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Abstract

In this paper, we study the geometry problems of esti-
mating camera pose with unknown focal length using com-
bination of geometric primitives. We consider points, lines
and also rich features such as quivers, i.e. points with one
or more directions. We formulate the problems as polyno-
mial systems where the constraints for different primitives
are handled in a unified way. We develop efficient poly-
nomial solvers for each of the derived cases with different
combinations of primitives. The availability of these solvers
enables robust pose estimation with unknown focal length
for wider classes of features. Such rich features allow for
fewer feature correspondences and generate larger inlier
sets with higher probability. We demonstrate in synthetic
experiments that our solvers are fast and numerically sta-
ble. For real images, we show that our solvers can be used
in RANSAC loops to provide good initial solutions.

1. Introduction
The problem of camera pose estimation has been studied

extensively in the computer vision community. The mini-

mal case of pose estimation using 3 points was studied in

[10] and several other formulations are compared and re-

viewed in [12]. For line-to-line correspondences, solutions

are derived for minimal of 3 lines in [8, 7]. Recently, the

minimal cases using combination of points and lines are

solved in [27]. In [9] a solver is derived for a minimal

problem of 2 points and their corresponding tangent direc-

tions (equivalently any direction vector through each of the

points). The required correspondence is reduce to a single

local patch correspondence in [20] . However, this specific

setting is unfortunately very sensitive to measurement noise

of the patches.

For camera pose estimation with unknown focal length,

the planar case was studied and solved in [1]. For general

non-planar cases, the close to minimal case using 4 2D-3D

correspondences was first studied in [28]. Efficient and nu-

merically stable solvers are developed in [4]. By combining
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Figure 1. The figure illustrates three examples of image features in

an image, a point with 2 degrees of freedom, a line with 2 degrees

of freedom and a 2-quiver with 4 degrees of freedom. The 2-quiver

consists of a point and two directions out from the point.

2D-2D and 2D-3D correspondence, [19] investigated sev-

eral minimal cases for pose estimation with unknown focal

length. Additionally, for camera with unknown radial dis-

tortion and unknown focal length, the 4-point minimal case

is solved in [18, 5].

Many other works focus on solving the over-constrained

problem of estimating camera pose with more than three

points [15, 25, 24] or lines [25]. Very recently, the approach

in [24] was extended to handle unknown focal length [26].

All of these method are based on formulation that min-

imizes certain algebraic errors and generally assume that

there exist no outliers in the data. Minimal solvers are the

key component of the preprocessing steps for such over-

constrained solvers to robustly remove outliers.

To be able to utilize correspondences of geometric prim-

itives like points, directions and lines is of great interest to

applications e.g. structure and motion [17] and vision-based

localization [16]. In this paper, we focus on the camera pose

estimation problem given 2D-3D correspondence of such

rich features. In typical scenarios of vision-based localiza-

tion, focal length of the camera is the only unknown that is

most difficult to determine accurately (EXIF-tag could pro-

vide erroneous estimate) and can render large errors in the

pose estimation. All previous methods for pose estimation

with unknown focal length use point correspondences. The

contribution of this paper is to enable a wider class of geo-

metric features (combinations of points, lines and n-quivers,

Figure 1) for simultaneous pose estimation and focal length

calibration. We show a straightforward but unified way to

formulate polynomial systems for different combinations of
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Figure 2. Camera coordinate, world coordinate, and the geometric

relations of 2D-3D correspondences of point, line and direction.

features. We then develop efficient polynomial solvers for

several new minimal cases and a slightly over-determined

cases using 4 lines. We verify our solvers on both synthetic

and real images to demonstrate their efficiency and usability

in RANSAC.

2. Problem Formulation
In this paper, the standard pinhole camera model is used.

For a 3D point X and it corresponding 2D image projection

x, the projection equation is,

λx = PX. (1)

Here, P is the camera matrix of size 3 × 4 which can be

factorized as,

P = K[R|t]. (2)

The rotation matrix R encodes orientational part of the

camera pose specifying in which direction the camera is

pointing and t relates to the camera position. K is the cal-

ibration matrix of the camera and compensates for the in-

trinsic setup of the camera. For both practical camera se-

tups and numerical stability, it is generally assumed that the

cameras have centered principle points, square pixels with

zero skew. In this paper, we thereafter assume that the cal-

ibration matrix only involves the unknown focal length f .

The K matrix can be equivalently written as

K =

⎡
⎣
1 0 0
0 1 0
0 0 w

⎤
⎦ , (3)

where w = 1/f and f is focal length of the camera. We

know that the problem of determining camera pose with un-

known focal length has in total 7 degrees of freedom (3 in

rotation, 3 in translation and 1 in f ).

2.1. Number of Constraints

In this section, we discuss in details the constraints given

by different geometric primitives.

Point Constraints: Given a known 3D point X and its cor-

responding image point x =
[
u v 1

]T
, it is well known

that there are two constraints on P [14]. The two constraints

can be chosen from the three linearly dependent equations

based on (1) :

[x]×PX = 0, (4)

where

[x]× =

⎡
⎣

0 −1 v
u 0 −1
−v u 0

⎤
⎦ .

Line Constraints: Given a known 3D line L and its corre-

sponding image line l, there are also two constraints on P.

If the 3D line L is represented as a 3D point X and the di-

rection of the line D, one can obtain two equations for the

two points in the following form based on (1):

lTPX = 0

lTP(X+ kD) = 0, (5)

where k is an arbitrary constant.

Quiver Constraints: For a known 3D point X and a direc-

tional measurement D through X, given the corresponding

image projection x and d, there are three constraints on P.

We hereafter call the geometric primitive with a point and n
directions passing through it as an n-quiver. First, we obtain

two constraints from the point correspondence according to

(4). The other constraint comes from the directional mea-

surement. To see this, we first convert the measurement d
along with x to a line measurement l. Then we utilize the

equations in the form of (5) and take the difference between

them. Equivalently, we have

lTPD = 0 (6)

For a 2-quiver, we have in total four constraints including

two point constraints and two constraints in the form of (6).

The number of constraints for different primitives are

summarized in Table 1.

Point Line 1-Quiver 2-Quiver

2 2 3 4

Table 1. Number of constraints enforced by 2D-3D correspon-

dences of different geometric primitive for camera pose estima-

tion.
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2.2. Useful Cases

With 2D-3D correspondences of points, lines and n-

quivers, one can form several novel minimal cases by

searching for combination such that 2mp + 2ml + (n +
2)mq = 7, where mp,ml,mq are the number of point,

line, n-quiver correspondences, respectively. We present

and solve several of such minimal cases and also study a

slightly over-determined cases using 4 lines.

Two Points and One 1-Quiver (P2Q1) : Given three

points and one direction passing through one of the points,

we can form 6 equations based on (4) and 1 equation based

on (6). Thus this problem is minimal.

One 1-Quiver and One 2-Quiver (Q1Q2) : For two

points, where one line passing through one of the point, and

two lines passing through the other point are known, we can

form 4 point equations (4) and 3 equations with respect to

the directions (6). This yields also a minimal problem.

Four Lines (P4L) : Given 4 3D-2D line correspondences,

there are in general 8 independent constraints. Thus, the

problem of camera pose with unknown focal length is over-

determined with 4 lines. We can choose 7 from the 8 equa-

tions, and use the eighth equation to verify a unique solu-

tion.

In a similar manner, other minimal cases include the se-

tups: (i) one point, one line and one 1-quiver (ii) one 3-

quiver and one point (iii) two lines and one 1-quiver which

can be solved in similar manner as the presented solvers.

2.3. Parameterization

There exist many ways to parameterize the problems re-

lated to camera pose estimation. In [28], Triggs first pa-

rameterizes the camera as an arbitrary matrix with 12 un-

knowns, the solutions then lie in the null space of the lin-

ear constraints given by the point constraints. Then the

quadratic constraints (orthogonality and equal norm) on the

rotational part of the camera matrix is enforced afterwards.

The benefits of this formulation is that one needs to only

solve quadratic polynomial systems. Once the rotational

part is recovered, the focal length can easily be calculated

using the ratios between the norms of the third and the first

two rows of R. The drawback of this formulation is that

non-planar and planar scenes need to be handled separately

and explicitly as shown also in [5].

On the other hand, Bujnak et al. [4] formulate the P4P

problem with unknown focal length using the invariance of

the ratios of distances between the 3D points under rigid

transformation. For directional correspondences, one can

similarly make use of the invariance of the angles between

the directions [9]. Here, we discuss briefly the applica-

tion of such geometric invariance to the P2Q1 problem i.e.

two points (X1,X2) and one point (X3) with a known di-

rection (D). To start with, we can use the three points to

form 2 independent distance ratio equations involving three

unknowns (two relative stretch ratios α1,α2 and f ) as in

[4]. Then for the known direction, one can form equa-

tions using the invariance of angles for (D,X3 −X1) and

(D,X3−X2). This again produces two independent equa-

tions involving all 4 unknowns (α1, α2, α3, f ). Thus, we

obtain 4 equations with 4 unknowns. However, the resulting

equations consists at least one equation of degree 6 (after

substitution and simplification) which makes the resulting

polynomial system very difficult to solve. While the use of

geometric invariance might yield polynomial system with

fewer solutions for previous problems, it is not straightfor-

ward to see that such property is preserved for other primi-

tives like directions with unknown focal length.

In this paper, we first parameterize the rotation matrix R
with quaternion and construct equations directly based on

(4), (5) and (6). It turns out that this straightforward pa-

rameterization, produces polynomial systems that are rel-

atively easy to solve and also general for both planar and

non-planar scenes. In the rest of paper, the rotation matrix

R is parameterized with quaternion according to
⎡
⎣
a2+b2−c2−d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2−b2+c2−d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2−b2−c2+d2

⎤
⎦ . (7)

To fix the scale of the quaternion, we set a = 1. Note that by

setting a = 1, we reduce the number of unknowns which fa-

cilitates the polynomial system solving. This will in general

introduces for degenerated rotations (a = 0) or potential nu-

merical instability (a ≈ 0). Due to the rare occurrences of

such configuration, we will demonstrate in the experimental

section such degeneracy does not affect the practical usage

of the solvers.

From the factorization in (2), we know that P can be

rewritten as:⎡
⎣
a2+b2−c2−d2 2bc−2ad 2ac+2bd tx
2ad+ 2bc a2−b2+c2−d2 2cd−2ab ty

w(2bd− 2ac) w(2ab+ 2cd) w(a2−b2−c2+d2) wtz

⎤
⎦ .

where t = [tx ty tz]
T . If we additionally set t′z = wtz , we

have in total 7 unknowns {b, c, d, tx, ty, t′z, w}. Given dif-

ferent geometric primitives, the constraints (4), (5) and (6)

are linear to {tx, ty, t′z}. Thus, we can conveniently elim-

inate all three of them and rewrite the equations with re-

spect to the 4 unknowns {b, c, d, w} only. Specifically, for

all the useful cases presented in Section 2.2, we can choose

3 of the equations to eliminate {tx, ty, t′z} and obtain 4 cu-

bic equations with 4 unknowns (for P4L, there are 5 such

cubic equations). In the next section, we will discuss the

solutions to such polynomial systems.

3. Polynomial Solvers
To solve the polynomial systems in Section 2, we utilize

the techniques developed based on Gröbner basis. Instead
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of using the automatic solver generator [22], we choose

to use the techniques in [6] for better numerical stability.

For polynomial systems with small number of unknowns,

Gröbner basis methods are generally fast and numerically

stable. Solving polynomial systems can also be seen as

solving polynomial eigenvalue problems [13, 23]. We leave

this as our future work.

We start by verifying the number of solutions. For

instance, for minimal problem of two points and one 1-

quiver (P2Q1), we verify using algebraic geometry tools

Macaulay2 [11] in Zp that there are in general 20 solutions.

Recall from Section 2.3 that, after linear elimination, we

are left with 4 equations with 4 unknowns {b, c, d, w}. To

solve the polynomial system using the techniques in [6], we

first multiply the 4 equations with all the monomials of to-

tal degree up to 6 and maximum degree of each variable

as [2, 2, 2, 3], respectively. In this way, we obtain an elim-

ination template of 372 equations and 386 monomials. To

enhance numerical stability, we employ the basis selection

technique by choosing the permissible set (see more details

in [6]) to be the last 35 monomials in grevlex ordering. Af-

ter the QR factorization with column pivoting, we can con-

struct the so-called action matrix of size 20×20 from which

the solutions can be obtained by eigenvalue decomposition.

After we solve for {b, c, d, w}, we can calculate the values

of other unknowns using linear substitution.

For all the other cases, we find that the number of so-

lutions is also 20 and the same elimination template gives

very similar numerical stability. This could be due to the

similar structures in the constraints of these problems.

4. Experiments
In this section, we study the performance of our solvers

on both synthetic and real data.

4.1. Synthetic Data

For the synthetic experiments, we choose the size of im-

age to be 1024 × 800. Random scenes were generated by

drawing points uniformly from a cube with side length 800

centered at the origin. Then the directions through points

were chosen randomly (either in planar or in non-planar

fashion). A camera was placed at a distance of around 1000

from the origin, pointing approximately at the center. The

camera was calibrated except for the focal length.

4.1.1 Stability and Number of Solutions

We evaluate first the solvers on noise-free data to check the

numerical stability of the solvers and distribution of number

of valid solutions. For the simulation results in Figure 3,

the focal length of the camera was set to around 1000. The

numerical errors for all our solvers are fairly low for most of

the cases. We also note that the focal length is coupled i.e. if
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Figure 3. Two point and one 1-quiver, synthetic experiments for

5000 runs on noise-free data with focal length approximately

1000. Left: Histogram of relative errors for rotation, translation,

focal length; Right: Histogram of number solutions with real and

positive focal lengths.

f is solution, so is -f which corresponds to equivalent pairs

of camera matrices P and −P. This symmetry is caused

by the quaternion parameterization. Since only the real and

positive f are geometrically valid, one can safely remove

the other solutions. In the simulation, it is shown that there

are up to maximumly 8 solutions with real and positive f
while most often only 2 or 4 solutions.

The boxplot in Figure 4 shows the medians, 25 per-

centiles and 75 percentiles of the distribution of the rela-

tive errors. We can see that for noise-free data, the Gröbner

basis solver for (P2Q1) is consistently stable for different

focal lengths for both planar and non-planar scenes (Fig-

ure 4). Similar numerical behaviors are observed for the

solver using lines (P4L, Figure 5). Given that the perfor-

mance of other solvers are similar, related figures are not

shown individually here.

The solvers implemented in MATLAB takes approxi-

mately 15ms. The computation is dominated by the first

elimination using QR factorization. For comparison, the op-

timized P4P solver in [4] runs at around 2ms. Our solvers

can also be further optimized for speed using strategies in

[22, 21]. The time performance is measured on a Macbook

Air with 1.8 GHz Intel Core i5 and 8 GB memory.

4.1.2 Noise Sensitivity

To study the behaviors of the solvers with noisy measure-

ments, we add noise of different levels both to the image

point positions and the angles of the directions. In Figure 6,

it is shown that the P2Q1 solver gives fairly good estimates

for focal lengths with small noise, and is still able to provide

(though not as frequently) reasonably good initial solutions

when the noise is around 5 pixels. We have also noticed

that the solvers can be sensitive to errors in the direction

measurements. We also test the P4L solvers for noisy line

measurements by perturbing the intersections between the

lines and the x, y axis. From Figure 7, we can see that the

P4L solver is capable of recovering the focal length accu-

rately for small perturbation and can become unreliable for

large perturbation. To further understand the noise sensitiv-
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Figure 4. Synthetic experiments of P2Q1 on noise-free data with

varying focal lengths. Left: Boxplot of relative errors of focal

lengths for non-planar points and directions; Right: planar cases.
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Figure 5. Synthetic experiment of P4L on noise-free data with

varying focal lengths. Left: Boxplot of the relative errors of focal

lengths for non-planar line configurations Right: planar cases.
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Figure 6. Synthetic experiments for P2Q1 on noisy data with

varying noise levels on image point positions with fixed f = 1000
and angle perturbation of degree [−0.1, 0.1]. Left: Relative er-

rors of focal lengths for non-planar points and directions; Right:
planar cases.
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Figure 7. Synthetic experiments for P4L with varying noise on the

intersection points of between the lines and x, y axes with fixed

f = 1000. Left: Relative errors of focal lengths for non-planar

lines; Right: planar cases.

ity, we demonstrate the performance of the solvers on real

image measurements in Section 4.2.

4.1.3 RANSAC Experiments

To test the advantage of the proposed solvers for different

geometric primitives, we simulate data with outliers and
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Figure 8. Distribution of inlier proportions for 1000 RANSAC runs

for different solvers P4P , P2Q1 and Q1Q2.

RANSAC is used to obtain robust initial solution. For a

fixed camera with focal length 1000, we generate randomly

1000 scene points as in the previous section, directions

through points are also generated randomly. Then both the

image point positions and projected directions are perturbed

with random noise. A subset of the points (30%) are cho-

sen as outliers with large perturbations on both the positions

and angles of the directions. We compare the solvers for

two points and one 1-quiver (P2Q1) and one 1-quiver and

one 2-quiver (Q1Q2) with the P4P solver in [4]. For each

of the solvers, we choose the minimal set of data required

for RANSAC, the distribution of the ratio of inliers of each

RANSAC loop in shown in Figure 8. Here we define the

inliers as the image points with reprojection errors less than

a predefined threshold. It is not surprising to see that the

Q2Q1 solver performs the best with respect to recovering

inliers since it only requires two points. While (P2Q1) per-

forms slightly worse, it still gives better results than the P4P

solver which needs at least 4 point correspondences.

4.2. Real Data

We took 16 images of seven cardboards placed in a non-

planar configuration with varying focal lengths (Figure 9),

using a standard Canon EOS 50D camera. Each cardboard

is attached with a pattern with dark and light squares for

the ease of line detection. The automatic line detection al-

gorithm detected 6 lines for each of the card board, and 9

points as the intersections of those lines. Thus, we have in

total 63 points, 42 lines and 63 2-quivers.

We used these images to verify the applicability of the

proposed solvers on real images with point, line and quiver

features. The lines were estimated by sub-pixel edge-

detection, cf. [2, 3]. This makes it possible to both estimate

edge positions and edge position uncertainty. Lines as well

as the uncertainty in their parameters were then obtained

by fitting to these data. Finally points and their uncertainty
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Figure 9. One of the Images of cardboards with detected lines and

points.

were estimated by intersection of two or more such lines.

For 16 images, there are in total 621 visible measurements

of the points (2-quivers) and 456 measurements of lines.

The output is thus a number of image points, image lines,

and image quivers as illustrated in Figure 1. Ground truth

for 3D features were then obtained by bundle adjustment. In

the bundle adjustment we used the estimated uncertainties

in the image features.

The resulting construction of the 3D points and the cam-

era poses as well as the focal lengths after bundle adjust-

ment are fairly accurate and thus serves as ground truth.

Given the reconstruction of the detected lines and intersec-

tion points, we use the proposed solvers to estimate both the

camera poses and the focal lengths for each of the image.

The estimations are then compared with the results given

by the reconstruction. Due to the high quality of the recon-

struction, the data can be seen as outlier-free. We first look

at the reprojection errors of the poses and focal lengths es-

timated using different solvers and investigate whether the

solvers adapt to real image noisy measurements. To mea-

sure the reprojection errors, we run different solvers in a

RANSAC manner by choosing random minimal measure-

ments. The average reprojection errors of image points for

each solver are reported in Table 2. We can see from Table 2

that the errors of all our proposed solvers are similar to the

P4P solver.

P4P P2Q1 Q1Q2 P4L

Errors 2.463 2.531 3.123 3.141

Table 2. Average reprojection errors (in pixels) of image points

with camera poses and focal lengths of the 16 images estimated

with different solvers.

To further test the performance of the solvers, we also

generate outliers by adding large synthetic perturbations to
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Figure 10. Statistics of focal length estimation of different solvers,

bundle adjustment and exif-tag for the Cardboard dataset.

a random subset (30%) of image point positions, quiver di-

rections and lines. We then run RANSAC (1000 runs for

each image) on the perturbed data. For the inlier threshold

of 3 pixels, the number of inliers (among in total 621 mea-

surements) and the average reprojection errors for inliers

are reported in Table 3. For this specific example, P4P and

P2Q1 output higher count of inliers and in the meantime

has lower average reprojection errors. The slightly inferior

performance of Q1Q2 and P4L solvers might be due to

the sensitivity of both solvers to measurement errors in the

quiver directions and lines.

P4P P2Q1 Q1Q2 P4L

Inliers 309 298 253 223

Errors 1.502 1.330 1.402 1.633

Table 3. Number of inliers and average reprojection errors (in pix-

els) of inliers with 30% synthetic outliers for the cardboard dataset.

To evaluate the accuracy of the solvers, we compare the

best focal length estimated (the one with maximum number

of inliers) for each solver against the output from bundle ad-

justment as well as those extracted from EXIF-tag (conver-

sion from 35mm film equivalent). We set the inlier thresh-

old to be 2 pixels and run RANSAC on the original data

without synthetic perturbation. The statistics of the esti-

mated focal lengths are shown in Figure 10. It is noted that

the focal lengths given by the exif information seems to be

very coarse compared to those estimates from image data

directly. We can also see that all solvers gives fairly similar

estimates to the results from bundle adjustment.

5. Discussions
For the simpler calibrated pose estimation problem, we

also see the potential of combining the simplicity the quater-

nion parameterization and the stability of Gröbner basis
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solvers. In [9], the minimal case of equivalently two 1-

quivers (the direction is detected as the tangent to curves in-

stead of arbitrary direction) for pose estimation was studied.

A closed form solution for a polynomial equation of degree

16 was derived through rather involved calculation. With

the quaternion formulation, we directly arrive at 3 quadratic

equations on 3 unknowns {b, c, d} (see supplementary ma-

terials) which is extremely fast to solve using Gröbner ba-

sis solver (approximately 1ms) compared to a few millisec-

onds of the released implementation for [9]. Though it is

not fair to compare the time performance for unoptimized

codes (both of them), it could still suggest superiority of the

easy formulation and implementation of the Gröbner basis

based solvers1.

6. Conclusions
In this paper, we present several novel cases for pose esti-

mation with unknown focal length utilizing combinations of

points, lines and quivers. Here a quiver is an interest point

with one or several directions attached to it. Pose for combi-

nations of features allow for fewer feature correspondences

and generate larger inlier sets with higher probability. Solv-

ing these new minimal cases is of both theoretical interests

and practical importance. We have shown that these solvers

are fast and numerically stable. This is verified in experi-

ments with both synthetic and real data. The availability of

such solvers will serve as an important step towards pose es-

timation with richer features and also shed light on structure

from motion problem with line/direction features which are

common in urban scenes.

As future work, it is of great theoretical importance to

study the critical configurations for combinations of these

features. The other key direction is to evaluate the appli-

cation of new solvers to discriminative feature like SIFT

to ease the correspondence problem for edges (direction of

a quiver and line). One potential way is to make use of

the dominant gradient directions given by SIFT and treat

them as quiver directions. Then the correspondence prob-

lem is made relatively easier. In this case, one need to ver-

ify whether the solvers are robust against noisy estimation

of the gradient directions. To improve the speed and nu-

merical stability of the solvers, it is of interest to resolve

the intrinsic symmetry in the quaternion parameterization

either by algebraic manipulation or by deriving alternative

set of constraints using geometric invariances.
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