tracks are dropped because they are too

likely subject to aliasing due to epipolar geometry. This

leaves a few hundred high precision, 3+ view tracked fea-

tures per panorama. We downsample images to mitigate

scale; we can generate 10x as many tracked features in ex-

change for increased computation.

It is interesting to add that, apart from the Lowe thresh-

olding and discarding tracks closer than 2 meters from the

camera, we employ no additional thresholds to suppress

false positives. There are no ad hoc heuristics employed to

suppress matches on the vehicle, below the ground, on mov-

ing objects, or in the sky. The combination of visual match-

ing with geometric confirmation to the pose prior eliminates

virtually all noise because all features in a track must be

similar in appearance and conform to the geometric dictates
of the camera model and vehicle trajectory.

5.3. Augmented 3D Points

For each track we retain the image features with the tri-

angulated 3D world point. Thus, each of our trianguled 3D

world points has appearance information (in the form of

scale/orientation/lighting invariant feature descriptors) for

3+ views. This is not relevant for bundle adjustment, but

it is immensely useful for image-based loop closing as dis-

cussed in Section 6. We name these 3D points that retain

multiview appearance information “augmented 3D points.”

6. Results
Using the camera model and pose prior described in Sec-

tions 3-5, we have created an appearance-augmented, 3D

SfM point cloud for a substantial subset of all Street View

imagery, comprising over 404 billion tracked feature points

2We call this highly stable matching method BFF matching.

from 1.5 trillion unique viewpoints in 9.2 billion panoramic

images. The cloud, shown in Figure 1, covers a substantial

portion of the world. The points are dense enough to cap-

ture street-level details such as road markings, traffic signs

and business facades, as shown in Figure 11. Noise is low;

the distribution of reprojection error for our tracked points

is illustrated in Figure 12.

In practice, we spend about 10 seconds per 4-megapixel

panorama to extract, track, and bundle adjust features on

a single modern CPU core. The majority of this time is

spent on pixel I/O from disk. The largest concurrent bun-

dle adjustment problem solved is about 1500 cameras (a

100-panorama window of a 15-camera rosette). We use

the open-source Ceres nonlinear least-squares solver [1] to

compute our BA solution. Each window of input data is in-

dependent and many can be processed in parallel. All told,

about 2000 core-years were required to compute the world-

wide SfM cloud.

6.1. Loop closing with SfM constraints

The primary application of our SfM model is the correc-

tion of global pose error in our vehicle trajectory and hence

our image collection. As mentioned in Section 5, GPS noise

can result in global pose error of many meters, especially in

dense urban areas. Figures 9a and 10a depict such error.

We can correct this error by establishing relative pose

constraints between pairs of panoramas that capture over-

lapping views of the street-level world. First, we identify

candidate panorama pairs by the proximity of their initial

poses, culling pairs to limit the linear density along trajec-

tories. Each panorama in the pair is associated with a set of

augmented 3D points from our SfM model, namely, all the

points that the panorama views. These points form a local

“constellation” around the panorama. Using the descriptors

associated with each 3D point, we build up correspondences

a b

Figure 9. A comparison of vehicle paths in downtown San Fran-

cisco before (a) and after (b) SfM-based correction.
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between the two panoramas’ constellations using the same

“BFF” matching scheme described in Section 5.2. We then

use Umeyama’s method [26] in a RANSAC loop to find the

least-squares-best rigid transform that aligns the most cor-

responding points in the two constellations. This aligning

transform yields a compact constraint describing the rela-

tive position and orientation of the two panoramas.

We repeat this process for all candidate panorama pairs,

generating billions of relative pose constraints linking ge-

ographically proximal panoramas that may have been cap-

tured minutes, days, or years apart in time. We add these

constraints to our sensor data and constraints derived from

other sources, and repeat our optimization of the vehicle tra-

jectories until convergence (about 8 iterations). The result,

shown in Figures 9b and 10b, is a dramatic reduction in the

global error of our vehicle trajectories.

How much does the error improve quantitatively? It’s

difficult to answer this question conclusively, as we lack

ground truth pose for our vehicle trajectories. One way to

get an idea, however, is to compare the residual error of

the SfM constraints before and after their inclusion in the

iterative optimization of vehicle trajectories. Because the

SfM constraints are jointly optimized with data from over a

dozen independent sources, it is unlikely that they will dom-

inate the solution. Table 1 compares the 10th, 50th, and 90th

percentile residuals for SfM constraints before and after op-

timization in some of the world’s most challenging urban

environments.

6.2. Limitations

As described in Section 3, we rely heavily on a good lo-

cal pose estimate to make our complex, rolling-shutter cam-

era systems useable for SfM. When local pose degrades—

usually due to failure of inertial sensors—tracking collapses

and we cannot construct our SfM model. Further, our SfM

points are quite sparse (hundreds per panorama) because of

downsampling and our strict checks on visual and geomet-

ric coherence. A denser model could be constructed at the

cost of more computation or more noise, or both.

6.3. Conclusions

We have overcome the challenges of rolling-shutter cam-

eras and global scale to construct an appearance-augmented

SfM model of the street-level world. We have demonstrated

the practical use of this model for correcting the pose of the

10th percentile 50th percentile 90th percentile

before after before after before after

Position 0.30 m 0.03 m 1.5 m 0.2 m 5.0 m 0.8 m

Orientation 0.05◦ 0.03◦ 0.3◦ 0.2◦ 2.0◦ 1.2◦

Table 1. SfM constraint residual error before and after inclusion in

pose optimization for the subset of trajectories in San Francisco,

New York, Hong Kong, Singapore, and Seoul.

a

b

Figure 10. A comparison of vehicle paths in downtown Hong Kong

before (a) and after (b) SfM-based correction.

Street View image collection. The model may be used for

other applications, such as: global camera localization (by

matching a query image against our point cloud), creation

of appearance-enhanced 3D models of street-level scenes

for navigation and annotation, and alignment of aerial and

street-level imagery.
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