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Abstract

Many problems in computer vision can be posed
as recovering a low-dimensional subspace from high-
dimensional visual data. Factorization approaches to low-
rank subspace estimation minimize a loss function between
an observed measurement matrix and a bilinear factoriza-
tion. Most popular loss functions include the L2 and L1

losses. L2 is optimal for Gaussian noise, while L1 is for
Laplacian distributed noise. However, real data is often
corrupted by an unknown noise distribution, which is un-
likely to be purely Gaussian or Laplacian. To address this
problem, this paper proposes a low-rank matrix factoriza-
tion problem with a Mixture of Gaussians (MoG) noise
model. The MoG model is a universal approximator for any
continuous distribution, and hence is able to model a wider
range of noise distributions. The parameters of the MoG
model can be estimated with a maximum likelihood method,
while the subspace is computed with standard approaches.
We illustrate the benefits of our approach in extensive syn-
thetic and real-world experiments including structure from
motion, face modeling and background subtraction.

1. Introduction

Many computer vision, machine learning and statistical

problems can be formulated as one of learning a low di-

mensional linear model. These linear models have been

widely used in computer vision to solve problems such as

structure from motion [39], face recognition [43], photo-

metric stereo [19], object recognition [40], motion segmen-

tation [41] and plane-based pose estimation [36].

Let X = [x1, · · · ,xn] ∈ �d×n (see 1 for notation) be a

matrix where each column xi is a d-dimensional measure-

ment. Standard approaches to subspace learning optimize

1Bold uppercase letters denote matrices, bold lowercase letters denote

vectors, and non-bold letters represent scalar variables. di and di repre-

sent the ith column and row vectors of the matrix D, respectively, and

dij denotes the scalar in the ith row and jth column of D. � denotes

the Hadamard product (component-wise multiplication). Lp denotes the

power p norm of a matrix, that is ‖D‖Lp
=
∑

i,j |dij |p.

Figure 1. (a) Original face (X). The upper image is the same as

the lower one, with different range display. (b) The reconstructed

image (UVT ), the error image (E = X − UVT ) and histogram

of the error computed with the L2 loss. (c) Same as (b) but with

L1 loss. (d) The reconstructed image and the two Gaussian errors,

with smaller and larger variances, obtained by our method. (Figure

better seen in color and to see details zoom on a computer screen.)

the Low Rank Matrix Factorization (LRMF) error:

minU,V
∥∥W � (X − UVT )

∥∥
Lp

, (1)

where U ∈ �d×r and V ∈ �n×r are low-dimensional ma-

trices (r < min(d, n)), W is the indicator matrix of the

same size as X. wij = 0 if xij is missing and 1 otherwise.

‖ · ‖Lp
denotes the pth power of an Lp norm, and most pop-

ular approaches use L2 and L1 norm.

A main advantage of minimizing the L2 norm is that the

optimization problem is smooth and there are multiple fast

numerical solvers [9, 28, 31, 32, 35, 44]. A closed-form

solution for U and V can be computed with the Singular

Value Decomposition (SVD) when all data is available (no

missing data). However, the L2 norm is only optimal for

Gaussian noise and provides biased estimates in presence

of outliers and non-Gaussian noise distributions. In order

to introduce robustness to outliers, the L2 can be replaced

by robust functions [11] or the L1 norm [13, 14, 18, 20,

22, 39, 43]. Unfortunately, these approaches do not have

closed-form solution and lead to non-smooth optimization

problems.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.169

1337



While L2 or L1 norms are only optimal if the noise fol-

lows a Gaussian or Laplacian distribution, this is not the

case in most real problems. For instance, consider the case

of face images of one subject taken under varying illumina-

tion conditions (e.g., Fig. 1(a) illustrates one image of the

Yale B database [16]). Under the assumption that the face

is a Lambertian surface, the faces under different point light

sources can be recovered by a three dimensional subspace

(e.g., [34]). If the diffusion or background illumination is

considered in the model the subspace will be of dimension

four [21]. However, in real images there are different types

of noise sources. First, the face is not a perfect Lamber-

tian surface, and there are cast shadows. Second, due to the

camera range settings there might be pixels that are satu-

rated and there exist specular reflections (especially in peo-

ple with glasses). Third, the camera noise (“read noise”) is

amplified in the dark areas [30] (see Fig. 1(a)). These dif-

ferent types of noise can have different distributions, and

minimizing either the L2 or L1 loss is unlikely to produce

a good model to factorize the illumination component (see

Fig. 1(b) and Fig. 1(c), respectively).

To address this issue, this paper proposes a simple but

effective approach to LRMF with unknown noise. The

key idea is to model the noise as a Mixture of Gaussians

(MoG) [26], which is an universal approximator to any

continuous density function [25]. Thus, it subsumes prior

popular L2 and L1 models (the Laplace distribution can

be equivalently expressed as a scaled MoG [2]). Fig. 1(d)

illustrates how the proposed MoG noise model can better

account for the different types of noise and provide a bet-

ter estimate of the underlying face. The parameters of our

proposed model, subspace-MoG, can be estimated with the

traditional Expectation-Maximization (EM) under a Maxi-

mum Likelihood Estimation (MLE) framework. The effec-

tiveness of our MoG method is shown in synthetic, Struc-

ture From Motion (SFM), face modeling and background

subtraction experiments.

2. Previous work
The L2-norm LRMF with missing data has been stud-

ied in the statistical literature since the early 80’s. Gabriel

and Zamir [15] proposed a weighted SVD technique that

used alternated minimization (or criss-cross regression) to

find the principal subspace of the data. De la Torre and

Black [11] proposed Robust PCA by changing the L2 norm

to a robust function to deal with outliers. They used the

Iteratively-Reweighted Least-Squares (IRLS) to solve the

problem. This approach can handle missing data by setting

weights to zero in the IRLS algorithm, but it is prone to local

minima. Srebro and Jaakkola [35] proposed the Weighted

Low-rank Approximation (WLRA) algorithm, that uses EM

or conjugate gradient descent depending on the complex-

ity of the structure of the problem. To avoid local minima,

Buchanan and Fitzgibbon [6] added regularization terms to

Eq. (1) and modified the Levenberg-Marquardt (LM) algo-

rithm to estimate the variables (U, V) jointly. Chen [9] later

proposed modifications of LM algorithms to improve its ef-

ficient by solving smaller linear system in every iteration.

Okatani and Deguchi [31] showed that a Wiberg marginal-

ization strategy on U or V provides a robust initialization,

but its high memory requirements make it impractical for

medium-size datasets. Aguiar et al. [1] introduced a glob-

ally optimal solution to L2 LRMF with missing data under

the assumption that the missing data has a special Young

diagram structure. More recently, Zhao and Zhang [44]

introduced the SALS method that constrains the compo-

nents of X lie within a range, and considers the L2 LRMF

as a constrained model. Mitra et al. [28] showed that the

matrix factorization problem can be formulated as a low-

rank semidefinite program and proposed an augmented La-

grangian method. However, all of these works minimize an

L2 error that is only optimal for Gaussian noise.

In order to introduce robustness to outliers, Ke and

Kanade [20] suggested replacing the L2 loss with the L1

norm, minimized by alternated linear or quadratic program-

ming (ALP/AQP). A more efficient method called PCAL1

was then proposed by Kwak [22]. This method maximizes

the L1 norm of the projected data. Similarly to the L2

Wiberg approach [31], Eriksson and Hengel [14] experi-

mentally showed that the alternated convex programming

approach frequently does not converge to the desired point,

and introduced the L1Wiberg approach to address this. Very

recently, Zheng et al. [45] extended [14] by adding a nu-

clear norm regularizer on V and the orthogonality con-

straints in U, which resulted in improvements on the struc-

ture from motion problem. In the compressed sensing lit-

erature, Wright et al. [43] proposed a Robust PCA method

using recent advances in rank minimization. A major ad-

vantage of this approach lies in its convex formulation even

in the case of sparse outliers and missing data. These meth-

ods, however, optimize an L1 norm error and are thus only

optimal for Laplacian noise.

Beyond these deterministic LRMF methods, there has

been several probabilistic extensions of matrix factoriza-

tions. Factor analysis (FA) [4] is a probabilistic exten-

sion of PCA that assumes normally distributed coefficients

(U) and a diagonal Gaussian noise model. An instance

of FA is the probabilistic Principal Component Analysis

(PPCA) [29, 33, 38] model. Unlike FA, PPCA assumes

an isotropic Gaussian noise models. Other probabilistic

extensions include the mixture of PPCA [37] that extends

PPCA by considering a mixture model in which the com-

ponents are probabilistic PCA models (Mixture PCA). Re-

cently, some probabilistic frameworks for robust matrix fac-

torization [42, 23, 3] have been further proposed and model

the noise with a Laplacian or student-t distributions. Unlike
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previous work, we model our noise as a MoG and not a par-

ticular unimodal distribution.

3. LRMF with MoG noise

This section proposes a new LRMF method with a MoG

noise model, a new matrix factorization method that ac-

counts for multi-modal noise distributions.

3.1. The subspace-MoG model

In LRMF, each element xij (i = 1, 2, · · · , d, j =
1, 2, · · · , n) of the input matrix X can be modeled as

xij = (ui)Tvj + εij , (2)

where ui and vi are the ith row vectors of U and V, re-

spectively, and εij denotes the noise in xij . It can be easily

shown that the L2 or L1 LRMF model (1) corresponds to

the MLE of the problem when εij is independently sam-

pled from a Gaussian or Laplace distribution, respectively.

To deal with more complex problems in computer vision, it

is natural to use a MoG to model the noise. Since it is an

universal approximator to any continuous distributions [25].

For instance, a Laplacian distribution can be equivalently

expressed as a scaled MoG [2].

Therefore, in this paper we will assume that each εij in

Eq. (2) is a sample from a MoG distribution p(ε), defined

as

p(ε) ∼
K∑

k=1

πkN (ε|0, σ2
k),

where N (ε|0, σ2) denotes the Gaussian distribution with

mean 0 and variance σ2. πk ≥ 0 is the mixing proportion

where
∑K

k=1 πk = 1. Then, the probability of each element

xij of X can be written as

p(xij |ui,vj ,Π,Σ) =

K∑
k=1

πkp(xij |k),

where p(xij |k) = N (xij |(ui)Tvj , σ2
k), Π =

{π1, π2, · · · , πK}, and Σ = {σ1, σ2, · · · , σK}. The

likelihood of X can then be written as

p(X|U,V,Π,Σ) =
∏

i,j∈Ω

p(xij |(ui)Tvj ,Π,Σ)

=
∏

i,j∈Ω

K∑
k=1

πkN (xij |(ui)Tvj , σ2
k),

where Ω is the index set of the non-missing entries in X.

Given the likelihood, our aim is to maximize the log-

likelihood function w.r.t the MoG parameters Π,Σ and the

LRMF parameters U,V, that is:

max
U,V,Π,Σ

L(U,V,Π,Σ)

=
∑
i,j∈Ω

log

K∑
k=1

πkN (xij |(ui)Tvj , σ2
k). (3)

In the following we will refer to the problem (3) as the

subspace-MoG model.

3.2. EM algorithm

The EM [12] algorithm can be used to estimate the pa-

rameters (U,V,Π,Σ) that maximize the likelihood func-

tion of the subspace-MoG model. Recall that in the standard

EM algorithm for MoG there is a mean for each cluster and

in our case all clusters share the variables U,V. Our pro-

posed algorithm will iterate between calculating responsi-

bilities of all Gaussian components (E Step) and maximiz-

ing the parameters Π,Σ and U,V of the model (M Step).

E Step: Assume a latent variable zijk in the model, with

zijk ∈ {0, 1} and
∑K

k=1 zijk = 1, indicating the assign-

ment of the noise εij to a specific component of the mixture.

The posterior responsibility of mixture k (= 1, 2, · · · ,K)

for generating the noise of xij (i = 1, 2, · · · , d, j =
1, 2, · · · , n) is then calculated by ([12]):

E(zijk) = γijk =
πkN (xij |(ui)Tvj , σ2

k)
K∑

k=1

πkN (xij |(ui)Tvj , σ2
k)

. (4)

The M step maximizes the upper bound given by the E-

step w.r.t. U,V,Π,Σ [12]:

EZ p(X,Z|U,V,Π,Σ) =∑
i,j∈Ω

K∑
k=1

γijk

(
log πk − log

√
2πσk − (xij − (ui)Tvj)2

2πσ2
k

)
. (5)

An easy way to solve this maximization problem is to alter-

natively update the MoG parameters Π,Σ and the factor-

ized matrices U,V as follows:

Update Π,Σ: Closed-form updates for the MoG param-

eters (for k = 1, 2, · · · ,K) are [12]:

Nk =
∑
i,j

γijk, πk = Nk∑
Nk

,

σ2
k = 1

Nk

∑
i,j

γijk(xij − (ui)Tvj)2. (6)

Update U,V: The components of Eq. (5) related to U
and V can then be re-written as follows:∑

i,j∈Ω

K∑
k=1

γijk

(
− (xij − (ui)Tvj)2

2πσ2
k

)

= −
∑
i,j∈Ω

(
K∑

k=1

γijk
2πσ2

k

)
(xij − (ui)Tvj)2

= −
∥∥∥W � (X−UVT )

∥∥∥
L2

, (7)
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where the element wij of W ∈ �d×n is

wij =

⎧⎪⎨⎪⎩
√

K∑
k=1

γijk

2πσ2
k
, i, j ∈ Ω

0 , i, j /∈ Ω

. (8)

It is interesting to observe that the maximization of (7) is

exactly equivalent to the Weighted L2 LRMF problem. We

can use any off-the-shelf algorithms, such as the Alternated

Least Squares (ALS) [11], WLRA [35] and DN [6] to up-

date U,V in our method. We adopted the ALS due to its

simplicity of implementation and good performance. The

optimization process is summarized in Algorithm 1.

Algorithm 1: MoG algorithm for LRMF

Input: X = (x1,x2, · · · ,xn) ∈ Rd×n, index set Ω of

non-missing entries of X
Output: U,V

1 Randomly initialize Π,Σ,U,V, MoG number K,

small threshold ε.

2 repeat
3 (E Step): Evaluate γijk for i = 1, 2, · · · , d;

j = 1, 2, · · · , n; k = 1, 2, · · · ,K by Eq. (4).

4 (M Step for Π,Σ): Evaluate πk, σ
2
k for

k = 1, 2, · · · ,K by Eq. (6).

5 (M Step for U,V): Evaluate U,V by solving

minU,V

∥∥∥W � (X−UVT )
∥∥∥
L2

through ALS,

where W is calculated by Eq. (8).

6 (Automatic K tuning): If
|σ2

i−σ2
j |

σ2
i+σ2

j
< ε for some

i, j, then combine the ith and jth Gaussian

components into a unique Gaussian by letting

πi = πi + πj , σ2
i = (niσ

2
i + njσ

2
j )/(ni + nj),

where ni is the element number in ith Gaussian

component, and removing the jth Gaussian

parameters from Π,Σ. Let K = K − 1.
7 until converge;

3.3. Other details of the subspace-MoG model

Number of Gaussian components: We propose a sim-

ple but effective method to automatically estimate the num-

ber of Gaussians in our model. We start with a given number

of Gaussian mixtures (e.g., K = 6) that is large enough to

fit the noise distribution in all our experiments. After each

iteration (E and M step), we check if the relative deviation
|σ2

i−σ2
j |

σ2
i+σ2

j
between variances of two Gaussian components is

smaller than some small threshold ε (ε = 0.1 for all ex-

periments). If so, the two mixtures are naturally seen as a

similar Gaussian and can be combined. The number K is

thus reduced to K − 1.

Local minima: Our algorithm is iterative in nature, and

in each iteration we are guaranteed to not decrease the en-

ergy of the log-likelihood function (Eq. (3)). However, the

log-likelihood is subject to local maxima ([12]). A com-

monly used strategy to alleviate this problem is to apply

multiple random initializations, and select the one with the

largest log-likelihood.

Termination conditions: We stop the algorithm when

the change in U between consecutive iterations is smaller

than a pre-specified small threshold, or the maximum num-

ber of iterations is reached.

Robustness to outliers: L2 LRMF is generally consid-

ered to be sensitive to outliers. In our subspace-MoG model,

however, an outlier will belong to a mixture with large vari-

ance, and wij will have a small value based on Eq. (8). This

will reduce the influence of the outlier in the solution.

4. Experiments
To evaluate the performance of the proposed subspace-

MoG method, we conducted extensive synthetic, Structure

From Motion (SFM), face modeling and background sub-

traction experiments. In the synthetic and SFM experiments

we analyzed the performance of our algorithm in situations

when the ground truth is known and we added different

types of noise to it. The experiments in face modeling and

background subtraction illustrate how the the MoG noise

model is a realistic assumption for visual data.

All methods were implemented in Matlab R2011b and

run on a PC with Intel Q9300@2.50G (CPU) and 4GB of

RAM. To properly measure the capability of various non-

convex LRMF optimization models, all competing methods

(except SVD and nuclear-norm based Robust PCA [43]) are

run with 10 random initializations, and the best result is se-

lected. All methods run a maximum of 100 iterations or

stop when the difference between consecutive Us is smaller

than 0.01.

In all experiments, we compared our approach with sev-

eral LRMF methods including Robust PCA (IRLS) [11]2,

nuclear-norm based Robust PCA [43] (NN-Robust PCA)3,

two representative methods for L2 LRMF: WLRA [35]

and DN [6]4; four state-of-the-art methods for L1 LRMF:

ALP [20]5, L1Wiberg [14]6, RegL1ALM [45]7 and

CWM [27]. Because code was not available, we imple-

mented WLRA [35]. The NN-Robust method provides the

rank of the matrix as a function of the regularization param-

2http://www.cs.cmu.edu/˜ftorre/
3http://perception.csl.illinois.edu/matrix-rank/sample code.html
4http://www.robots.ox.ac.uk/˜abm/
5We used the code “l1decode pd.m” [8] for solving the lin-

ear programming problem. The code was downloaded from

“http://www-inst.eecs.berkeley.edu/˜ee225B/sp08/lectures/CSmeetsML-

Lecture1/codes/l1magic/Optimization”.
6http://cs.adelaide.edu.au/˜anders/code/cvpr2010.html
7https://sites.google.com/site/yinqiangzheng/
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eters. In some experiments the rank is known a priori, and

we have selected the regularization parameter that satisfies

the required rank.

4.1. Synthetic experiments

Four sets of synthetic experiments were designed to eval-

uate the performance of our method against other LRMF

methods with different types of noise. For each set of ex-

periments, we randomly generated 30 low-rank matrices,

each of size 40 × 20 and rank 4. Each of these matrices

is generated by the multiplication of two low-rank matri-

ces Ugt ∈ �40×4 and Vgt ∈ �20×4, and Xgt = UgtVT
gt

is the ground truth matrix. Each element of Ugt and Vgt

is generated from a Gaussian distribution N (0, 1). In each

experiment, we randomly specified 20% of missing entries

in Xgt and further added different types of noise as fol-

lows: (1) No noise added. (2) Gaussian noise N (0, 0.1).
(3) Sparse noise: 20% of the entries were corrupted with

uniformly distributed noise between [−5, 5]. (4) Mixture
noise: 20% of the entries were corrupted with uniformly

distributed noise over [−5, 5], 20% are contaminated with

Gaussian noise N (0, 0.2), and the remaining 40% are cor-

rupted Gaussian noise N (0, 0.01). The noisy matrix is de-

noted as Xno. The final performance of each method on

each experiment was measured as the average over the 30
realizations and the error measured with six measures:

E1 =
∥∥∥W � (Xno − ŨṼT )

∥∥∥
L1

, E2 =
∥∥∥W � (Xno − ŨṼT )

∥∥∥
L2

,

E3 =
∥∥∥Xgt − ŨṼT

∥∥∥
L1

, E4 =
∥∥∥Xgt − ŨṼT

∥∥∥
L2

,

E5 = subspace(Ugt, Ũ), E6 = subspace(Vgt, Ṽ),

where Ũ, Ṽ are the outputs of the corresponding LRMF

method, and subspace(U1,U2) denotes the angle between

subspaces spanned by the columns of U1 and U2. It is im-

portant to notice that existing methods optimize E1 or E2,

but the last four measures (E3 − E6) are more meaningful

to evaluate if the method recovers the correct subspace.

The performance of the methods are shown in Table 1.

It can be observed from Table 1 that although the L1 and

L2 LRMF methods generally perform better in terms of E1
and E2, respectively, the proposed subspace-MoG method

performs best or the second best in all experiments in es-

timating a better subspace from noisy data (measurements

E3-E6). Particularly, in the fourth set of experiments(when

the noise is a mixture) our method always performs best in

all errors.

4.2. SFM experiments

The SFM problem can be formulated as a LRMF

task [20, 14]. We used the well known dinosaur

sequence[20] that contains projections of 319 points tracked

over 36 frames, leading to a 319 × 72 matrix. The ma-

trix contains around 77% missing data due to occlusions

or tracking failures. We added four types of noise to the

matrix: (1) No noise added. (2) Gaussian noise N (0, 10).
(3) Sparse noise: 10% of the non-missing elements were

corrupted by uniformly distributed noise ([−50, 50]). (4)

Mixture noise: 10% of the non-missing elements were

corrupted by uniformly distributed noise ([−50, 50]), the

remaining 90% were contaminated with Gaussian noise

N (0, 10). Four quantitative criteria were utilized for per-

formance evaluation in these experiments, including:

E1 =
∥∥∥W � (Xno − ŨṼ

T
)
∥∥∥
L1

, E2 =
∥∥∥W � (Xno − ŨṼ

T
)
∥∥∥
L2

,

E3 =
∥∥∥W � (Xgr − ŨṼ

T
)
∥∥∥
L1

, E4 =
∥∥∥W � (Xgr − ŨṼ

T
)
∥∥∥
L2

,

where Ũ, Ṽ are the outputs of the corresponding LRMF

method. We compared with the same methods as in the

previous experiments, with exception of L1Wiberg because

it did not fit into memory. The results are shown in Table 2.

Similar to our synthetic experiments, the proposed

subspace-MoG method does not perform best among all

competing methods in terms of E1 and E2. However, it

always has the best or the second best performance in the

error E3-E6. Especially, it performs the best in terms of

both E3 and E4 in the mixture noise experiments.

4.3. Face modeling experiments

This experiment aims to test the effectiveness of the pro-

posed MoG method to build a model of the face under dif-

ferent illuminations. The data matrix is generated by ex-

tracting the first subset of the Extended Yale B database

[16, 5], containing 64 faces of one subject with size 192 ×
168 under different illuminations. The input matrix has a

size of 32256 × 64. Typical images used are plotted in

the first column of Fig. 2. We compared with Robust PCA

(IRLS), NN-Robust PCA [43], SVD [17], RegL1ALM [45],

CWM [22] and PCAL1 [22]. The SVD method is imple-

mented with the Matlab function. Assuming perfect condi-

tions, these face images would lie on a 4-D subspace [5].

we thus set the rank to 4 for all competing methods except

nuclear-norm based Robust PCA, which automatically se-

lects the rank. Fig. 2 compares some reconstructed images

obtained by these competing methods.

From Fig. 2, it is easy to observe that the proposed

method, as well as the other competing methods, are ca-

pable of removing the cast shadows and saturations in the

faces, as shown in the first row of Fig. 2. However, our

method performs better over the faces with large dark re-

gions, as shown in the 2on − 4th rows of Fig. 2. This can

be easily explained by Fig. 1(d). Unlike existing methods,

our approach is able to model a mixture of Gaussians noise.

One mixture, with large variance models shadows, saturated

regions and outliers in the face (see the blue and yellow ar-

eas in the second noise image of Fig. 1(d)). The other mix-

ture, with smaller variance, accounts for the camera noise
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MoG IRLS[11] WLRA[35] DN[6] ALP[20] L1Wiberg[14] RegL1ALM[45] CWM[27] NN-Robust PCA[7]

No Noise (log values)

E1 −18 .5 −26.5 −2.17 −11.4 0.587 −8.73 −12.6 −0.222 −2.86
E2 −42 .2 −56.8 −9.38 −27.6 −4.27 −21.1 −30.0 −4.83 −10.8
E3 −17 .9 −25.9 −1.50 −11.0 1.03 −8.44 −11.9 0.324 −2.20
E4 −40 .5 −55.2 −7.06 −27.3 −3.37 −20.7 −27.9 −3.65 −8.73
E5 −23 .8 −32.5 −7.05 −18.9 −5.28 −14.6 −17.4 −5.35 −7.75
E6 −23 .9 −31.9 −8.15 −19.4 −6.18 −16.1 −18.4 −5.95 −8.83

Gaussian Noise

E1 40.0 40.0 40.0 40.0 37.5 35.7 35.7 39.1 40.0
E2 3.99 3.99 3.99 3.99 5.20 5.08 5.09 5.59 3.99
E3 39.3 39.3 39.3 39.3 49.3 47.95 48.02 51.9 39.3
E4 3.29 3.29 3.29 3.29 5.31 4.91 4.93 6.38 3.29
E5 0.0455 0.0455 0.0456 0.0455 0.0561 0.0541 0.0545 0.0636 0.0455
E6 0.0295 0.0295 0.0295 0.0295 0.0395 0.0368 0.0367 0.0466 0.0295

Sparse Noise

E1 400 .6 519.1 518.5 519.1 403.6 395.1 425.8 425.7 523.1
E2 1317.7 827 .5 827 .5 827.3 1174.8 1270.8 1176.1 1125.1 834.7
E3 54.1 624.1 623.2 624.4 159.9 67 .4 446.4 278.0 628.0
E4 100 .9 991.1 1002.3 995.4 171.2 99.4 8984.9 342.4 976.05
E5 0 .289 0.741 0.740 0.742 0.347 0.279 0.978 0.471 0.733
E6 0.0169 0.583 0.581 0.584 0.164 0 .0284 0.698 0.338 0.587

Mixture Noise

E1 419.7 516.9 516.9 516.8 412 .9 404.5 417.9 430.8 520.5
E2 1274.3 829.0 829.0 829.0 1119.1 1147.1 1124.5 1120.4 836.3
E3 149.5 616.1 615.7 616.1 242.1 192 .4 375.4 291.6 618.4
E4 189.1 956.1 951.7 956.2 276.5 213 .5 4245.4 336.6 955.9
E5 0.374 0.692 0.691 0.692 0.427 0 .377 0.696 0.461 0.701
E6 0.155 0.579 0.579 0.579 0.230 0 .175 0.530 0.346 0.589

Table 1. Six measures of error for the synthetic example with different noise models. The best and the second best results in each

experiment are highlighted in bold and italic, respectively.

MoG IRLS[11] WLRA[35] DN[6] ALP[20] RegL1ALM[45] CWM[27] NN-Robust PCA[7]

No Noise

E1 0 .442 1.83 8.24 0.490 4.85 0.291 7.71 4.98
E2 1 .13 3.18 12.1 1.12 12.9 1.47 26.4 7.96
E3 0 .442 1.83 8.24 0.490 4.85 0.291 7.71 4.98
E4 1 .13 3.18 12.1 1.12 12.9 1.47 26.4 7.96

Gaussian Noise

E1 6 .70 7.03 11.2 6.73 8.48 6.14 12.2 9.05
E2 8 .48 8.93 14.9 8.43 15.7 9.31 21.9 12.2
E3 4 .55 5.01 9.41 4.49 8.05 5.39 11.6 7.04
E4 5 .87 6.43 13.2 5.85 14.2 6.91 20.7 10.2

Sparse Noise

E1 3 .24 4.95 10.48 4.53 6.42 2.85 10.3 7.44
E2 9.31 8 .27 14.90 7.90 17.7 9.22 19.6 11.5
E3 1 .29 4.08 9.34 3.58 4.91 0.524 9.02 6.41
E4 4 .28 6.13 13.09 5.49 15.8 1.98 18.0 9.68

Mixture Noise

E1 8 .27 8.70 12.8 8.42 10.6 7.67 13.1 10.0
E2 11 .2 11.4 16.9 10.99 18.2 12.3 23.8 13.3
E3 5.82 5.97 9.99 5.83 9.19 6.31 11.7 7.19
E4 7.81 7.88 13.8 7.82 15.5 8.44 21.5 9.83

Table 2. Performance comparison of the competing methods in the SFM experiments. The best and the second best results in each

experiment are highlighted in bold and italic, respectively.

Original face MoG IRLS SVD RegL1ALM PCAL1 CWM NN-Robust PCA

Figure 2. From left to right: original face images, faces re-

constructed by MoG, Robust PCA (IRLS), SVD, RegL1ALM,

PCAL1, CWM and nuclear-norm based Robust PCA, respectively.

which are specially amplified in the dark area of the face

(see the first noise image of Fig. 1(d)).

4.4. Background subtraction experiments

This experiment compares our approach in the problem

of background subtraction [11]. We built a background

model by performing LRMF in seven video sequences pro-

vided by [24]8 (600 frames of 128 × 160 pixels) and one

in [11]9 (506 frames of 120 × 160 pixels). The sequences

include variations due to lighting changes, people walking,

shadows, etc. See Fig. 3 and Fig. 4.

8http://perception.i2r.a-star.edu.sg/bk model/bk index
9http://www.cs.cmu.edu/˜ftorre/codedata.html
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We applied Robust PCA (IRLS) [11]; NN-Robust

PCA [43]; the state-of-the-art method for L2 LRMF:

SVD [17]; three state-of-the-art methods for L1 LRMF:

RegL1ALM [45], CWM [22], PCAL1 [22]; and our

subspace-MoG (MoG). The dimension of the subspace was

set to 6 to the videos from [24] and 15 for the video in [11].

Fig. 3 illustrates the results of running different LRMF

methods in the videos provided by [24]. We observe that all

methods can provide a good background model. However,

the proposed subspace-MoG method provides a more ac-

curate model that decomposes the foreground information

into three components with different variance from small

to large: (1) background variation corresponding mostly to

camera noise; (2) shadows alongside the foreground object;

(3) moving objects in the foreground (see 2on − 4th rows

of Fig. 3). The foreground extracted by the other competing

methods is more coarse because it merges the object and

its shadow (see Frame 402 for easy visualization). Another

example of the performance of subspace-MOG can be in

Fig. 4 (video from [11]). Our method reconstructs better

the illumination variations and is not biased by the random

people walking, shadows, specular reflections, or motion of

the tree.

5. Conclusions

This paper proposes a new low-rank factorization

method to estimate subspaces with an unknown noise distri-

bution. The noise is modeled as a MoG, and the parameters

of the subspace-MoG model are learned from data automat-

ically. Compared to existing L2 and L1 LRMF methods that

are optimal for Gaussian or Laplacian noises, our method

performs better (on average) in a wide variety of synthetic

and real noise experiments. Our method has proven useful

in modeling different types of noise in faces under differ-

ent illuminations and background subtraction. A limitation

of our approach is the non-convexity of the cost function.

Currently, we are exploring spectral approaches to improve

robustness to local minima. Finally, adding robustness to

different types of noise can be similarly applied to other

component analysis methods (e.g., linear discriminant anal-

ysis, normalized cuts) that are formulated as least-squares

problems [10].
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Figure 3. From top row to bottom: original Lobby frames, absolute errors computed by different methods(the details are better seen by

zooming on a computer screen). The moving object region in Frame 402 is enlarged for better visualization.

                     Original Frame      MoG               IRLS              SVD        RegL1ALM      PCAL1            CWM     NN-Robust PCA

Figure 4. From left to right: original frames, reconstructed backgrounds computed by different methods.
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