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Abstract

Graph-based methods have become popular in recent
years and have successfully addressed tasks like segmen-
tation and deformable registration. Their main strength is
optimality of the obtained solution while their main limi-
tation is the lack of precision due to the grid-like repre-
sentations and the discrete nature of the quantized search
space. In this paper we introduce a novel approach for com-
bined segmentation/registration of brain tumors that adapts
graph and sampling resolution according to the image con-
tent. To this end we estimate the segmentation and registra-
tion marginals towards adaptive graph resolution and in-
telligent definition of the search space. This information is
considered in a hierarchical framework where uncertain-
ties are propagated in a natural manner. State of the art
results in the joint segmentation/registration of brain im-
ages with low-grade gliomas demonstrate the potential of
our approach.

1. Introduction

Combined atlas based tumor segmentation and registra-
tion is an active research field. Most of the existing meth-
ods treat the problems sequentially [1, 12] or alternatively
through an EM-like approach [6]. In [11] a discrete for-
mulation was proposed for one-shot atlas-based registration
and segmentation of brain tumors. This method couples the
two problems and seeks their common solution. Despite the
theoretical elegance of such a method, it inherits the major
short-comings of discrete methods, that is lack of precision
due the (i) requirement of a small label set and therefore
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sparse quantization of the search space, (ii) the constraints
on the form of the graph structure, the number of nodes and
their connectivity in order to keep the computational burden
manageable.

Despite the enormous amount of work in segmentation
and registration, estimating the uncertainty in the result has
little prior work. This is mostly the case due to the com-
plexity of the solution space of these problems. Monte-
Carlo sampling among light variants like multiple hypothe-
ses testing [3] were considered to certain extend in biomed-
ical image analysis and computer vision. Early work on
point-based registration using the iterate closed point algo-
rithm [13, 16] have associated the contribution of the sam-
ples in the matching process according to their matching
uncertainty. This idea was further explored in the context of
segmentation by deformation using implicit shape represen-
tations [17] of brain structures as well as more recently in
[7] where a statistical interpretation was proposed for voxel-
like decisions. Graph-theoretical formulations offer effi-
cient means of measuring uncertainties of the obtained solu-
tions [8]. These ideas were explored in [5] towards adaptive
sampling of the label space according to the directional un-
certainties of the current solution. The proposed strategy
was able to improve the quality of the solution of discrete
methods due to the intelligent sampling. On the other hand,
it failed to use this information for adaptive refinement of
the graph structure, a task that becomes a necessity when
considering combined segmentation and registration as in
[11] due to the fact that voxel based segmentation labels
are difficult to express with a limited graph structure, and
registration becomes problematic either in areas with dis-
continuities or at the borders between tumors and normal
tissues.

In this paper we propose a novel adaptive graphical
model that is endowed with a stochastic behavior. The
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most closely related work can be found in [5, 11] and
in [15] where an alternative method to combine multiple-
resolution grids in deformable registration was proposed to-
wards content-driven interpolation. The proposed hierar-
chical formulation exploits the form of the objective func-
tion to determine registration and segmentation uncertain-
ties. They are then used to improve the precision of the
sampling and determine the resolution of the graph at sub-
sequent finer resolution levels. This is achieved with a hi-
erarchical graph where nodes and decisions taken at coarse
resolution level are linked and penalize deviations of de-
cision for ”dependent” nodes at the fine resolution level.
The resulting formulation addresses the two problems in a
stochastic manner and deals with one of the most important
limitations of discrete methods, that is, adaptive graph par-
tition of the domain and adaptive local quantization of the
label space. The method was tested with promising results
on the segmentation of low grade gliomas.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the concurrent segmentation and reg-
istration formulation of [11], while Section 3 focuses on the
estimation of uncertainties using the graph beliefs and their
propagation to an adaptive hierarchical construction of the
combined graphical model. The implementation details and
experimental validation are part of Section 4 while the last
section concludes the paper.

2. Joint Registration and Segmentation
Method

Let us consider a target volume V, a subject featuring a
tumor, and a healthy atlas A, defined on the domain Ω. In
the task of image registration, we aim at finding a trans-
formation 𝒯 that will map the source image to the target
image:

𝑉 (x) = 𝐴(𝒯 (x))) (1)

The presence of the tumor renders the registration more dif-
ficult since it has no correspondences in the atlas. To deal
with this issue, we aim at identifying the tumor area con-
currently to the registration, i.e., we seek to assign a label
𝑠 ∈ {0, 1} to each voxel of the image, where 1 corresponds
to tumor and 0 to background. We adopt a Free Form Defor-
mation approach [14] where a uniformly spaced sparse grid
𝒢 ⊂ Ω is superimposed to the image. The deformation and
segmentation will be evaluated on the grid’s control points,
then evaluated on the whole image domain by interpolation:

𝒯 (x) = x+
∑
𝑝∈𝒢

𝜂(∥x− p∥)dp (2)

𝒮(x) =
∑
𝑝∈𝒢

𝜂(∥x− p∥)𝑠p (3)

where dp and 𝑠p are node p’s displacement vector and seg-
mentation label respectively, and 𝜂(.) is the projection func-

tion defining the influence of each grid control point over
the image’s voxels.

In order to estimate the optimal segmentation map 𝒮(x)
and deformation field 𝒯 (x) in a one shot optimization, we
adopt a discrete Markov Random Field (MRF) approach
[11]. Let us consider a predefined discrete displacement set
𝒟 = {d1, ..dn}. To each grid node p, we seek to assign a
label 𝑙𝑝 ∈ ℒ = {1, .., 2𝑛} that corresponds to assigning to p
a pair segmentation/displacement {dlp , 𝑠𝑙𝑝} ∈ 𝒟 × {0, 1},
where 𝑑𝑙𝑝 = 𝑑𝑙𝑝−𝑛 and 𝑠𝑙𝑝 = 1 if 𝑙𝑝 > 𝑛.

The optimal labeling l = {𝑙𝑝,p ∈ 𝒢} is estimated by
minimizing the MRF energy:

𝐸𝑟𝑒𝑔,𝑠𝑒𝑔(l) =
1

∣𝒢∣
∑
𝑝∈𝒢

𝛼𝑉𝑝,𝑠𝑒𝑔(𝑙𝑝) + (1− 𝛼)𝑉𝑝,𝑟𝑒𝑔(𝑙𝑝)

+
∑
𝑝∈𝒢

∑
𝑞∈𝒩 (𝑝)

𝛼𝑉𝑝𝑞,𝑠𝑒𝑔(𝑙𝑝, 𝑙𝑞) + (1− 𝛼)𝜆𝑉𝑝𝑞,𝑟𝑒𝑔(𝑙𝑝, 𝑙𝑞)

(4)
where 𝛼 is a parameter that balances the registration and
segmentation terms, and 𝜆 is a constant parameter describ-
ing the influence of the registration smoothness term.

The pairwise terms’ role is to ensure local smoothness of
the segmentation and deformation fields and are defined as:

𝑉𝑝𝑞,𝑟𝑒𝑔(d
lp ,dlq) =

(dlp−dlq)
2

∥p−q∥

𝑉𝑝𝑞,𝑠𝑒𝑔(𝑠
𝑙𝑝 , 𝑠𝑙𝑞 ) = ∣𝑠𝑙𝑝−𝑠𝑙𝑞 ∣

∥p−q∥

(5)

We want to find the existing correspondences between
the source and target images’ structures in the background
area (label 𝑠𝑙𝑝 = 0). For all the potential displacements in
𝒟, we compute a similarity measure 𝜌(.) between both im-
ages. In the tumor area, we cannot rely on this similarity
measure due to the absence of correspondences between tu-
mor and healthy tissue. The same constant cost 𝐶𝑡 is used
instead for all displacements.

𝑉𝑝,𝑟𝑒𝑔(𝑙𝑝) =

∫
Ω

𝜂 (∥x−p∥)((
1−𝑠𝑙𝑝

)
𝜌
(
𝑉 (x), 𝐴(x+ dlp)

)
+ 𝑠𝑙𝑝𝐶𝑡𝑚

)
𝑑𝑥

(6)

Since the similarity measure is evaluated at the pixel level,
we introduce the function 𝜂(.) to back project the informa-
tion on the grid’s nodes.

The tumor 𝑝𝑡𝑚 and background 𝑝𝑏𝑔 probabilities have
been evaluated a priori via boosting [4]. The segmentation
term seeks the maximum posterior given the prior probabil-
ities assuming independence between measurements:

𝑉𝑝,𝑠𝑒𝑔(𝑙𝑝) =

∫
Ω

𝜂 (∥x−p∥)(−log (𝑝𝑏𝑔(x+ dlp)
)(
1−𝑠𝑙𝑝

)− log
(
𝑝𝑡𝑚(x+ dlp)

)
𝑠𝑙𝑝

)
𝑑𝑥

(7)
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The optimal labeling can be efficiently evaluated using
Fast-PD [9], an optimization method based on linear pro-
gramming.

In [11] a compositional approach was considered where
several MRF optimizations are performed at coarse to fine
grid resolutions. At iteration 𝑖, the MRF energy is evaluated
between the target image, and the deformed source image to
recover the optimal labeling:

𝑙𝑜𝑝𝑡,𝑖 = argmin
𝑙

𝐸𝑟𝑒𝑔,𝑠𝑒𝑔(l ∣ 𝑉, 𝐴 ∘ 𝒯 𝑖−1) (8)

The new displacement field is then composed with the cur-
rent displacement field 𝒯 𝑖−1 and the displacement set re-
fined. Eventually, the grid’s resolution is refined, and an-
other series of optimizations are performed at a higher res-
olution.

Due to the joint registration and segmentation space, the
computational complexity of the method increases quadrati-
cally at fine resolution levels, increasing running time while
decreasing guarantees on the optimality of the obtained so-
lution. In practice, the use of high-resolution grids (that is
a necessity for precise segmentation) is prohibited, while at
the same time sampling of the deformation space becomes
an issue when seeking high resolution deformations. Both
issues can be addressed using uncertainties towards sparse
graphs in terms of structure and directional sampling of the
deformation space.

3. Uncertainty Driven Discrete Sampling

We now describe the content driven grid construction
and segmentation propagation. Consider a grid 𝒢𝑗 of res-
olution 𝑀 × 𝑁 × 𝑃 , a control point cj ∈ 𝒢𝑗 ., and 𝑙𝑜𝑝𝑡𝑐𝑗 its
optimal label recovered at iteration 𝑖. Our goal is to define
the optimal displacement set for registration as well as the
resolution of the next grid level 𝒢𝑗+1 of maximal resolution
2𝑀 − 1 × 2𝑁 − 1 × 2𝑃 − 1. We define an inter graph
neighborhood system on the basis that each node cj has a
direct spatial correspondence pj+1 ∈ 𝒢𝑗+1.The neighbor-
hood𝒩 (.) (shown in Fig.[1]) is defined by connecting cj to
pj+1 and its 26 immediate neighbors.

We rely on the min-marginal energies [8] that evalu-
ate the minimum value of the energy under different con-
straints. For our problem, we impose a non optimal label 𝑘
to the control point cj to evaluate the cost of a label swap:

Ψ𝑐𝑗 ,𝑘,𝑖 = min
𝑙,𝑙𝑐𝑗=𝑘

𝐸𝑟𝑒𝑔,𝑠𝑒𝑔(l∣𝑉,𝐴 ∘ 𝒯 𝑖−1) (9)

A label 𝑘 belonging to the same segmentation class

𝑠𝑘 = 𝑠
𝑙𝑜𝑝𝑡𝑐𝑗 represents a local perturbation from the opti-

mal displacement. The directions towards which the energy
weakly varies represent the local anisotropy and uncertainty
of the registration. Indeed, a small variation of the energy
suggest that the labels are almost as likely, while a strong

Figure 1: Visual representation of the grid refinement from
level j (left) to level j+1 (right). Grid resampling: the nodes
that have direct correspondences appear in white, and the
new nodes and edges are red. The edges connecting the 2
grids represent the nodes’ neighborhood. The grid is shown
in 2D for increased visibility.

increase in energy implies that the chosen label is certain
in this direction. We compute each displacement’s likeli-
hood by marginalizing the max marginals over all possible
displacements:

𝑃𝑟𝑒𝑔(𝑙
𝑜𝑝𝑡
𝑐𝑗 , 𝑘) =

exp(−Ψ𝑐𝑗 ,𝑘,𝑖)∑
𝑙∈ℒ,𝑠𝑙=𝑠

𝑙
𝑜𝑝𝑡
𝑐𝑗

exp(−Ψ𝑐𝑗 ,𝑙,𝑖)
(10)

This approximates a 3D probability density function that
can be assimilated to a Gaussian distribution. We adopt
an intelligent displacement sampling based on the density’s
covariance scale and main axes, that indicates the directions
where the uncertainty is maximum and a thorough sampling
is necessary. Note that for the tumor label, and when the
parameter 𝛼 is low (dominant segmentation term), the local
likelihoods are not of interest since the registration is mostly
driven by the pairwise cost.

The next step is to define the grid sampling and segmen-
tation propagation at the next resolution level. To this end,
we call 𝒢𝑗+1,𝑚𝑎𝑥 the maximum resolution at level 𝑗 + 1
and define a function 𝒜𝑗+1 : 𝒢𝑗+1 → {0, 1}, charac-
terizing the node activation. The set of activated nodes
{p ∈ 𝒢𝑗+1,𝑚𝑎𝑥,𝒜𝑗+1 = 1} will represent the actual reso-
lution of 𝒢𝑗+1. The activation function is defined as:

𝒜𝑗+1(p) = max

⎛
⎝ ∑

cj∈𝒩𝑖(p)

𝛿(cj,p)𝒜𝑗(cj), 𝐴𝑟(p), 𝐴𝑠(p)

⎞
⎠

(11)
where 𝛿 is the Kronecker Delta function. The first term
imposes that nodes in 𝒢𝑗+1,𝑚𝑎𝑥 that have a direct corre-
spondent cj ∈ 𝒢𝑗,𝑚𝑎𝑥 (same spatial coordinates) are acti-
vated if their correspondent is (𝒜𝑗(cj) = 1). The remain-
ing nodes are either activated for segmentation (𝐴𝑠(p) = 1)
or registration (𝐴𝑟(p) = 1). Given the strong interdepen-
dencies between segmentation and registration, a node acti-
vated for registration is also activated for segmentation and
vice versa.

The registration activation is based on the local homo-
geneity of the region reachable by the node. The idea is

643



(a)

0

5

10

15

0

5

10

15
0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 2: Registration uncertainty for one control point:
(a) Min marginal values per displacement label (blue: low,
red: high energy) and associated covariance matrix cen-
tered at the optimal label. (b) Min marginals visualization
on a 2D slice.

that the min marginal energies will strongly vary if differ-
ent structures are present in the region (intensity disconti-
nuities), and remain relatively constant in an homogeneous
region. In the presence of discontinuities, precise displace-
ments are necessary, while additional precision is not re-
quired in homogeneous regions.

For all nodes cj ∈ 𝒢𝑗 , we compute the energy range over
all displacement labels:

𝑅(cj) = max
𝑘∈ℒ,𝑠𝑘=𝑠

𝑙
𝑜𝑝𝑡
𝑐𝑗

Ψcj,𝑘,𝑖 − min
𝑘∈ℒ,𝑠𝑘=𝑠

𝑙
𝑜𝑝𝑡
𝑐𝑗

Ψcj,𝑘,𝑖 (12)

We define the node activation criterion as follows:

𝐴𝑟(p) = 𝐻

⎛
⎝ ∑

cj∈𝒩𝑖(p)

1

𝑁
𝑅(cj)− 𝜇

⎞
⎠ (13)

where 𝐻(.) is the heaviside function, 𝑁 is the number of
nodes in𝒩 (p) and 𝜇 is the mean value of the min marginals
range over all nodes in 𝒢𝑗 . A node in 𝒢𝑗+1 will be activated
if the mean energy range among its neighbors is higher than
the mean range over all nodes , i.e. if the majority of its
neighbors is close to a structure’s boundary.

Similarly, the node activation for segmentation is guided
by the min marginals. We rely on the segmentation un-
certainty, computed by evaluating the global energy vari-
ation when the segmentation label changes. We compute

(a)

(b)

Figure 3: Displacement set resampling for one control
point: (a) Original isotropic displacement set. (b) Uncer-
tainty driven displacement set, following the brain bound-
aries.

the segmentation likelihood for a segmentation label S by
marginalizing the max-marginals over all labels:

𝑃𝑠𝑒𝑔(cj∣𝑆) =
∑

𝑙∈ℒ,𝑠𝑙=𝑆 exp(−Ψcj,𝑙,𝑡)∑
𝑙∈ℒ exp(−Ψcj,𝑙,𝑡)

(14)

We exploit the binary labeling to evaluate the node’s seg-
mentation uncertainty as:

𝑈(cj) = 1− ∣𝑃𝑠𝑒𝑔(cj∣𝑆)− 0.5∣ (15)

Using this formulation, 𝑈(cj) is minimum when the opti-
mal segmentation label is the most likely label, and maxi-
mum when both labels are equally probable.

If a node’s segmentation is certain, it should be propa-
gated, while an uncertain segmentation should not influence
the decisions at the next level. The segmentation labels are
propagated via an inter levels potential between the nodes
cj ∈ 𝒢𝑗,𝑚𝑎𝑥 and p ∈ 𝒢𝑗+1,𝑚𝑎𝑥 that are connected, that
depends on the reliability of the neighbors’ segmentation:

𝑉𝑢𝑐𝑦(𝑙𝑐𝑗 , 𝑙𝑝) =

{
0 if 𝑠𝑙𝑐𝑗 = 𝑠𝑙𝑝

−𝑙𝑜𝑔(𝑈(cj)) Otherwise
(16)

This potential penalizes segmentation labels that are not in
accordance with the lower resolution level’s labeling. The
penalty will be important if the segmentation decisions at
level 𝑗 were highly reliable and low otherwise.

644



The node activation criterion for segmentation relies on
this inter levels potential by activating the nodes that are not
strongly penalized or equally penalized for both labels:

𝐴𝑠(p) = 𝐻

⎛
⎝
∣∣∣∣∣∣

∑
cj∈𝒩 (p)

(−1)𝑠𝑙𝑝
𝑁

𝑉𝑢𝑐𝑦(𝑙𝑐𝑗 , 𝑙𝑝)

∣∣∣∣∣∣− 𝑡𝑠ℎ

⎞
⎠
(17)

where 𝑁 is the number of nodes in𝒩 (p), 𝐻(.) is the Heav-
iside function and 𝑡𝑠ℎ is a threshold parameter. Each node
in 𝒢𝑗+1 can be connected to one or more nodes in 𝒢𝑗 . This
term evaluates the mean segmentation confidence over all
nodes connected to p, taking into account the value of the
segmentation label. It activates nodes whose neighbors’
segmentations are uncertain or if the neighborhood consists
of different labels that are equally confident (implying that
the node is localized at a tumor’s boundary).

Eventually, we rewrite the MRF energy at level 𝑗 and
iteration 𝑖:

𝐸𝑟𝑒𝑔,𝑠𝑒𝑔(𝑙∣𝑉,𝐴 ∘ 𝒯 𝑖−1,𝒢𝑗) = 1

∣𝒢𝑗 ∣
∑
𝑝∈𝒢

𝑉𝑝(𝑙𝑝∣𝑉,𝐴 ∘ 𝒯 𝑖−1)

+
∑
𝑝∈𝒢

∑
𝑞∈𝒩 (𝑝)

𝑉𝑝𝑞,(𝑙𝑝, 𝑙𝑞) +
∑
𝑝∈𝒢𝑗

∑
𝑐∈𝒩 (𝑝)

1

𝑁
𝑉𝑢𝑐𝑦(𝑙𝑐𝑗−1

, 𝑙𝑝𝑗
)

(18)

where N is the number of nodes in 𝒢𝑗−1 in the neighbor-
hood of node p ∈ 𝐺𝑗 .

4. Experimental Validation

Our data set consisted of 102 3D MRI FLAIR volumes
of patients featuring low grade gliomas. All volumes were
manually segmented by experts. The volumes’ sizes ranged
from 256 × 256 × 24 to 512 × 512 × 33, and resolution
from 0.4 × 0.4 to 0.9 × 0.9𝑚𝑚2 in the (x,y) plane and 5.3
to 6.4 mm in the z plane. The tumor size ranged from 3.5
𝑐𝑚3 to 230 𝑐𝑚3. The healthy brain template for registra-
tion was a 3D MRI FLAIR volume of size 256× 256× 24,
and resolution 0.9× 0.9× 5.45𝑚𝑚3. As preprocessing, all
images were skullstripped and their intensity was regular-
ized. In order to preserve the contrast between tumor and
background, we opted for a simple regularization method,
where all images were set to the same median and interquar-
tile range as the reference template. Prior to performing the
deformable registration, all volumes were rigidly registered
to the healthy template.

4.1. Segmentation prior

We constructed the segmentation probability prior using
the Gentle adaboost algorithm [4]. 36 volumes were ran-
domly selected from our data set in order to learn the tu-
mor vs background classifier: to each voxel is associated
a feature vector, constructed using intensity based features

(patches around the voxel, entropy, standard deviation and
median over patches of variable sizes), Gabor features [10]
and asymmetry between the left and right hemispheres. The
algorithm constructs a strong classifier as a linear combina-
tion of weak classifiers. Each classifier is a decision stump
with respect to one of the features’ value. When applied to
a new volume, the strong classifier yields a score 𝑆𝑏(x) that
can be converted to a probability as:

𝑝𝑡𝑚(x) =
1

1− exp(−2𝑆𝑏(x))

𝑝𝑏𝑔(x) = 1− 𝑝𝑡𝑚(x)

(19)

4.2. Implementation

Our incremental approach consisted of 4 grid levels and
3 image levels where the resolution of the image increases
with the grid’s resolution. At the fourth grid level, the im-
age’s resolution remains the same. The grid’s resolution
was progressively refined from 9× 9× 5 to 65 × 65 × 37.
We use cubic B-splines as a projection function. We pro-
gressively diminish the value of 𝛼 from 1 to 0.015, so that
the presence of the tumor has an increasing impact on the
registration, and the finest level focuses solely on segmen-
tation. This enables to first focus on the registration of the
brain’s main structures, when the resolution of the grid and
the image is low enough for the presence of the tumor to
have a limited impact. This limits the false detections that
would correspond to misaligned areas instead of tumorous
areas. Inversely, the parameter 𝐶𝑡𝑚 was progressively in-
creased from 6 to 12 times the mean value of the similarity
criterion. 𝜆 was set to 20 and relaxed in the tumor area to
allow for the strong displacements that can be caused by a
tumor. The similarity criterion adopted was the Sum of Ab-
solute Differences (SAD). The same set of parameters was
used for all the volumes we tested.

We perform 3 iterations at each grid level. The local
registration uncertainties are evaluated during the first iter-
ation, where we adopt a dense displacement sampling, with
5 sampling steps in each direction (1331 labels). In the fol-
lowing level, we adopt a sparse sampling, the displacement
labels being sampled along the uncertainty covariance axes
(31 labels). This allows us to exploit the uncertainty in-
formation with limited impact on the run time. In the last
level, the displacement set is simply refined by reducing
the maximum displacement, still sampled along the covari-
ance’s main axes. The maximum displacement is initially
set to 0.4 times the grid spacing, in order to preserve a dif-
feomorphic transformation [2].

4.3. Results

We tested our method on the 66 remaining volumes.
Fig.[5] shows the percentage of activated nodes with respect
to the maximal resolution possible and visual examples are
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Figure 4: Visual examples of the activated nodes for the
last 2 levels of the incremental approach. The nodes are
superimposed to the target image.

shown in Fig.[4]. Nodes are activated in the presence of
brain structures and around the tumor boundary, and their
number is significantly lower than the total number of po-
tential nodes (20% of activated nodes in the last level). The
model’s computational cost being bounded by the number
of edges and the squared number of nodes, this yields a
complexity 3 orders of magnitude lower at the last reso-
lution level. We compared our results to the joint segmen-
tation and registration method [11] with the maximal grid
resolution and a uniform grid of the same final resolution as
the resolution obtained with adaptive resampling, using the
best set of parameters and relaxing the registration pairwise
cost in the tumor area. To evaluate the registration, the ven-
tricles where segmented on 27 volumes that were affected
by the presence of the tumor. The Dice score, false positive
rate, true positive rate and mean absolute distance (MAD)
between contours were evaluated with respect to the man-
ual segmentations of the tumor and ventricles outside the
tumor area. Fig.[6] shows boxplots of the different seg-
mentation scores for the 3 different methods and registra-
tion results are shown in Fig.[7]. Our method shows equiv-
alent results for both segmentation and registration with a
much lower complexity, while a uniform grid of the same
complexity yields lower quality registrations and poorly de-
tected tumors. Visual results are shown in Fig.[8], show-
ing the strong correspondences between the source and de-
formed target image.
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Figure 5: Mean percentage of activated nodes per level.
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Figure 7: Registration results: Error bar graphs of the
Dice, True Positives (TP), False Positives (TP) and MAD
scores obtained for the method in [11] with low (left, JS-
RLow) and high resolution (middle, JSRHigh), and our
method (right, Ucy)

5. Discussion

In this paper we have proposed a novel stochastic formu-
lation for combined atlas registration and tumor segmenta-
tion where the obtained solutions are associated with co-
variance matrices efficiently determined through the graph
marginals. The method explores the registration and seg-
mentation uncertainties towards efficient sampling of the
discrete deformation space and for the adaptive piece-wise
regular refinement of the grid structure. The proposed for-
mulation provides a statistical interpretation of the solution,
while preliminary results demonstrate that the performance
remains about the same while considering a much smaller
content-adaptive finer resolution graph. Relying on sparse
content adaptive grids can further improve the quality of
the results by enabling to reach locally voxel level resolu-

646



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

JSRLow JSRHigh Ucy

(a)

0

0.2

0.4

0.6

0.8

1

JSRLow JSRHigh Ucy

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

JSRLow JSRHigh Ucy

(c)

1

2

3

4

5

6

7

8

9

10

JSRLow JSRHigh Ucy

(d)

Figure 6: Segmentation results: Boxplots of the Dice score (a) True Positive (b) and False Positive (c) rates and MAD score
(d) for the method in [11] with low (left, JSRLow) and high resolution (middle, JSRHigh), and our method (right, Ucy)

tions for precise segmentations in a computationally effi-
cient manner.

Going beyond tumor segmentation, applying such a for-
mulation to atlas-based segmentation is an interesting clini-
cal perspective. The consideration of the expected stochas-
tic nature of the solution from the very beginning and not
as a by-product of the optimization procedure could be a
significant theoretical break-through. In simple words the
idea would be to introduce a graph-based objective function
where the statistical nature of the expected solution is ex-
plicitly encoded and estimated during the inference process
(through for example sampling of the covariance matrices
along with the space of solutions). One could expect a bet-
ter approximation of the statistical behavior of the problem
as well as robustness since the objective function integrates
supports from all possible solutions from a given distribu-
tion.
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(a) (b) (c)

Figure 8: Visual Registration and Segmentation results. (a) Source image, (b) Deformed source image, (c) Target image
segmented: Automatic Segmentation (blue) and Manual Segmentation (red)
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