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Abstract

Robust Principal Component Analysis (RPCA) via rank
minimization is a powerful tool for recovering underly-
ing low-rank structure of clean data corrupted with sparse
noise/outliers. In many low-level vision problems, not only
it is known that the underlying structure of clean data is
low-rank, but the exact rank of clean data is also known.
Yet, when applying conventional rank minimization for
those problems, the objective function is formulated in a
way that does not fully utilize a priori target rank infor-
mation about the problems. This observation motivates us
to investigate whether there is a better alternative solution
when using rank minimization.

In this paper, instead of minimizing the nuclear norm, we
propose to minimize the partial sum of singular values. The
proposed objective function implicitly encourages the tar-
get rank constraint in rank minimization. Our experimen-
tal analyses show that our approach performs better than
conventional rank minimization when the number of sam-
ples is deficient, while the solutions obtained by the two ap-
proaches are almost identical when the number of samples
is more than sufficient. We apply our approach to various
low-level vision problems, e.g. high dynamic range imag-
ing, photometric stereo and image alignment, and show that
our results outperform those obtained by the conventional
nuclear norm rank minimization method.

1. Introduction
Robust Principal Component Analysis (RPCA) [5, 3]

aims to recover a low-rank matrix A ∈ R
m×n, from cor-

rupted observations O = A+ E, where E ∈ R
m×n repre-

sents errors with arbitrary magnitude and distribution. The

rank minimization approach [21, 23, 3, 4] assumes E is

sparse in its distribution and formulates the problem as:

argmin
A,E

‖A‖∗ + λ‖E‖1, s.t.O = A+E, (1)

where ‖A‖∗ =
∑

i σi(A) is the nuclear norm of A, ‖E‖1
is the l1-norm of E and λ is the relative weight between
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the two terms. Eq. (1) can be solved effectively by various

methods [19, 24].

Wright et al. [23] and Candés et al. [3] proved that, un-

der broad conditions, the solution of Eq. (1) is unique1. Yet,

when the number of samples in O is very limited, we ob-

serve that the unique solution of Eq. (1) might include some

outliers as inliers and vice versa. The converged solution

can be degenerated. For instance, in the photometric stereo

problem [25], the solution of A might have a rank lower

than the theoretical rank of 3. Such limited observations

are not uncommon in many computer vision problems due

to practical reasons. For example, in High Dynamic Range

(HDR) context, often only 2-4 differently exposed images

are captured and photometric stereo requires only 3 input

images in theory.

In this paper, based on the prior knowledge about the

rank of A, we propose an alternative objective function

which minimizes the partial sum of singular values of A:

argmin
A,E

∑
min(m,n)
i=N+1 σi(A) + λ‖E‖1, s.t.O = A+E,

(2)

where N is the target rank of A which can be derived from

problem definition, e.g. N = 1 for background subtrac-

tion, N = 3 for photometric stereo. Eq. (2) minimizes the

rank of residual errors of A, instead of the nuclear norm.

Although Eq. (2) is non-convex, we observe in our experi-

ments that Eq. (2) encourages the resulting low-rank matrix

to have the rank close to N even with deficient observations.

We empirically studied the proposed objective function

in many low-level vision problems, e.g. HDR imaging, pho-

tometric stereo, and image alignment, where the theoretical

rank of A is known and the number of observations is lim-

ited. Our experimental analyses show that our formulation,

described in Eq. (2), converges to a solution more robust

to outliers than the solution obtained by the conventional

objective function in Eq. (1) in rank minimization, when

the number of observations is limited. Empirically, we also

found that the solutions of Eq. (1) and Eq. (2) are almost

identical when there are more than the sufficient number of

observed samples.

1Uniqueness is subject to the choice of λ. Wright et al. [23] suggested

λ = O(m−1/2) where m is dimension of O.
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In short summary, our contributions are as follows:

• We present a partial sum objective function and its cor-

responding minimization method for RPCA.

• We empirically study the partial sum objective func-

tion and claim that it outperforms conventional rank

minimization when the number of observed samples is

very limited.

• We apply our technique on various low-level vision

problems and demonstrate superior results over previ-

ous works. We also demonstrate how these low-level

vision problems can be formulated into our framework.

2. Related Works
In this section, we briefly review early works related to

RPCA, then we discuss some recent advances in RPCA and

its applications in computer vision. We invite readers to

refer to Candés et al. [3] for a thoughtful review of RPCA.

In conventional PCA [17], the goodness-of-fit of data is

evaluated by the l2-norm which is very sensitive to outliers.

Early works in RPCA tried to reduce the effects of outliers

by random sampling [10], robust M-estimator [5, 6], or al-

ternating minimization [18] to identify outliers or to penal-

ize data with large errors. These methods share some limi-

tations either they are sensitive to the choice of parameters

or their algorithms are not polynomial in running time.

Recent advances in RPCA showed that the heuristic nu-

clear norm solution [21, 23, 3], which minimizes the rank

of the data matrix, converges to a solution which is robust

to sparse outliers. Candés et al. [3] formulated the RPCA

problem as:

min
A,E

rank(A) + λ‖E‖0, s.t. O = A+E. (3)

where ‖·‖0 denotes the l0-norm. Since Eq. (3) is an NP-hard

problem, Candés et al. [3] proved that the convex relaxation

version in Eq. (1) approximates the solution of Eq. (3) as

long as E is randomly sparse and the underlying rank(A)
is lower than a certain upper bound. To solve Eq. (1), var-

ious methods have been proposed [19, 24]. Among them,

the inexact augmented Lagrange multiplier (ALM) [19] has

shown to be good in terms of computationally efficiency.

The robustness and scalability of the rank minimization

algorithm for RPCA [3, 19, 24] have inspired many appli-

cations in computer vision, such as background subtrac-

tion [3], image and video restoration [16], image align-

ment [20], regular texture analysis [26], and robust pho-

tometric stereo [25]. These applications are based on the

observation that the underlying structures of clean data are

linearly correlated, which forms a low-rank data matrix.

As briefly mentioned in the introduction, in some applica-

tions, such as background subtraction [3] and photometric

stereo [25], the rank of clean data can be determined by the

problem definition. In practice, rank minimization proposed

by Candés et al. [3] is general in the sense that it does not

require to know a priori the rank of clean data.

The success of rank minimization based RPCA comes

from the blessing of dimensionality [8, 23], implying large

amount of observations. However, when the number of

observations is limited, which is common in practice, re-

sults from RPCA might be degenerated, e.g. correct sam-

ples might be considered as outliers and vice versa.

The impetus of this work is to introduce an alternative

objective function that can efficiently deal with deficient ex-

amples in rank minimization problem. Seeing the limitation

of rank minimization as an addendum, the proposed alter-

native objective function can control the lower bound of the

rank with a simple and efficient minimizer. We demonstrate

the effectiveness of our proposed objective function through

thoughtful experiments.

3. Partial Sum Minimization by Partial Singu-
lar Value Thresholding Operator

Our partial sum objective function in Eq. (2) is a con-

strained optimization problem. To solve problems of this

type, Lin et al. [19] proposed the augmented Lagrange mul-

tipliers (ALM) method which is known to converge fast and

be scalable. The augmented Lagrangian function of Eq. (2)

is formulated by:

L(A,E,Z,μ) =
∑

min(m,n)
i=N+1 σi(A) + λ‖E‖1

+ < Z,O−A−E > +
μ

2
‖O−A−E‖2F ,

(4)

where μ is a positive scalar, and Z ∈ R
m×n is an estimate of

the Lagrange multiplier. Minimizing the Lagrangian func-

tion directly might be particularly challenging. According

to a recent development of alternating direction minimiza-

tion [19], Eq. (4) can be solved by minimizing each vari-

able alternatively while fixing the other variables. This is

not equivalent to the exact minimization, but in practice the

converged solution is very close to the solution of the orig-

inal problem while still satisfying the constraints. From the

Lagrangian function in Eq. (4), the optimization problem

can be divided into two sub-problems:

A∗ = argmin
A

L(A,Ek,Zk, μk)

= argmin
A

∑
min(m,n)
i=N+1 σi(A)

+ < Zk,O−A−Ek > +
μk

2
‖O−A−Ek‖2F

= argmin
A

μ−1
k

∑
min(m,n)
i=N+1 σi(A)

+
1

2

∥∥A− (O−Ek + μ−1Zk)
∥∥2
F
, (5)
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E∗ = argmin
E

L(Ak,E,Zk, μk)

= argmin
E

λ‖E‖1
+ < Zk,O−Ak −E > +

μk

2
‖O−Ak −E‖2F

= argmin
E

λμ−1
k ‖E‖1

+
1

2

∥∥Ek − (O−Ak + μ−1
k Zk)

∥∥2
F
. (6)

where k indicates the iteration index (see Alg. 1).

Solving A∗ To minimize Eq. (5), we first define the Partial

Singular Value Thresholding (PSVT) operator PN,τ [·].
Let τ > 0, l = min(m,n) and X,Y ∈ R

m×n which

can be decomposed by SVD and Y can be considered as the

sum of two matrices, Y = Y1 + Y2 = UY 1DY 1V
T
Y 1 +

UY 2DY 2V
T
Y 2, where UY 1,VY 1 are the singular vector

matrices corresponding to the largest singular values from

the first to the N -th, and UY 2,VY 2 from the (N+1)-th to

the last from SVD. Eq. (5) can be re-written in the form of

the following minimization problem:

argmin
X

1

2
‖X−Y‖2F + τ

l∑
i=N+1

σi(X), (7)

It can be shown that the solution of such problem is given

by the following PSVT operator:

PN,τ [Y] =UY (DY 1 + Sτ [DY 2])V
T
Y

=Y1 +UY 2Sτ [DY 2]V
T
Y 2,

where DY 1 = diag(σ1, · · · , σN , 0, · · · , 0),
DY 2 = diag(0, · · · , 0, σN+1, · · · , σl),

(8)

where Sτ [x] = sign(x) · max(|x| − τ, 0) is the soft-

thresholding (shrinkage) operator [12] , and x ∈ R. This

operator can be extended to vectors and matrices by apply-

ing it element-wisely. The detail proof and derivation of

the PSVT operator can be found in the supplementary ma-

terial. Notice that the proposed PSVT operator provides the

closed-form solution of the sort of Eq. (8)(e.g. Eq. (5)).

To clarify PSVT, when τ = ∞, the optimal solution of

Eq. (7) is a low-dimensional projection of Y known as sin-

gular value projection [15] which enforces the target rank

constraint through projection. When σi < τ for 1 ≤ i ≤ N ,

conventional SVT [2] projects σi to zero resulting in a more

deficient rank of A than the target rank while PSVT does

not. Hence, PSVT implicitly encourages the resulting ma-

trix A to meet the target rank even when all the σi are small.

This situation occasionally happens when the number of ob-

served samples is limited. Since Eq. (5) is a non-convex

function, PSVT only guarantees a local minimum for the

sub-problem. Yet, PSVT monotonically decreases the value

Algorithm 1 Partial sum of singular values minimization

via the ALM method

Input : O ∈ R
m×n, λ > 0, the constraint rank N .

1: Initialize A0 = E0 = 0, Z as suggested in [19], μ0 >
0, ρ > 1 and k = 0.

2: while not converged do
3: while not converged do
4: Update A by Eq. (10).

5: Update E by Eq. (10).

6: end while
7: Zk+1 = Zk + μk(O−Ak+1 −Ek+1).
8: μk+1 = ρμk.

9: k = k + 1.

10: end while
Output : (Ak,Ek).

of the objective function of the sub-problem, and the exper-

iments in the next section show that it provides satisfying

results.

Solving E∗ As suggested by Hale et al. [12], the solution to

the sub–problem in Eq. (6) can be solved as the following

form:

Sτ [Y] = argmin
X

1

2
‖X−Y‖2F + τ‖X‖1, (9)

Despite its simple structure, shrinkage methods are shown

to be very effective in minimizing the l1-norm and the prox-

imity term and guarantee that the solution is the global min-

imum [12, 2].

Updating A∗ and E∗ At each iteration, Ak and Ek can be

updated with the operators Sτ [·] and PN,τ [·] as:

Ak+1 = PN,μ−1
k
[O−Ek + μk

−1Zk]

Ek+1 = Sλμ−1
k
[O−Ak+1 + μk

−1Zk].
(10)

We also found that updating Ak and Ek just once when

solving the sub-problem is sufficient to converge to the so-

lution of Eq. (2), called inexact ALM [19] which is used for

computational efficiency. The iteration is terminated when

the equality constraint is satisfied (in all the experiments,
‖O−A−E‖F

‖O‖F < 1e−7). For more details, one can refer to the

report of Lin et al. [19].

4. Experiment Results
We compare the performance of the proposed method

against RPCA [3] with synthetic data sets and real world

applications. We use the Matlab implementation of RPCA

provided by Wright et al. [24]. In all the experiments

including synthetic and real-world data, we use the de-

fault parameters recommended by Wright et al. [24] (λ =
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Figure 1. Success ratio for synthetic data with varying numbers of

columns n. Comparison between RPCA and ours for the rank-1

(a,b) and rank-3 case (c,d). The Y–axis represents the corruption

ratio r ∈ [0, 0.4]. The X–axis represents the column size n ∈
[3, 30] for the rank-1 case in (a,b), n ∈ [5, 30] for the rank-3 case

in (c,d). The color magnitude represents success ratio [0,1].

1/
√
max(m,n), where m and n are the row and column

size of the matrix O). We applied our method for real world

data sets in the contexts of HDR, photometric stereo and

batch image alignment. Further results can be found in the

supplementary materials.

4.1. Synthetic Dataset

We compare our method with RPCA on synthetic data

for success ratio and convergence behaviors. To synthesize

a ground-truth low-rank matrix AGT ∈ R
m×n of rank N ,

we perform a linear combination of N arbitrary orthogo-

nal basis vector. The weight vector used to span each col-

umn vector of AGT is randomly sampled from the uniform

distribution U [0, 1]. To generate sparse outliers, we select

m × n × r entries from AGT , where r denotes the corrup-

tion ratio. Larger r means more outlier entries. The selected

entries are corrupted by random errors from U [0, 1]. We ran

each of the tests listed in the following, over 50 trials, and

report the average errors of overall trials.

Comparison for Success Ratio To verify the robustness

of our method to outliers, we test how the performances of

RPCA and the proposed method are affected by the num-

ber of observations, data dimension and the corruption ratio

from E. We examine whether the estimation is successful or

not by counting the number of successes. If the recovered

Â satisfies
‖AGT−Â‖F
‖AGT ‖F < 0.01, where Â is the estimated

result from RPCA or our method, we consider that A and

E are successfully estimated. We compare the success ratio

with varying the column size n (i.e. the number of obser-

Table 1. Accuracy comparison among SVP, Zheng et al. [27] and

ours.

Mean accuracy

No. inputs (n) SVP [27] Ours

5 0.1628 0.1456 0.0686

10 0.1267 0.0407 0.0145

15 0.1073 0.0052 0.0042

20 0.0985 0.0022 0.0014

vations), and varying the row size m (i.e. data dimension).

The magnitude in Fig. 1 indicates the percentage of success.

A larger blue area indicates a more robust performance of

the algorithm.

We performed experiments where we fixed m = 10000
and varied n and r. The comparisons between RPCA and

our method with rank-1 and -3 constraint are shown in

Fig. 1-(a-d). As n decreases (i.e. the number of observa-

tions decreases), the success ratio of RPCA decreases more

rapidly than our method. When more observations are avail-

able (over n = 25), RPCA and the proposed method show

similar behavior. Additional results for the other rank cases

and the varying column n cases can be found in the supple-

mentary material.

We notice that, even though we use the same parameter

λ in all the experiments varying the matrix size, rank and

corruption ratio, our method shows a more broad success

range compared to RPCA.

Comparison with Other Approaches We provide an-

other comparisons with the singular value projection (SVP)

as a baseline method and a low-rank matrix approximation

approach by matrix factorization. General matrix factor-

ization methods enforce the target rank N constraint of data

matrix (M = UV ) by factorizing it into a product of rank N
basis (U ) and coefficient (V ) as hard constraint. Out of ma-

trix factorization based methods, we compare with Zheng et
al. [27] as a state-of-the-art method. We use the default pa-

rameters for Zheng et al.

The measured accuracy
(‖AGT−Â‖F

‖AGT ‖F

)
results are dis-

played in Table 1. We generate the synthetic matrix with

the row size m = 10000, rank 3 and the corruption ratio

r = 0.05. While our objective function is also non-convex,

it is closer to the original convex function of RPCA with

nuclear norm by definition of the partial sum of singular

values which allow our method to converge to a better so-

lution comparing to Zheng et al. In our analysis, we found

that Zheng et al. often provides a local minimum due to the

highly nonlinear bilinear form (UV ).

Convergence Behavior To examine the convergence be-

havior of both RPCA [19] and our method, we plot the evo-

lution of the relative errors
‖AGT−Â‖F
‖AGT ‖F + ‖EGT−Ê‖F

‖EGT ‖F and

termination criteria
‖O−A−E‖F

‖O‖F over the iterations in Fig. 2.
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Figure 2. Convergence behavior of RPCA [19] and our method for

the rank 2,3 and 4 cases.

We randomly generated matrices with m = 5000 rows and

n = 40 columns for the rank 2, 3, 4 cases, and the aver-

age value over the trials is computed. Fig. 2-(b) also shows

a better accuracy than RPCA as well as a gradual conver-

gence shown in Fig. 2 under the same termination criterion,

which shows that our algorithm converges. In Sec. 5, we

will discuss the convergence in further details.

4.2. Real-world Applications

4.2.1 Background Modeling and High Dynamic Range
(HDR) Imaging

We apply the proposed method for modeling a background

scene and a ghost-free HDR composition. We assume that

differently exposed images Ii are aligned and the camera

response function (CRF) is calibrated (or linear). Then,

the captured images can be represented as Ii = kRΔti,
where R denotes the sensor irradiance, Δti is the expo-

sure time for the i-th image, and k is a positive scalar.

We construct the observed intensity matrix O ∈ R
m×n =

[vec(I1)| · · · |vec(In)] by stacking the vectorized input

images. In this application, m and n are the number of pix-

els and the number of images respectively.

Ideally, the observed intensity Ii is linearly related to ir-

radiance R, which means that O is a rank-1 matrix. How-

ever, in practice, the rank of O is higher than 1 due to mov-

ing objects, saturation or other artifacts (shown in Fig. 3).

We model these artifacts and the background scene as a

summation of a low-rank matrix (essentially a rank-1 ma-

trix) and sparse outliers, O = A+E. To compose an HDR

image without ghost artifacts, we first estimate a Low Dy-

namic Range (LDR) background scene from the low-rank

matrix A, then the weighted sum is applied to the LDR im-

ages. In the background estimation step, Eq. (2) is used

as objective function with a target rank N = 1. We apply

RPCA and our method to each color channel independently.

We use the Arch. sequence from Gallo et al. [11]. It

contains differently exposed images as HDR composition

dataset, which are well aligned, but include some mov-

ing objects without overlaps and the brightness of images

is varying. The estimated background as low-rank matrix

and sparse outlier results from the RPCA and the proposed
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Figure 3. Illustration of the observed intensity values for (a) sat-

uration region, (b) moving object, and (c) consistent cases. Solid

lines denote ideal relationship between intensity and exposure, and

dots and dotted lines denote the observed intensities.

(a) (b) (c) (d) (e)

Figure 4. Comparison of the low-rank matrix and sparse error re-

sults between RPCA and ours. (a) Input multi–exposure images.

Low-rank (b,d) and sparse error (c,e) results, respectively obtained

by RPCA (b,c) and the proposed approach (d,e).

method are shown in Fig. 4. The example in Fig. 4-(a) con-

sists of only 5 images which is very limited. Ideally, a de-

composed low–rank matrix A = [vec(A1)| · · · |vec(An)]
consists of relative intensities of the background scene

from which moving objects or saturation artifacts are re-

moved (see Fig. 4-(b,d)). RPCA returns a low-rank ma-

trix whose magnitude differs drastically from the input im-

age, as shown in Fig. 4-(b). Moreover it yields a dense

non-zero entries in E, instead of being sparse, as shown

in Fig. 4-(c). On the other hand, our proposed method

shows well modeled background scene and successfully de-

tects outlier regions, as respectively shown in Fig. 4-(d,e).

For Fig. 4-(c,e), each color component (R,G,B) is set with

(|ER|, |EG|, |EB |), where E{R,G,B} denotes the sparse er-

ror matrix for each channel. More results and comparisons

can be found in our supplemental materials.
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(a) (b) (c)

Figure 5. HDR composition results from Debevec et al. [7] (a), the

RPCA (b) and the proposed method (c).
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Figure 6. Photometric stereo illustration for the used model.

As mentioned above, we can combine the low-rank im-

ages to create a more informative HDR image by H(x) =∑
n
i=1Wi(x) ·Ai(x)/Δti, where n represents the number

of input exposures, Wi(x) is the saturation weight of the

pixel located at x in the ith exposure, and H(x) denotes

the composited HDR image. Experiments showed that a

uniform weight for Wi(x) is sufficient. For display, H(x)
is normalized and tone-mapped by a simple gamma func-

tion. The final HDR results obtained by different methods

are compared in Fig. 5. The standard method of Debevec

et al. [7], in Fig. 5-(a), leads to ghost-artifact due to the

presence of moving objects. In Fig. 5-(b), moving objects

still remain in the HDR obtained by RPCA. In contrast, our

HDR result correctly captures the background scene with

high dynamic range, as shown in Fig. 5-(c).

4.2.2 Outlier Rejection for Photometric Stereo
Traditional photometric stereo is based on Lambertian

model, O = [vec(O1)| · · · |vec(On)] = NTL, where

O ∈ R
m×n, N ∈ R

3×m and L ∈ R
3×n denote intensity,

normal and light direction matrix, respectively, and where

m and n are the number of pixels and images. Hayakawa et
al. [13] show that the intensity matrix lies in a subspace of

rank 3, as illustrated in Fig. 6. However, this constraint is

hardly satisfied in real situations due to shadow from self-

occlusion, saturation and some object materials which do

not exactly follow the Lambertian diffuse model. Consid-

ering the rank-3 constraint from Hayakawa et al. [13], the

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Top row: Illustration of the transformed low-rank struc-

ture of batch images. Bottom row: batch image alignment experi-

ments. (a) Three input images. (b-d) The aligned, low-rank, sparse

results from Peng et al. [20]. (e-g) The aligned, low-rank, sparse

results from the proposed method.

artifacts mentioned above could be modeled as sparse out-

liers and we get a low-rank structure as O = NTL+E.

The robust photometric stereo with outlier rejection can

be formulated into a RPCA problem as suggested by Wu et
al. [25]. They proposed the blind and the non-blind meth-

ods, which respectively assume that the locations of the cor-

rupted region are known or unknown. We replace the for-

mulation of the blind method by our partial sum objective

function. It means that any prior information for outlier

regions is not required. For this experiment, we set rank

N = 3 in Eq. (2).

The proposed method is compared with the standard

least square (LS) method [22] and RPCA by Wu et al. [25].

The LS based photometric stereo estimates the normals by

minimizing ‖O−NTL‖2F . We use the Bunny dataset [14]

generated using the Cook-Torrance reflectance model and

consisting of 40 different lighting conditions. A represen-

tative data image is shown in the top of Fig. 7-(a). The

average ratio of specular and shadow regions in Bunny are

8.4% and 24% respectively, which act as outliers. For quan-

titative evaluations shown in Table 2, we vary the number

of images and add 5% of uniformly distributed corruption.

Each value in Table 2 is averaged over 20 randomly selected

test sets. Fig. 7 shows an example result for qualitative eval-

uation. Wu et al. [25] produce degenerated results (see top

of Fig. 7-(c)), as the rank of resulting matrix is lower than

3 due to the lack of supports from the observations. When

more input images are available, RPCA returns more satis-

fying results (see bottom of Fig. 7-(c)), but still the accuracy

is lower than the LS method. In contrast, our method pro-

vides robust results for both limited observations and suffi-

cient observations.
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Table 2. Photometric stereo results of Bunny with 5% corruption ratio, additional specular and shadow.
Mean error (in degrees) Max error (in degrees) Standard deviation

No. Image LS [25] Ours LS [25] Ours LS [25] Ours

5 8.53 27.88 7.06 159.72 130.77 120.78 14.48 16.45 12.30

8 9.03 13.34 5.87 142.45 139.07 85.48 11.24 10.96 9.62

10 9.24 11.14 5.70 148.05 110.12 79.54 9.91 9.77 8.06
12 8.96 9.95 5.09 130.04 80.21 76.86 9.17 9.02 7.59

(a) Input (b) LS (c) Wu et al. [25] (d) Ours (e) LS (f) Wu et al. [25] (g) Ours

Figure 7. Photometric stereo results from 5 (top) and 12 (bottom) images of Bunny dataset with corruption. (b-d) Recovered surface normal

by LS, Wu et al. [25] and ours. (e-g) Corresponding error maps for each algorithm.

4.2.3 Batch Image Alignment
Given several images of an object of interest (e.g. face),

the batch image alignment task aims to align them to a fixed

canonical template [1, 20]. The rank minimization approach

has led to impressive results for robust alignment of linearly

correlated images [20]. In addition to the applications of the

previous sections, we also search for a transformation gi for

each image Ii to make the images linearly correlated (cf.

the top row in Fig. 8). We note g the set of transforma-

tions: g = {g1, . . . , gn} where n is the number of images

and write O ◦ g = [vec(I1 ◦ gi)| · · · |vec(In ◦ gn)] as il-

lustrated at the top of Fig. 8. Contrary to the formulation

of Peng et al. [20], we consider the partial sum of singular

values. This can be mathematically formulated as follows:

argmin
A,E,g

∑
min(m,n)
i=N+1 σi(A) + λ‖E‖1, s.t O ◦ g = A+E.

(11)

We applied our approach to a head dataset acquired un-

der varying pose (cf. Fig 8-(a)) [20]. For linearly corre-

lated noise-free batch images, the rank must be N = 1,

when the transformations for exact image alignment are es-

timated. Our results of alignment, low-rank estimation and

error sparsity are shown in Fig 8-(e,f,g). Compared to the

results obtained by RPCA, our method can correctly detect

the outliers (Fig 8-(c) v.s. Fig 8-(f)).

5. Discussion and Conclusion
In this paper, we revisited the rank minimization method

in RPCA for low-level vision problems. When the target

rank is known, we show that, by modifying the objective

function from the nuclear norm to the partial sum of sin-

gular values, we can achieve a better control of the target

rank of the low-rank solution, even when the number of

observations is limited. The beauty of our solution is that

it can be easily utilized in existing algorithms, e.g. inex-

act ALM [19], and the efficient properties still hold. The

generality of our approach and the effectiveness are sup-

ported through our encouraging experiments on both syn-

thetic examples and several real-world applications which

outperform the conventional nuclear norm objective func-

tion. An interesting direction of future work is the mathe-

matical analysis of the properties, e.g. the necessary and the

sufficient conditions [21] of our partial sum objective func-

tion compared to the nuclear norm solution. In the follow-

ing, we discuss some open questions related to our paper.

Sufficient number of samples versus minimum number
of samples In our experimental analysis, we found that our

solution is more robust than the nuclear norm solution when

facing a limited number of samples. Defining K as the min-

imum number of samples for processing, e.g. 2 images for

HDR, 3 images for photometric stereo, our approach re-

quires more than K samples for a robust model estimation

and outlier rejection. We believe that the number of needed

additional samples depends on the problem setting, e.g. the

shape of feature space or the distribution of the samples.

Convergence The proof of convergence of the exact and in-

exact ALM with an alternating scheme has been established

by [19, 9]. In contrast, to the best of our knowledge, the

convergence property of inexact ALM alternating for non-

convex (solving A∗) and convex (solving E∗) programming

has not been answered yet. Despite the absence of theoret-
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ical guarantee for the convergence, we conducted extensive

experiments and found that our algorithm converges in all

our experiments and the objective of the sub-problem for A
is always decreased by PSVT. Since the objective function

of the partial sum of singular values is a non-convex func-

tion, the global optimal solution cannot be guaranteed. Nev-

ertheless extensive experiments showed that our solution is

very closed to the nuclear norm solution when the number

of observations is more than sufficient and converges to a

better solution when the number of observations is limited.

This is again based on our empirical study through many

experimental testings. Further mathematical analysis is left

as future work.

Target rank While our formulation implicitly encourages a

target rank constraint in the resulting matrix, this constraint

is not hardly enforced. We discuss here two possible scenar-

ios can produce the resulting matrix having a rank different

from the target rank. A first scenario is when a very limited

number of samples are observed. In such case, PSVT can

produce a deficient rank lower than the target rank when the

span of the observed samples is less than the target rank,

but this case is a fundamental limitation of under-sampling

rather than a conceptual limitation of our approach. Another

scenario is due to too much noise (especially for Gaussian

noise that does not follow the sparsity property) in the ob-

served samples which results in large singular values in the

residual ranks. In this case, a solution to satisfy the rank

constraint is to increase τ in Eq. (8). When τ is equal to in-

finity, our solution is close to the result using singular value

projection [15]. However, the projection method enforcing

target rank could produce an over-fitting solution due to the

mentioned noise effects.
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