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Abstract

Human action recognition based on the depth informa-
tion provided by commodity depth sensors is an impor-
tant yet challenging task. The noisy depth maps, differ-
ent lengths of action sequences, and free styles in per-
forming actions, may cause large intra-class variations. In
this paper, a new framework based on sparse coding and
temporal pyramid matching (TPM) is proposed for depth-
based human action recognition. Especially, a discrimina-
tive class-specific dictionary learning algorithm is proposed
for sparse coding. By adding the group sparsity and geom-
etry constraints, features can be well reconstructed by the
sub-dictionary belonging to the same class, and the geom-
etry relationships among features are also kept in the cal-
culated coefficients. The proposed approach is evaluated on
two benchmark datasets captured by depth cameras. Exper-
imental results show that the proposed algorithm repeatedly
achieves superior performance to the state of the art algo-
rithms. Moreover, the proposed dictionary learning method
also outperforms classic dictionary learning approaches.

1. Introduction

Traditional human action recognition approaches focus

on learning distinctive feature representations for actions

from labelled videos and recognizing actions from unknown

videos. However, it is a challenging task to label unknown

RGB sequences due to the large intra-class variability and

inter-class similarity of actions, cluttered background, pos-

sible camera movements and illumination changes.

Recently, the introduction of cost-effective depth cam-

eras provides a new possibility to address difficult issues

in traditional human action recognition. Compared to the

monocular video sensors, depth cameras can provide 3D

motion information so that the discrimination of actions

can be enhanced and the influence of cluttered background

and illumination variations can be mitigated. Especially,

the work of Shotton et al. [16] provided an efficient hu-
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Figure 1. Sample images obtained by different cameras for the ac-

tion “drink”. The 3D joints are estimated by the method in [16].

man motion capturing technology to accurately estimate

the 3D skeleton joint positions from a single depth image,

which are more compact and discriminative than RGB or

depth sequences. As shown in Figure 1, the action “drink”

from the MSR DailyActivity3D dataset [19], can be well re-

flected from the extracted 3D joints by comparing the joints

“head” and “hand” in the two frames. However, it is not

that straightforward to tell the difference between the two

frames from the depth maps or color images.

Although with strong representation power, the esti-

mated 3D joints also bring challenges to perform depth-

data based action recognition. For example, the estimated

3D joint positions are sometimes unstable due to the noisy

depth maps. In addition, the estimated 3D joint positions

are frame-based, which require representation methods to

be tolerant to the variations in speed and time of actions.

To extract robust features from estimated 3D joint po-

sitions, relative 3D joint features have been explored and

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.227

1809

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.227

1809



(b) Sparse Coding (SC)

(c) SC + group sparsity (d) SC+group sparsity+geometry constraint

(a) K-means

Class A Class B Similar features to be quantized (class A)

Figure 2. Illustration of different feature quantization strategies.

(a) K-means. (b) Sparse coding. (c) Sparse coding with group

sparsity constraint. (d) Proposed method (sparse coding with

group sparsity and geometry constraint).

achieved satisfactory performance [19,21,24]. To represent

depth sequences with different lengths, previous research

mainly focused on temporal alignment of sequences [11,

14, 21] or frequencies evolution of extracted features [19]

within a given period. However, the limited lengths of se-

quences, the noisy 3D joint positions, and the relatively

small number of training samples may cause the overfitting

problem and make the representation unstable.

In this paper, a new framework is proposed for depth-

based human action recognition. Instead of modeling tem-

poral evolution of features, our work emphasizes on the dis-

tributions of representative features within a given time pe-

riod. To realize this representation, a new Dictionary Learn-
ing (DL) method is proposed and the Temporal Pyramid
Matching (TPM) is used for keeping the temporal informa-

tion. The proposed DL method aims to learn an overcom-

plete set of representative vectors (atoms) so that any input

feature can be approximated by linear combination of these

atoms. The coefficients for the linear combination are re-

ferred to as the “sparse codes”.

From the DL algorithm design perspective, recent trend

is to develop “discriminative” dictionaries to solve classifi-

cation problems. For example, Zhang and Li [25] proposed

a discriminative K-SVD method by incorporating classifi-

cation error into the objective function and learned the clas-

sifier together with the dictionary. Jiang et al. [6] further in-

creased the discrimination by adding a label consistent term.

Yang et al. [23] proposed to add the Fisher discrimination

criterion into the dictionary learning. For these methods, la-

bels of inputs should be known before training. However,

this requirement cannot be satisfied in our problem. Since

different actions contain shared local features, assigning la-

bels to these local features would not be proper.

In this paper, we propose a discriminative DL algorithm

for depth-based action recognition. Instead of simultane-

ously learning one overcomplete dictionary for all classes,

we learn class-specific sub-dictionaries to increase the dis-

crimination. In addition, the l1,2-mixed norm and geome-
try constraint are added to the learning process to further

increase the discriminative power. Existing class-specific

dictionary learning methods [7, 15] are based on l1 norm

which may result in randomly distributed coefficients [4].

In this paper, we add the group sparsity regularizer [26],

which is a combination of l1- and l2- norms to ensure fea-

tures are well reconstructed by atoms from the same class.

Moreover, the geometry relationship among local features

are incorporated during the process of dictionary learning,

so that features from the same class with high similarity will

be forced to have similar coefficients.

The process that assigns each feature with coefficients

according to a learned dictionary can be defined as “quan-

tization”, following the similar definition in the field of im-

age classification. As shown in Figure 2, different quantiza-

tion methods will generate different representations. Atoms

from two classes are marked as “circles” (class A) and “tri-

angles” (class B), respectively. We use two similar features

to be quantized (both from class A) as an example to illus-

trate the coefficient distribution from various quantization

methods. In k-means, features are assigned to the nearest

atoms, which is sensitive to the variations of features. In the

sparse coding with l1 norm, features are assigned to atoms

with lowest reconstruction error, but the distributions of se-

lected atoms can be random and from different classes [4].

In the spare coding with group sparsity, features will choose

atoms from the same group (class), but similar features may

not choose the same atoms within the group. In our method,

features from the same class will be forced to choose atoms

within the same group, and the selections of atoms also re-

late to the similarity of features.

The main contributions of this paper are three-fold. First,

a new discriminative dictionary learning algorithm is pro-

posed to realize the quantization of depth features. Both the

group sparsity and geometry constraints are incorporated to

improve the discriminative power of the learned dictionary.

Second, a new framework that based on sparse coding and

temporal pyramid matching is proposed to solve the tem-

poral alignment problem of depth features. Third, exten-

sive experimental results have shown that both the proposed

framework and the dictionary learning algorithm are effec-

tive for the task of action recognition based on depth maps.

2. Background of Sparse Coding
Given a dataset Y = [y1, . . . ,yN ], sparse coding is a

process to solve the optimization problem as:

min
D,X

{
N∑
i=1

‖yi −Dxi‖22 + λ|xi|1
}

(1)

where matrix D = [d1, . . . ,dK ] is the dictionary with K
atoms and elements in matrix X = [x1, . . . ,xN ] are coef-
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ficients. Different from the K-means clustering that assigns

every data with its nearest cluster center, sparse coding uses

a linear combination of atoms in the dictionary D to re-

construct the data, and only a sparse number of atoms have

nonzero coefficients.

To increase the discriminative power of dictionary, class-

specific dictionary learning methods have been proposed

that learn a sub-dictionary for each class [7, 15]. For ex-

ample, Eq. 1 can be rewritten as:

min
D,X

C∑
i=1

⎧⎨
⎩‖Yi −DiXi‖2F + λ

Ni∑
j=1

|xi
j |1

⎫⎬
⎭ (2)

where Yi = [yi
1, . . . ,y

i
Ni

] and Xi = [xi
1, . . . ,x

i
Ni

] are the

dataset and coefficients for class i, respectively. Matrix Di

is the learned sub-dictionary for class i.
Since the sub-dictionaries are trained independently, it

is possible that related atoms among those sub-dictionaries

are generated. In this case, the sparse representation will be

sensitive to the variations among features. Even though an

incoherence promoting term
∑

i�=j ‖DT
i Dj‖2F can be added

to the dictionary learning, correlated atoms still exist [15].

3. Proposed Method
The proposed depth-based human action recognition

framework consists of three components, feature extraction

from the 3D joint positions, feature representation using

the discriminative DL and temporal pyramid matching, and

classification. Our discussion below focuses on the con-

struction of the discriminative dictionary which is the main

contributor to the success of the proposed framework.

3.1. Feature Extraction

Given a depth image, 20 joints of the human body can be

tracked by the skeleton tracker [16]. At frame t, the posi-

tion of each joint i is uniquely defined by three coordinates

pi(t) = (xi(t), yi(t), zi(t)) and can be represented as a 3-

element vector. The work of Wang et al. [19] showed that

the pairwise relative positions result in more discriminative

and intuitive features. However, enumerating all the joint

pairs introduces some redundant and irrelevant information

to the classification task [19].

In this paper, only one joint is selected as a reference

joint, and its differences to all the other joints are used as

features. Since the joint Hip Center has relatively small mo-

tions for most actions, it is used as a reference joint. Let the

position for the Hip Center be p1(t), the 3D joint feature
at frame t is defined as:

y(t) = {pi(t)− p1(t)|i = 2, . . . , 20} (3)

Note that both p1 and pi are functions of time, and y(t) is

a vector with 57 (19 × 3 = 57) elements. For any depth

sequence with T frames, there will be T joint features from

y(1) to y(T ).

Compared to the work of [19] using 20 joints as refer-

ences by turns, our experimental result will show that only 1

joint used as reference is sufficient for the proposed frame-

work to achieve state-of-the-art accuracies on benchmark

datasets.

3.2. Group Sparsity and Geometry Constrained
Dictionary Learning (DL-GSGC)

The process that generates a vector representation for

any depth sequence with a specific number of extracted 3D

joint features is referred to as “feature representation”. Al-

though the Bag-of-Words representation based on K-means

clustering can serve the purpose, it discards all the temporal

information and large vector quantization error can be intro-

duced by assigning each 3D joint feature to its nearest “vi-

sual word”. Recently, Yang et al. [22] showed that classifi-

cation accuracies benefit from generalizing vector quantiza-

tion to sparse coding. However, discrimination of the repre-

sentation can be compromised due to the possible randomly

distributed coefficients solved by sparse coding [4]. In this

paper, a class specific dictionary learning method based on

group sparsity and geometry constraint is proposed, referred

to as DL-GSGC.

Group sparsity encourages the sparse coefficients in the

same group to be zero or nonzero simultaneously [2, 4, 26].

Adding the group sparsity constraint to the class-specific

dictionary learning has three advantages. First, the intra-

class variations among features can be compressed since

features from the same class tend to select atoms within the

same group (sub-dictionary). Second, influence of corre-

lated atoms from different sub-dictionaries can be compro-

mised since their coefficients will tend to be zero or nonzero

simultaneously. Third, possible randomness in coefficients

distribution can be removed since coefficients have group-

clustered sparse characteristics. In this paper, the Elastic
net regularizer [26] is added as the group sparsity con-

straint since it has automatic group effect. The Elastic net

regularizer is a combination of the l1- and l2 norms. Specif-

ically, the l1 penalty promotes sparsity, while the l2 norm

encourages the grouping effect [26].

Given a learned dictionary that consists of all the sub-

dictionaries and an input feature from class i, it is ideal to

use atoms from the i-th class to reconstruct it. In addition,

similar features should have similar coefficients. Inspired

by the work of Gao et al. [5], we propose to add geometry

constraint to the class-specific dictionary learning process.

Let Y = [Y1, . . . ,YC ] be the dataset with N features

for C classes, where Yi ∈ R
f×Ni is the f -dimensional

dataset from class i. DL-GSGC is designed to learn a dis-

criminative dictionary D = [D1, . . . ,DC ] with K atoms

in total (K =
∑C

i=1 Ki), where Di ∈ R
f×Ki is the class-
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specified sub-dictionary associated with class i. The objec-

tive function of DL-GSGC is:

min
D,X

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∑
i=1

{‖Yi −DXi‖2F + ‖Yi −D∈iXi‖2F+

‖D/∈iXi‖2F + λ1

∑Ni

j=1
|xi

j |1 + λ2‖Xi‖2F }

+ λ3

J∑
i=1

N∑
j=1

‖αi − xj‖22wij

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

subject to ‖dk‖22 = 1, ∀k = 1, 2, . . . ,K

(4)

where X = [X1, . . . ,XC ] represents the coefficients ma-

trix and coefficients vector for the j-th feature in class i is

xi
j . The value D∈i is set to be [0, . . . ,Di, . . . ,0] with K

columns and the value D/∈i is calculated as D−D∈i. Term

‖Yi − DXi‖2F represents the minimization of reconstruc-

tion error using dictionary D. The terms ‖Yi −D∈iXi‖2F
and ‖D/∈iXi‖2F are added to ensure that features from class

i can be well reconstructed by atoms in the sub-dictionary

Di but not by other atoms belonging to different classes.

The group sparsity constraint is represented as λ1|xi
j |1+

λ2‖xi
j‖22, and the geometry constraint is represented as

λ3

∑J
i=1

∑N
j=1 ‖αi−xj‖22wij . In the geometry constraint,

elements in vector αi are calculated coefficients for “tem-

plate” feature yi. Here, templates are small sets of features

randomly selected from all classes. In total, there are J tem-

plates used for similarity measure. Especially, coefficients

αi for the template yi belonging to class m can be calcu-

lated by Eqs. 5 and 6:

β = min
β
‖yi −Dmβ‖22 + λ1|β|1 + λ2‖β‖22 (5)

αi = [ 0︸︷︷︸
K1

, . . . , 0︸︷︷︸
Km−1

β, 0︸︷︷︸
Km+1

, . . . , 0︸︷︷︸
KC

] (6)

In αi, only coefficients corresponding to the atoms from the

same class m are nonzero. The weight wij between the

query feature yj and template feature yi is defined as:

wij = exp(−‖yi − yj)‖22/σ) (7)

3.2.1 Optimization Step - Coefficients

The optimization problem in Eq. 4 can be iteratively solved

by optimizing over D or X while fixing the other. After

fixing the dictionary D, the coefficients vector xi
j can be

calculated by solving the following convex problem (details

are provided in the supplementary material):

min
xi
j

{∥∥sij −D′ix
i
j

∥∥2
2
+ λ1|xi

j |1 + λ3L(x
i
j)
}

(8)

where

sij = [yi
j ;y

i
j ; 0; . . . ; 0︸ ︷︷ ︸

f+K

] (9)

D′i = [D;D∈i;D/∈i;
√

λ2I] (10)

L(xi
j) =

Ai∑
m=1

‖αm − xi
j‖22wmj (11)

where I ∈ R
K×K is an identity matrix. Note that wmj

represents the weight between feature yi
j and template ym

calculated by Eq. 7. To remove the influence of shared

features among classes, we use templates belonging to the

same class as the input feature for similarity measure at

this stage. According to Eqs. 6 and 7, we know that term

L(xi
j) encourages the calculated coefficients to have zeros

at atoms not from the same class as the input feature. In

total, there are Ai templates used to calculate the unknown

coefficient xi
j .

Since the analytical solution can be calculated for Eq. 8

if the sign of each element in xi
j is known, the feature-sign

search method [9] can be used to obtain the coefficients.

However, the augmented matrix D′i needs to be normal-

ized before using the feature-sign search method. Let D′i
be the l2 column-wise normalized version of D′i. By simple

derivations, we know that D′i = (
√
2 + λ2)D′i. Therefore,

Eq. 8 can be rewritten as:

min
xi
j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥∥sij −D′ix
i
j

∥∥∥2
2
+

λ1√
2 + λ2

|xi
j |1+

λ3

2 + λ2

Ai∑
m=1

‖
√
2 + λ2αm − xi

j‖22wmj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (12)

where xi
j =

√
2 + λ2x

i
j . Therefore, the feature-sign search

method can be applied to Eq. 12 to obtain xi
j , and the coeffi-

cients for input feature yi
j should be 1√

2+λ2
xi
j . The detailed

derivations can be found in the supplementary material.

3.2.2 Optimization Step - Dictionary

Fixing the coefficients, atoms in the dictionary can be up-

dated. In this paper, the sub-dictionaries are updated class

by class. In other words, while updating the sub-dictionary

Di, all the other sub-dictionaries will be fixed. Terms that

are independent of the current sub-dictionary can then be

omitted from optimization, and the objective function when

updating the sub-dictionary Di can be given as:

min
Di

{‖Yi −DXi‖2F + ‖Yi −D∈iXi‖2F
}

(13)

To solve Eq. 13, atoms in the sub-dictionary Di are updated

one by one. Let di
k be the k-th atom in the sub-dictionary

Di. When updating atom di
k, all the rest atoms in D are

fixed, and the first derivative of Eq. 13 over di
k can be rep-

resented as:

∇(f(di
k)) = (−4Yi + 2MXi + 4di

kxi(k))x
T
i(k) (14)
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Figure 3. Temporal pyramid matching based on sparse coding.

where xi(k) is the r-th row (r =
∑i−1

j=1 Kj + k) in matrix

Xi ∈ R
K×Ni , and it is corresponding to the coefficients

contributed by the atom di
k. Matrix M is of the same size

as D and is equal to M1+M2. Here M1 is the matrix after

replacing the r-th column in D with zeros, and M2 is the

matrix after replacing the r-th column with zeros in D∈i.
The updated atom di

k can be calculated by setting Eq. 14 to

zero, which is:

di
k = (Yi − 0.5MXi)x

T
i(k)/‖xi(k)‖22 (15)

3.3. Representation and Classification

After constructing the discriminative dictionary D, the

coefficients for a given feature y can be calculated by solv-

ing the following optimization problem:

min
x
‖y−Dx‖22 +λ1|x|1 +λ2‖x‖22 +λ3

J∑
i=1

‖αi−x‖22wi

(16)

Similar to the derivation in Sec. 3.2.1, the feature-sign

search method [9] can be used to obtain the coefficients.

To keep the temporal information during the feature rep-

resentation, a temporal pyramid matching (TPM) based on

a pooling function z = F(X) is used to yield the his-

togram representation for every depth sequence. In this

paper, the max pooling is selected as many literature work

did [20, 22]. TPM divides the video sequence into several

segments along the temporal direction. Histograms gen-

erated from segments by max pooling are concatenated to

form the representation, as shown in Figure 3. In this pa-

per, the depth sequence is divided into 3 levels with each

containing 1, 2 and 4 segments, respectively.

To speed up the process of training and testing, a linear

SVM classifier [22] is used on the calculated histogram.

4. Experiments
Two benchmark datasets, MSR-Action3D dataset [10]

and MSR DailyActivity3D dataset [19], are used for eval-

uation purpose. For both datasets, we compare the perfor-

mance from two aspects, the effectiveness of the proposed

framework (i.e., DL-GSGC+TPM) as compared to state-

of-the-art approaches and the effectiveness of the proposed

Figure 4. Sample frames from the MSR Action3D dataset. From

top to bottom, frames are respectively from actions: Draw X, Draw

Circle, and Forward Kick.

dictionary learning algorithm (i.e., DL-GSGC) as compared

to state-of-the-art DL methods. In addition, since the sec-

ond dataset also contains the RGB video sequence, we fur-

ther compare the performance between using the RGB se-

quence and the depth map sequence. In all experiments,

the proposed approaches constantly outperform the state-

of-the-art.

4.1. Parameters Setting

For the DL-GSGC dictionary learning, there are three

parameters: λ1, λ2 and λ3 that corresponding to group spar-

sity and geometry constraints, respectively. According to

our observation, the performance is best when λ1 = 0.1 ∼
0.2, λ2 = 0.01 ∼ 0.02 and λ3 = 0.1 ∼ 0.2. Initial

sub-dictionaries are obtained by solving ‖Yi −DiXi‖2F +

λ1

∑Ni

j=1 |xi
j |1 + λ2‖Xi‖2F using online dictionary learn-

ing [12] and the number of atoms is set to be 15 for each

sub-dictionary. For geometry constraint, 1500 features are

used to build the templates. Note that all these features are

collected from a subset of training samples, and cover all the

classes. Compared to the total number of training features,

the number of templates is relatively small.

4.2. MSR Action3D Dataset

The MSR-Action3D dataset [10] contains 567 depth map

sequences. There are 20 actions performed by 10 subjects.

For each action, the same subject performs it three times.

The size of the depth map is 640 × 480. Figure 4 shows

the depth sequences of three actions: draw x, draw circle,

and forward kick, performed by different subjects. For all

experiments on this dataset, the 1500 templates used for ge-

ometry constraint are collected from two training subjects.

4.2.1 Compared with State-of-the-art Algorithms

We first evaluate the proposed algorithm (DL-GSGC +
TPM) in terms of recognition rate and compare it with

the state-of-the-art algorithms that have been applied on the

MSR Action3D dataset. For fair comparison, all results are

18131813



Method Accuracy

Recurrent Neural Network [13] 42.5%

Dynamic Temporal Warping [14] 54.0%

Hidden Markov Model [11] 63.0%

Bag of 3D Points [10] 74.7%

Histogram of 3D Joints [21] 78.97%

Eigenjoints [24] 82.3%

STOP Feature [17] 84.8%

Random Occupy Pattern [18] 86.2%

Actionlet Ensemble [19] 88.2%

DL-GSGC+TPM 96.7%
DL-GSGC+TPM(λ2 = 0) 95.2%
DL-GSGC+TPM(λ3 = 0) 94.2%

Table 1. Evaluation of algorithms on the cross subject test for the

MSRAction3D dataset.

obtained using the same experimental setting: 5 subjects are

used for training and the rest 5 subjects are used for testing.

In other words, it is a cross-subject test. Since subjects are

free to choose their own styles to perform actions, there are

large variations among training and testing features.

Table 1 shows the experimental results by various algo-

rithms. Our proposed method achieves the highest recog-

nition accuracy as 96.7%, and accuracies reduced to 95.2%
and 94.2% if only one constraint is kept. Note that the work

of [19] required a feature selection process on 3D joint fea-

tures and a multiple kernal learning process based on the

SVM classifier to achieve the accuracy of 88.2%, whereas

our algorithm use simple 3D joint feature as described in

Sec. 3.1, combined with the proposed feature representation

and a simple linear SVM classifier. Therefore, the proposed

dictionary learning method and framework is effective for

the task of depth-based human action recognition.

Figure 5 shows the confusion matrix of the proposed

method. Actions of high similarity get relative low accu-

racies. For example, action Draw Tick tends to be confused

with Draw X.

4.2.2 Comparison with Sparse Coding Algorithms

To evaluate the performance of the proposed DL-GSGC,

classic DL methods are used for comparison. These meth-

ods include K-SVD [1], sparse coding used for image clas-

sification based on spatial pyramid matching (ScSPM) [22],

and the dictionary learning with structured incoherence

(DLSI) [15]. In addition, for all the evaluated DL meth-

ods, the feature-sign search method is used for coefficients

calculation, the TPM and max pooling are used to obtain the

vector representation, and the linear SVM classifier is used

for classification. We refer to the corresponding algorithms

as K-SVD, ScTPM and DLSI for simplicity.

Comparisons are conducted on three subsets from the

MSR Action3D dataset, as described in [10]. For each sub-

1.0

.08 .91

1.0

1.0

1.0

.27 .72

.77 .23

1.0

1.0

1.0

1.0

1.0

.93 .06

1.0

1.0

1.0

1.0

1.0

1.0

.06 .93

HighArmWave

HorizontalArmWave

Hammer

HandCatch

ForwardPunch

HighThrow

DrawX

DrawTick

DrawCircle

HandClap

TwoHandWave

SideBoxing

Bend

FowardKick

SideKick

Jogging

TennisSwing

TennisServe

GolfSwing

PickUpThrow

Hig
hA
rm
Wa
ve

Ho
rizo
nta
lAr
mW
ave

Ha
mm
er

Ha
ndC

atc
h

Fo
rwa
rdP
unc
h

Hig
hT
hro
w
Dra
wX

Dra
wT
ick

Dra
wC
ircl
e

Ha
ndC

lap

Tw
oH
and
Wa
ve

Sid
eB
oxi
ng

Be
nd

Fo
wa
rdK
ick

Sid
eK
ick

Jog
gin
g

Te
nni
sS
win
g

Te
nni
sS
erv
e

Go
lfS
win
g

Pic
kU
pT
hro
w

Figure 5. Confusion matrix for MSR Action3D dataset.

set, 8 actions are included. All the subsets(AS1, AS2 and

AS3) are deliberately constructed such that similar move-

ments are included within the group while A3 further con-

tains complex actions with large and complicated body

movements. On each subset, three tests are performed by

choosing different training and testing samples. Since each

subject will perform the same action 3 times, Test1 and

Test2 choose 1/3 and 2/3 samples for training respectively.

Test3 uses the cross subjects setting, which is the same as

described in Sec. 4.2.1. Compared with Test1 and Test2,

Test3 is more challenging since the variations are larger be-

tween training and testing samples.

Table 2 shows the results on the three subsets. Note that

the overall accuracies based on all actions (20 actions) are

also provided for each test. It shows that the performance of

DL-GSGC is superior to other sparse coding algorithms in

terms of accuracies on all tests. In addition, class-specific

dictionary learning methods, such as DL-GSGC and DLSI,

perform better than methods learning a whole dictionary

simultaneously for all classes (e.g., K-SVD and ScTPM).

Moreover, the proposed framework (i.e., sparse coding +

TPM), is effective for action recognition, since accuracies

when using different sparse coding methods outperform the

literature work in both Tables 1 and 2. Especially, our

method outperforms other algorithms in Table 1 based on

3D joint features by 15% ∼ 17% on test 3.

4.3. MSR DailyActivity3D Dataset

The MSR DailyActivity3D dataset contains 16 daily ac-

tivities captured by a Kinect device. There are 10 subjects

in this dataset, and each subject performs the same action

twice, once in standing position, and once in sitting posi-

tion. In total, there are 320 samples with both depth maps

and RGB sequences available. Figure 6 shows the sample

frames for the activities: drink, write and stand up, from
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Method (%)
Test 1 Test 2 Cross Subjects Test

AS1 AS2 AS3 Overall AS1 AS2 AS3 Overall AS1 AS2 AS3 Overall

[10] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 72.9 71.9 79.2 74.7

[21] 98.5 96.7 93.5 96.2 98.6 97.9 94.9 97.2 87.9 85.5 63.5 79.0

[24] 94.7 95.4 97.3 95.8 97.3 98.7 97.3 97.8 74.5 76.1 96.4 82.3

K-SVD 98.8 95.6 98.8 97.8 100 98.0 100 98.9 92.4 91.9 95.5 92.0

ScTPM 98.8 95.6 98.8 97.3 100 98.0 100 98.9 96.2 92.9 96.4 92.7

DLSI 97.4 98.1 99.4 97.6 98.8 97.2 100 97.9 96.6 93.7 96.4 93.2

DL-GSGC 100 98.7 100 98.9 100 98.7 100 98.9 97.2 95.5 99.1 96.7

Table 2. Performance evaluation of sparse coding based algorithms on three subsets.

Figure 6. Sample frames for the MSR DailyActivity3D dataset.

From top to bottom, frames are from actions: drink, write, and

stand up.

top to bottom. As shown in Figure 6, some activities in this

dataset contain small body movements, such as drink and

write. In addition, the same activity performed in differ-

ent positions have large variations in the estimated 3D joint

positions. Therefore, this dataset is more challenging than

the MSR Action3D dataset. Experiments performed on this

dataset is based on cross subjects test. In other words, 5 sub-

jects are used for training, and the rest 5 subjects are used

for testing. The number of templates is also 1500 which

are collected from 2 training subjects. Table 3 shows the

experimental results by using various algorithms.

4.3.1 Comparison with State-of-the-art Algorithms

We first compare the performance of DL-GSGC with liter-

ature work that have been conducted on this dataset. As

shown in Table 3, the proposed method outperforms the

state-of-the-art work [19] by 10% and the geometry con-

straint is more effective for performance improvement. In

addition, other DL methods are incorporated in our frame-

work for comparison, referred to as K-SVD, ScTPM and

DLSI. Experimental results show that the performance of

DL-GSGC is superior to other DL methods by 4% ∼ 5%.

In addition, class-specific dictionary learning methods, e.g.,

DL-GSGC and DLSI, are better for classification task than

K-SVD and ScTPM. Moreover, the proposed framework

outperforms the state-of-the-art work [19] by 5% ∼ 10%
when different DL methods are used. Considering the large

intra-class variations and noisy 3D joint positions in this

Method Accuracy

Cuboid+HoG* 53.13%

Harris3D+HOG/HOF* 56.25%

Dynamic Temporal Wrapping [14] 54%

3D Joints Fourier [19] 68%

Actionlet Ensemble [19] 85.75%

K-SVD 90.6%

ScTPM 90.6%

DLSI 91.3%

DL-GSGC 95.0%

DL-GSGC (λ2 = 0) 93.8%

DL-GSGC (λ3 = 0) 92.5%

Table 3. Performance evaluation of the proposed algorithm with

eight algorithms. Algorithms marked with (*) are applied on RGB

videos and all rest algorithms are applied on depth sequences.

dataset, the proposed framework is quite robust.

4.3.2 Comparison with RGB Features

Since both depth and RGB videos are available in this

dataset, we also compare the performance of RGB features

with that of depth features. For traditional human action

recognition problem, spatio-temporal interest points based

methods have been heavily explored. Two important steps

are spatio-temporal interest point detection and local feature

description. As for feature representation, Bag-of-Words

representation based on K-means clustering is widely used.

In this paper, we follow the same steps to perform action

recognition from RGB videos. To be specific, the classic

Cuboid [3] and Harris3D [8] detectors are used for feature

detection, and the HOG/HOF descriptors are used for de-

scription. The Bag-of-Words representation is used for fea-

ture representation.

Table 3 provides the recognition rates by using different

feature detectors and descriptors on RGB video sequences.

Compared with the performance of depth features, recogni-

tion rates on RGB sequences are lower. We argue the main

reason to be that this dataset contains many actions with

high similarity but small body movements, e.g., Drink, Eat,
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Write, Readbook. In this case, the 3D joint features contain-

ing depth information are more reliable than RGB features.

In addition, the K-mean clustering method will cause larger

quantization error than sparse coding algorithms. There-

fore, depth information is important for the task of action

recognition, and the sparse coding based representation is

better for quantization.

5. Conclusion

This paper presented a new framework to perform hu-

man action recognition on depth sequences. To better rep-

resent the 3D joint features, a new discriminative dictio-

nary learning algorithm (DL-GSGC) that incorporated both

group sparsity and geometry constraints was proposed. In

addition, the temporal pyramid matching method was ap-

plied on each depth sequence to keep the temporal infor-

mation in the representation. Experimental results showed

that the proposed framework is effective that outperformed

the state-of-the-art algorithms on two benchmark datasets.

Moreover, the performance of DL-GSGC is superior to clas-

sic sparse coding methods. Although the DL-GSGC is pro-

posed for dictionary learning in the task of depth-based ac-

tion recognition, it is applicable to other classification prob-

lems, such as image classification and face recognition.
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