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Abstract—Images captured in foggy weather conditions often
suffer from bad visibility. In this paper, we propose an efficient
regularization method to remove hazes from a single input
image. Our method benefits much from an exploration on the
inherent boundary constraint on the transmission function.
This constraint, combined with a weighted L1−norm based
contextual regularization, is modeled into an optimization
problem to estimate the unknown scene transmission. A quite
efficient algorithm based on variable splitting is also presented
to solve the problem. The proposed method requires only
a few general assumptions and can restore a high-quality
haze-free image with faithful colors and fine image details.
Experimental results on a variety of haze images demonstrate
the effectiveness and efficiency of the proposed method.

Keywords-image processing; single image dehazing; visibility
enhancement;

I. INTRODUCTION

When one takes a picture in foggy weather conditions, the

obtained image often suffers from poor visibility. The distant

objects in the fog lose the contrasts and get blurred with

their surroundings, as illustrated in Figure 1. This is because

the reflected light from these objects, before it reaches the

camera, is attenuated in the air and further blended with

the atmospheric light scattered by some aerosols (e.g., dust

and water-droplets). Also for this reason, the colors of these

objects get faded and become much similar to the fog, the

similarity of which depending on the distances of them to

the camera.

Early methods for haze removal mainly rely on additional

depth information or multiple observations of the same

scene. Representative works include [11], [9], [10], [12].

Schechner et al. [11] notice that the airlight scattered by

atmospheric particles is partially polarized. Based on this

observation, they develop a quick method to reduce hazes

by using two images taken through a polarizer at different

angles. Narasimhan et al. propose a physics-based scattering

model [9], [10]. By this model, the scene structure can be

recovered from two or more weather images. Kopf et al.
[6] propose to dehaze an image by using the scene depth

information directly accessible in the georeferenced digital

terrain or city models.

Figure 1. Image dehazing result by our method. From left to right: (Top)
the foggy image and the dehazing result by our method. (Bottom) the
boundary constraint map and the recovered scene transmission.

Single image dehazing, in contrast, is a more challenging

problem, since fewer information about the scene structure

is available. Recently, some significant advances have also

been achieved [4], [13], [5], [14], [7], [8]. These progresses

benefit much from the insightful explorations on new image

models and priors. Fattal [4] proposes a refined image forma-

tion model to account for the surface shading and the scene

transmission. Under the assumption that the two functions

are locally statistically uncorrelated, a haze image can be

broken into regions of constant albedo, from which the scene

transmission can be inferred. Tan [13] proposes to enhance

the visibility of a haze image by maximizing its local

contrast. His method can generate quite compelling results,

especially in regions with very dense hazes. However, since

it is not a physics-based method, the restored image often

suffers from distorted colors and significant halos.

He et al. [5] present an interesting image prior - dark
channel prior for single image dehazing. This prior comes

from an observation that most local patches in haze-free

images often contain some low intensity pixels. The prior,
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combined with a soft-mating operation, can achieve a quite

compelling haze-free result of very high quality. Kratz et al.
[7] model an image as a factorial Markov random field, in

which the scene albedo and depth are two statistically inde-

pendent latent layers. A canonical expectation maximization

algorithm is implemented to factorize the image. Kratz’s

method can recover a haze-free image with fine edge details,

but the results often tend to be over enhanced.

Single image dehazing is essentially an under-constrained

problem. The general principle of solving such problems is

therefore to explore additional priors or constraints. Follow-

ing this idea, we begin our study in this paper by deriving

an inherent boundary constraint on the scene transmis-

sion. This constraint, combined with a weighted L1−norm

based contextual regularization between neighboring pixels,

is formalized into an optimization problem to recover the

unknown transmission. Our method requires only a few

general assumptions and can restore a haze-free image of

high quality with faithful colors and fine edge details. Figure

1 illustrates an example of our dehazing result.

Our method benefits from three main contributions. The

first is a new constraint on the scene transmission. This

simple constraint, which has a clear geometric interpretation,

shows to be surprisingly effective to image dehazing. Our

second contribution is a new contextual regularization that

enables us to incorporate a filter bank into image dehaz-

ing. These filters help in attenuating the image noises and

enhancing some interesting image structures, such as jump

edges and corners. Our final contribution is an efficient

optimization scheme, which enable us to quickly dehaze

images of large sizes.

II. IMAGING MODEL AND PROBLEM CONSTRAINTS

The following linear interpolation model is widely used

to explain the formation of a haze image [10], [4], [5], [13],

[7]:

I(x) = t(x)J(x) + (1− t(x))A, (1)

where I(x) is the observed image, J(x) is the scene radi-

ance, A is the global atmospheric light, and t(x) is the scene

transmission. The transmission function t(x) (0 ≤ t(x) ≤ 1)

is correlated with the scene depth. Further assuming that the

haze is homogenous, we can express t(x) as follows:

t(x) = e−βd(x), (2)

where β is the medium extinction coefficient, and d(x) is

the scene depth.

The goal of image dehazing is to recover the scene

radiance J(x) from I(x) based on Eq.(1). This requires us

to estimate the transmission function t(x) and the global

atmospheric light A. Once t(x) and A are estimated, the

scene radiance can be recovered by:

J(x) =
I(x)− A

[max (t(x), ε)]
δ
+ A, (3)

Figure 2. Radiance cube and boundary constraint. For each x, we require
the extrapolation of J(x) cannot cross over the boundary of the radiance
cube. Jb(x1) and Jb(x2) are the corresponding boundary constraint points.

where ε is a small constant (typically 0.0001) for avoiding

division by zero, and the exponent δ, serving as the role of

the medium extinction coefficient β in Eq.(2), is used for

fine-tuning the dehazing effects.

However, dehazing from a single image is highly under-

constrained, since the number of unknowns is much greater

than the number of available equations. Thus, we have to

first exploit more constraints on the unknowns.

A. Boundary Constraint from Radiance Cube

Geometrically, according to Eq.(1), a pixel I(x) con-

taminated by fog will be “pushed” towards the global

atmospheric light A (see Figure 2). As a result, we can

reverse this process and recover the clean pixel J(x) by a

linear extrapolation from A to I(x). The appropriate amount

of extrapolation is given by

1

t(x)
=
||J(x)−A||
||I(x)−A|| . (4)

Consider that the scene radiance of a given image is always

bounded, that is,

C0 ≤ J(x) ≤ C1, ∀x ∈ Ω, (5)

where C0 and C1 are two constant vectors that are relevant

to the given image. Consequently, for any x, a natural

requirement is that the extrapolation of J(x) must be located

in the radiance cube bounded by C0 and C1, as illustrated

in Figure 2.

The above requirement on J(x), in turn, imposes a bound-

ary constraint on t(x). Suppose that the global atmospheric

light A is given. Thus, for each x, we can compute the

corresponding boundary constraint point Jb(x) (see Figure

2). Then, a lower bound of t(x) can be determined by

using Eq.(4) and Eq.(5), leading to the following boundary

constraint on t(x):

0 ≤ tb(x) ≤ t(x) ≤ 1, (6)
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where tb(x) is the lower bound of t(x), given by

tb(x) = min

{
max

c∈{r,g,b}

(
Ac − Ic(x)

Ac − Cc
0

,
Ac − Ic(x)

Ac − Cc
1

)
, 1

}
,

(7)

where Ic, Ac, Cc
0 and Cc

1 are the color channels of I, A,

C0 and C1, respectively.

The boundary constraint of t(x) provides a new geometric

perspective to the famous dark channel prior [5]. Let C0 = 0
and suppose the global atmospheric light A is brighter than

any pixel in the haze image. One can directly compute tb(x)
from Eq.(1) by assuming the pixel-wise dark channel of J(x)
to be zero. Similarly, assuming that the transmission in a

local image patch is constant, one can quickly derive the

patch-wise transmission t̃(x) in He et al.’s method [5] by

applying a maximum filtering on tb(x), i.e.,

t̃(x) = max
y∈ωx

tb(y), (8)

where ωx is a local patch centered at x.

It is worth noting that the boundary constraint is more

fundamental. In most cases, the optimal global atmospheric

light is a little darker than the brightest pixels in the image.

Those brighter pixels often come from some light sources

in the scene, e.g., the bright sky or the headlights of cars. In

these cases, the dark channel prior will fail to those pixels,

while the proposed boundary constraint still holds.

It is also worthy to point out the commonly used constant

assumption on the transmission within a local image patch

is somewhat demanding. For this reason, the patch-wise

transmission t̃(x) based on this assumption in [5] is often

underestimated. Here, we present a more accurate patch-wise

transmission, which relaxes the above assumption and allows

the transmissions in a local patch to be slightly different. The

new patch-wise transmission is given as below:

t̂(x) = min
y∈ωx

max
z∈ωy

tb(z). (9)

Fortunately, the above patch-wise transmission t̂(x) can be

conveniently computed by directly applying a morphological

closing on tb(x). Figure 3 illustrates a comparison of the

dehazing results by directly using the patch-wise transmis-

sions derived from dark channel prior and the boundary

constraint map, respectively. One can observe that the patch-

wise transmission from dark channel prior works not well

in the bright sky region. The dehazing result also contains

some halo artifacts. In comparison, the new patch-wise

transmission derived from the boundary constraint map can

handle the bright sky region very well and also produces

fewer halo artifacts.

B. Weighted L1-norm based Contextual Regularization

Generally, pixels in a local image patch will share a sim-

ilar depth value. Based on this assumption, we have derived

a patch-wise transmission from the boundary constraint.

However, this contextual assumption often fails to image

Figure 3. Image dehazing by directly using the patch-wise transmissions
from dark channel prior and boundary constraint map, respectively. From
left to right: (top) the foggy image, the dehazing result by dark chan-
nel prior and the dehazing result by boundary constraint. (bottom) the
boundary constraint map, the patch-wise transmission from dark channel
and the patch-wise transmission from boundary constraint map (C0 =
(20, 20, 20)T ,C1 = (300, 300, 300)T , δ = 1.0, patch size: 17× 17).

patches with abrupt depth jumps, leading to significant halo

artifacts in the dehazing results.

A trick to address this problem is to introduce a weighting

function W (x, y) on the constraints, i.e.,

W (x, y) (t(y)− t(x)) ≈ 0, (10)

where x and y are two neighboring pixels. The weighting

function plays a “switch” role of the constraint between x
and y. When W (x, y) = 0, the corresponding contextual

constraint of t(x) between x and y will be canceled.

The question now is how to choose a reasonable W (x, y).
Obviously, the optimal W (x, y) is closely related to the

depth difference between x and y. In another word, W (x, y)
must be small if the depth difference between x and y is

large, and vice versa. However, since no depth information

of each pixel is available in single image dehazing, we

cannot construct W (x, y) directly from the depth map.

Notice the facts that the depth jumps generally appear at

the image edges, and that within local patches, pixels with a

similar color often share a similar depth value. Consequently,

we can compute the color difference of local pixels to con-

struct the weighting function. Here below are two examples

of the construction of such weighting functions. One is based

on the squared difference between the color vectors of two

neighboring pixels:

W (x, y) = e−‖I(x)−I(y)‖2/2σ2

, (11)

where σ is a prescribed parameter. The other is based on

the luminance difference of neighboring pixels [3], given as

below:

W (x, y) = (|�(x)− �(y)|α + ε)
−1

, (12)

where � is the log-luminance channel of the image I(x), the

exponent α > 0 controls the sensitivity to the luminance

difference of two pixels and ε is a small constant (typically

0.0001) for preventing division by zero.
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Integrating the weighted contextual constraints in the

whole image domain leads to the following contextual

regularization on t(x):∫
x∈Ω

∫
y∈ωx

W (x, y) |t(x)− t(y)| dxdy, (13)

where Ω is the image domain. Instead of using the integral

of L2-norm for the regularization, we employ the integral

of L1-norm. This is because that L1-norm is generally

more robust to outliers than L2-norm. These outliers appear

when erroneous contextual constraints are introduced. For

example, if two neighboring pixels with a similar color

have very different depth values, Eq.(10) will provide an

erroneous constraint.

To facilitate the computation, we further give the discrete

form of (13) as below:∑
i∈I

∑
j∈ωi

wij |ti − tj |, (14)

where I is the index set of image pixels, wij is the discrete

versions of W (x, y). Exchanging the summation order in

(14) and introducing a set of differential operators, we can

further rewrite (14) as:∑
j∈ω

∑
i∈I

wij

∣∣(Dj ⊗ t)i
∣∣, (15)

or more compactly,∑
j∈ω

‖Wj ◦ (Dj ⊗ t)‖1, (16)

where ω is an index set, ◦ represents the element-wise mul-

tiplication operator, ⊗ stands for the convolution operator,

Dj is a first-order differential operator, Wj (j ∈ ω) is a

weighting matrix.

It is also beneficial to use the high-order differential

operators in (19). This simple extension endows us with

more flexibilities in the use of the contextual constraints.

Figure 4 shows a bank of high-order differential filters used

in this study. To employ those filters, we have to accordingly

revise the computation of the weighting functions in (11) and

(12) as below:

Wj(i) = e
−∑

c∈{r,g,b} |(Dj⊗Ic)i|2
/
2σ2

, (17)

Wj(i) =
(∣∣(Dj ⊗ �)i

∣∣α + ε
)−1

. (18)

III. SCENE TRANSMISSION ESTIMATION

Dehazing an image by Eq.(3) requires to estimate an

appropriate transmission function t(x) and the global at-

mospheric light A. To estimate the atmospheric light, He

et al. [5] propose a method based on image’s dark channel.

They first pick up the top 0.1% brightest pixels in the dark

channel, and then select the one with the highest intensity

as the estimate of A. In this study, we propose a modified

Figure 4. A bank of high-order filters used in our study. It consists of
eight Kirsch operators and a Laplacian operator for preserving image edges
and corners.

version of He et al.’s method. This method produces a

similar result but performs more efficiently. The method

begins with filtering each color channel of an input image by

a minimum filter with a moving window. Then the maximum

value of each color channel is taken as the estimate of the

component of A.

We find an optimal transmission function t(x) by mini-

mizing the following objective function:

λ

2

∥∥t− t̂
∥∥2

2
+

∑
j∈ω

‖Wj ◦ (Dj ⊗ t)‖1, (19)

where the first part is the data term, which measures the

fidelity of t(x) to the patch-wise transmission t̂(x) derived

from the boundary constraint map, the second part models

the contextual constraints of t(x), and λ is the regularization

parameter for balancing the two terms.

To optimize (19), an efficient method based on variable

splitting is employed. The basic idea of this method is

to introduce several auxiliary variables and construct a

sequence of simple sub-problems, the solutions of which

finally converge to the optimal solution of the original prob-

lem. More specifically, we introduce the following auxiliary

variables, denoted by uj (j ∈ ω) and convert (19) to a new

cost function as below:

λ

2

∥∥t− t̂
∥∥2

2
+

∑
j∈ω

‖Wj ◦ uj‖1 +
β

2

⎛
⎝∑

j∈ω
‖uj −Dj ⊗ t‖22

⎞
⎠ ,

(20)

where β is a weight. Obviously, as β →∞, the solution of

(20) will converge to that of (19).

Minimizing (20) for a fixed β can be performed by an

alternating optimization with respect to uj and t. That is,

we first solve for each optimal uj by fixing t, and then solve

for an optimal t by fixing uj . This process is repeated until

convergence. Fortunately, the sub-problems of this process

have close-form solutions that can be solved quite efficiently.
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Figure 5. An example of scene transmission estimation. The estimation process quickly converges after a few iterations (C0 = (20, 20, 20)T ,C1 =
(300, 300, 300)T , λ = 1.0, α = 0.5, patch size: 7× 7).

Optimizing uj : With t fixed in (20), we solve for uj

(j ∈ ω) by minimizing the following function:

‖Wj ◦ uj‖1 +
β

2
‖uj −Dj ⊗ t‖22 , (21)

The above problem consists of solving a series of indepen-

dent 1D problems of the following forms, i.e.,

min
x
|w · x|+ β

2 (x− a)
2
, (22)

where w, β, and a are given. These problems can be directly

solved as

x∗ = max

(
|a| − w

β
, 0

)
· sign (a) , (23)

where sign(·) is a sign function.

Optimizing t: We now find the optimal t by fixing

uj(j ∈ ω) in (20). This corresponds to minimizing the

function below:

λ

2

∥∥t− t̂
∥∥2

2
+

β

2

⎛
⎝∑

j∈ω
‖uj −Dj ⊗ t‖22

⎞
⎠ . (24)

Note that (24) is quadratic in t. The optimal t thus satisfies:

λ

β

(
t− t̂

)
+

∑
j∈ω

DT
j ⊗ (Dj ⊗ t− uj) = 0, (25)

where DT
j denotes the filter obtained by mirroring Dj

around its center pixel. Applying a 2D FFT to the above

equation and assuming the circular boundary conditions, we

can compute the optimal t∗ directly as:

t∗ = F−1

⎛
⎜⎝

λ
βF

(
t̂
)
+

∑
j∈ω

F (Dj) ◦ F (uj)

λ
β +

∑
j∈ω

F (Dj) ◦ F (Dj)

⎞
⎟⎠ , (26)

where F(·) is the Fourier transform and F−1(·) is its

inverse transform, (·) represents the complex conjugate, and

◦ denotes the element-wise multiplication. The division in

(26) is also performed in an element-wise manner.

Figure 5 illustrates an example of the estimation process

of scene transmission function. In the process, we iteratively

increase β from β0 = 1 to βMax = 28 by a scaling factor

2
√
2, and alternatively solve the sub-problems in (21) and

(24). For each round, we run only one inner iteration to

optimize t(x). The intermediate estimations of t(x) and the

final dehazing result are shown in the figure. We can see

that the process quickly converges after a few iterations.

IV. EXPERIMENTAL RESULTS

A. Example Results

Figure 6 illustrates some examples of our dehazing re-

sults and the recovered scene transmission functions. In the

examples, we adopted the weighting functions in Eq.(18)

and set the parameter α = 0.5. The bank of high-order

filters in Figure 4 are used to construct those weighting

functions. The boundary constraint map is computed from

Eq.(7) by setting the radiance bounds C0 = (20, 20, 20)T

and C1 = (300, 300, 300)T . We estimate the optimal trans-

mission by minimizing the objective function in (19) and set

the regularization parameter λ = 1.0 for all the examples.

As can be seen from the results, our method can recover

rich details of images with vivid color information in the

haze regions. It should be pointed out that the estimated

transmissions of the right three images in the figure cannot

be regarded as a scaling version of the depth map, since

the hazes in the images are not homogeneous. These cases

commonly occur to the captured scenes with a large area of

clear sky region. Actually, the transmission function reflects

the density of the hazes in the captured scene. From the
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Figure 6. Image dehazing results by our method. Top: input haze images. Middle: the dehazing results. Bottom: the recovered transmission functions.
The recovered transmission gives an estimation of the density map of hazes in the input image. (Best viewed in color)

figure, we can see the estimated transmissions by our method

are quite consistent with our intuitions.

B. Comparisons

We also compare our method with several state-of-the-art

methods. Figure 7 illustrates the comparisons of our method

with Tan’s work [13]. Tan’s method can augment the image

details and greatly enhance the image visuality. However,

the colors in the recovered images are often over saturated,

since the method is not a physically based approach and the

transmission may thus be underestimated. Moreover, some

significant halo artifacts usually appear around the recovered

sharp edges (e.g., trees). In comparison, our method can

improve the visuality of image structures in very dense haze

regions while restoring the faithful colors. The halo artifacts

in our results are also quite small.

Figure 8 shows the comparisons of our approach with

Tarel et al.’s method [14], [15] and Fattal’s method [4].

Tarel et al.’s method is a filtering based approach. They

estimate the atmospheric veil by applying a fast median filter

to the minimum components of the observed image. The

biggest advantage of their method is its linear complexity

and can be implemented in real time, while the weakness

is the dehazing results are not quite visually compelling.

Fattal’s method relies on sufficient color information to

estimate the transmission. If the haze is very dense, the color

information will be very faint and the transmission may thus

be wrongly estimated, leading to erroneous enhancement on

the image. For example, the hill enhanced by Fattal’s method

in Figure 8 is too dark (bottom image) and some hazes still

remain among the underbrush (top image). In comparison,

our results are much visually pleasing.

In Figure 9, we compare our approach with Kratz et al.’s
method [7] and Ancuti et al.’s method [1]. Kratz et al.’s

method adopts a factorial Markov random field to model a

foggy image. By exploiting the priors of natural images and

depth statistics, they can factorize the image into its scene

albedo and depth via an EM algorithm. However, the method

often tends to produce an over saturated result. Moreover,

the dehazing results also contain some halo artifacts. Ancuti

et al.’s method is a detection based method. It first computes

the “semi-inverse” image by applying a pixel-wise operation

on the input image. Based on the hue disparity between the

original image and its semi-inverse, they can quickly identify

the hazy regions and estimate the global airlight constant

and the transmission map. Ancuti et al.’s method is quite

efficient and can produce a visually pleasing result. However,

due to the ambiguity between color and depth, pixel-wise

haze detection is not robust and often suffers from large

recognition errors. Therefore, some hazes in the images are

not fully removed (e.g., hazes among the trees). In contrast,

our method can well remove most hazes in the image and

produce a clear image with vivid color information.
We also compare our method with He et al.’s work in

Figure 10. As can be seen from the results, the both methods

produce comparable results in regions with heavy hazes

(e.g., the distant buildings). In regions with many depth

jumps (e.g., trees at close range), our method performs bet-

ter. Fewer hazes remain in the our dehazing results and the

halo artifacts are also smaller. Moreover, our method tends

to generate a clearer result of image details, as illustrated

in the second row of Figure 10. This benefits from the

incorporation of a filter bank into image dehazing. These

filters can help to exploit and augment the interesting image

structures, e.g., jump edges and corners.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed an efficient method to

remove hazes from a single image. Our method benefits
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Figure 7. Comparisons with Tan’s method. From left to right: input haze images, Tan’s results, our results and the close-up patches of the results,
respectively. (Best viewed in color)

Figure 8. Comparisons with Tarel et al.’s method and Fattal’s method. From left to right: input haze images, the results of Tarel et al.’s method in
ICCV’09, the results of Tarel et al.’s method in IV’10, Fattal’s results, and our results, respectively. (Best viewed in color)

Figure 9. Comparison with Kratz et al.’s method and Ancuti et al.’s method. From left to right: (top) input haze imag, Kratz et al.’s result, Ancuti et
al.’s result and our result. (bottom) the close-up patches in the box. (Best viewed in color)
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Figure 10. Comparisons with He et al.’s method. From left to right: input
haze images, He et al.’s results, our results and the close-up patches. (Best
viewed in color)

much from an exploration on the inherent boundary con-

straint on the transmission function. This constraint, together

with a weighted L1-norm based contextual regularization,

is modeled into an optimization problem to recover the

unknown transmission. An efficient algorithm using variable

splitting is also proposed to solve the optimization problem.

In comparison with the state-of-the-arts, our method can

generate quite visually pleasing results with faithful color

and finer image details and structures.

Single image dehazing often suffers from the problem of

ambiguity between image color and depth. That is, a clean

pixel may have the same color with a fog-contaminated

pixel due to the effects of hazes. For example, some white

objects in the scene often have a confusing color with the

hazes. Therefore, without sufficient priors, these pixels are

difficult to be reliably recognized as fog-contaminated or not

fog-contaminated. This ambiguity, revealing the unconstraint

nature of single image dehazing, often leads to excessive or

inadequate enhancements on the scene objects.

From a geometric perspective of image dehazing, we have

derived a boundary constraint on the transmission from the

radiance cube of an image. Although the boundary constraint

imposes a much weak constraint on the dehazing process,

it proves to be surprisingly effective for the dehazing of

most natural images, after combined with the contextual

regularization. More generally, one can employ a tighter

radiance envelop, not limited to a cubic shape, to provide a

more accurate constraint on the transmissions. This may help

to further reduce the ambiguity between color and depth, and

avoid many erroneous enhancements on the image.

Another way to address the ambiguity problem is to

adopt more sound constraints or develop new image priors,

for example, using the scene geometry [2], or directly

incorporating the available depth information [6] into the

estimation of scene transmission. Although this may be

unrealistic for generic image dehazing, it often works for

particular applications, sine strict domain-related constraints

may be easily derived in these applications.
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