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Abstract

We propose a novel algorithm called Latent Space

Sparse Subspace Clustering for simultaneous dimensional-

ity reduction and clustering of data lying in a union of sub-

spaces. Specifically, we describe a method that learns the

projection of data and finds the sparse coefficients in the

low-dimensional latent space. Cluster labels are then as-

signed by applying spectral clustering to a similarity matrix

built from these sparse coefficients. An efficient optimiza-

tion method is proposed and its non-linear extensions based

on the kernel methods are presented. One of the main ad-

vantages of our method is that it is computationally efficient

as the sparse coefficients are found in the low-dimensional

latent space. Various experiments show that the proposed

method performs better than the competitive state-of-the-

art subspace clustering methods.

1. Introduction

Many practical computer vision and image processing

applications require processing and representation of high-

dimensional data. Often these high-dimensional data can be

represented by a low-dimensional subspace. For instance, it

is well known that the set of face images under all possi-

ble illumination conditions can be well approximated by a

9-dimensional linear subspace [2]. Similarly, trajectories of

a rigidly moving object in a video [4] and hand-written dig-

its with different variations [10] also lie in low-dimensional

subspaces. Therefore, one can view the collection of data

from different classes as samples from a union of low-

dimensional subspaces. In subspace clustering, given the

data from a union of subspaces, the objective is to find the

number of subspaces, their dimensions, the segmentation of

the data and a basis for each subspace [25].

Various algorithms have been proposed in the literature

for subspace clustering. Some of these algorithms are it-

erative in nature [11], [31] while the others are based on

spectral clustering [3], [9], [29], [5]. Statistical [8] and alge-

braic [27], [12] approaches have also been proposed in the

Figure 1. Overview of the proposed latent space sparse subspace

clustering method.

literature. In particular, sparse representation and low-rank

approximation-based methods for subspace clustering [15],

[7], [5], [6], [26], [20], [16] have gained a lot of traction

in recent years. These methods find a sparse and low-rank

representation of the data and build a similarity graph on

the sparse coefficient matrix for segmenting the data. One

of the advantages of these methods is that they are robust

to noise and occlusion. Furthermore, some of these ap-

proaches do not require the knowledge of the dimensions

and the number of subspaces. In particular, the Sparse Sub-

space Clustering (SSC) algorithm [5], [6] is well supported

by theoretical analysis [23] and provides state-of-the-art re-

sults on many publicly available datasets such as the Hop-

kins155 benchmark motion segmentation dataset [24].

Computation of sparse and low-rank representations is

very computationally demanding especially when the di-

mension of the features is high [6]. This is one of the draw-

backs of the sparse and low-rank methods. To deal with this

problem, dimensionally reduction is generally applied on

the data prior to applying these algorithms. Dimensionally
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reduction methods such as Principle Component Analysis

(PCA) and Random Projections (RP) can reduce the dimen-

sion of data. However, a well learned projection matrix can

lead to a higher clustering accuracy at a lower dimension-

ality. Several works have been proposed in the literature

that find a sparse representation on a low-dimensional latent

space [17], [30], [19]. However, these methods are specifi-

cally designed for classification tasks and not for clustering.

Motivated by some of the sparsity promoting dimen-

sionality reduction methods, in this paper, we propose a

method for simultaneous dimensionality reduction and sub-

space clustering under the framework of SSC. We learn the

transformation of data from the original space onto a low-

dimensional space such that its manifold structure is main-

tained. An efficient algorithm is proposed that simultane-

ously learns the projection and finds the sparse coefficients

in the low-dimensional latent space. Finally, the segmenta-

tion of the data is obtained by applying spectral clustering to

a similarity matrix built from the sparse coefficients. Using

kernel methods, the proposed algorithm is also extended to

non-linear manifolds. Figure 1 presents an overview of our

subspace clustering method.

Key contributions of our work are as follows:

• Simultaneous dimensionality reduction and sparse

coding for SSC is proposed.

• A simple iterative procedure is introduced for solving

the proposed optimization problem.

• Nonlinear extensions of the proposed algorithm are

made through the use of Mercer kernels.

1.1. Organization of the paper

This paper is organized as follows. In Section 2, we pro-

vide a brief overview of the SSC method. Sections 3 and

4 give the details of our linear and non-linear simultane-

ous dimensionality reduction and subspace clustering ap-

proaches, respectively. Experimental results are presented

in Section 5 and Section 6 concludes the paper with a brief

summary and discussion.

2. Background

In this section, we give an overview of the SSC algo-

rithm. Let Y = [y1, · · · ,yN ] ∈ R
D×N be a collection of

N signals {yi ∈ R
D}Ni=1

drawn from a union of n linear

subspaces

S1 ∪ S2 ∪ · · · ∪ Sn
of dimensions {d�}n�=1

in R
D. Let Y� ∈ R

D×N� be a sub-

matrix of Y of rank d� with N� > d� points that lie in S�
with N1 +N2 + · · · +Nn = N. It is easy to see that each

data point in Y can be efficiently represented by a linear

combination of at most d� other points in Y. That is, one

can represent yi as follows

yi = Yci, cii = 0, ‖ci‖0 ≤ d�,

where ci = [ci1, ci2, · · · , ciN ]T ∈ R
N are the coefficients.

Often N� > d�. As a result the following �1-minimization

problem is solved to obtain the coefficients

min ‖c‖1 such that yi = Yci, cii = 0, (1)

where ‖x‖1 =
∑N

i=1
|xi| is the �1-norm of x ∈ R

N . Con-

sidering all the data points i = 1, · · · , N , in matrix form,

the above optimization problem can be rewritten as

min ‖C‖1 subject to Y = YC, diag(C) = 0, (2)

where C = [c1, · · · , cN ] ∈ R
N×N is the coefficient ma-

trix whose column ci is the sparse representation vector

corresponding to yi. Once C is found, spectral cluster-

ing methods [18] are applied on the affinity matrix W =
|C| + |C|T to obtain the segmentation of the data Y into

Y1,Y2, · · · ,Yn.
In the case where the data is contaminated by some ar-

bitrary noise Z, i.e. Y = YC + Z, the following problem

can be solved to obtain C

min ‖C‖1 + λ1‖Y −YC‖2F s. t. diag(C) = 0, (3)

where ‖.‖F denotes the Frobenius norm. In practice, the

data may lie in a union of affine subspaces. In this case,

the following problem can be solved to obtain the sparse

coefficients

min ‖C‖1 s. t.Y = YC, diag(C) = 0, CT1 = 1. (4)

The above problems can be efficiently solved by using

the classical alternating direction method of multipliers

(ADMM) [6].

3. Latent Space SSC (LS3C)

Different from the traditional SSC, we develop an al-

gorithm that embeds signals into a low-dimensional space

and simultaneously finds the sparse codes in that space. Let

P ∈ R
t×D be a matrix representing a linear transformation

that maps signals from the original space R
D to a latent

output space of dimension t. We can learn the mapping and

find the sparse codes simultaneously by minimizing the fol-

lowing cost function

[P∗,C∗] = min
P,C

J (P,C,Y)

subject to PPT = I, diag(C) = 0,
(5)

where

J (P,C,Y) = ‖C‖1 + λ1‖PY −PYC‖2F
+ λ2‖Y −PTPY‖2F .

(6)
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The first two terms ofJ essentially promote sparsity of data

in the reduced space. The second term, which is a PCA-

like regularization term, ensures that the projection does

not loose too much information available in the original do-

main. λ1 and λ2 are non-negative constants that control

sparsity and regularization, respectively. Furthermore, we

require the rows of P to be orthogonal and normalized to

unit norm. This prevents the solution from becoming de-

generate and the leads to a computationally efficient scheme

for optimization.

Note that the above formulation can be extended so that

it can deal with data that lie in a union of affine subspaces.

This can be simply done by adding a constraint in the opti-

mization problem (5) as follows

[P∗,C∗] = min
P,C

J (P,C,Y)

subject to PPT = I,CT1 = 1, diag(C) = 0.
(7)

3.1. Optimization

With the above definitions, one can prove the following

proposition.

Proposition 1 There exists an optimal solution P∗ to (5)

that has the following form

P∗ = ΨTYT

for some Ψ ∈ R
N×t.

Intuitively, the above proposition says that the projection

can be written as a linear combination of the data samples.

This formulation has been used under the framework of dic-

tionary learning in [21].

With this proposition, the cost function (8) can be written

as

J (Ψ,C,Y) = ‖C‖1 + λ1‖ΨTK(I−C)‖2F
+ λ2‖Y(I−ΨΨTK)‖2F ,

(8)

where K = YTY. The equality constrain now becomes

PPT = ΨTKΨ = I. (9)

As a result, the optimization problem (5) can be re-written

as

[Ψ∗,C∗] = min
Ψ,C

J (Ψ,C,Y)

subject to ΨTKΨ = I, diag(C) = 0.
(10)

This formulation allows the update of P via Ψ. Further-

more, as will become apparent later, this form of the cost

function makes it easier to extend the algorithm to non-

linear manifolds using kernel methods. We can solve the

above optimization problem by optimizing over Ψ and C

iteratively.

3.2. Update step for Ψ

In this step, we assume that C is fixed. So the sparsity

constraint can be removed and the following problem needs

to be solved

λ1‖ΨTK(I−C)‖2F + λ2‖Y(I−ΨΨTK)‖2F
subject to ΨTKΨ = I. (11)

The cost function can be expanded as follows

trace
(
λ1(I−C)(I−C)TKTQTK

)
+ trace

(
λ2(K− 2KTQTK+KTQTKQK)

)
, (12)

where Q = ΨΨT ∈ R
N×N . The constraint ΨTKΨ =

I leads to the new constraint ΨΨTKΨΨT = ΨΨT or

QKQT = Q. The objective function (12) can be further

simplified as

trace
((
λ1(I−C)(I−C)T − λ2I

)
KTQTK

)
, (13)

where we have made use of the equality constraint and used

the fact that trace(K) is constant. Using the eigen decom-

position of K = VSVT , we get

KTQTK = VS
1

2MMTS
1

2VT ,

where M = S
1

2VTΨ. As a result, (13) can be rewritten as

trace
(
MTS

1

2VT
(
λ1(I−C)(I−C)T − λ2I

)
VS

1

2M
)
.

Using the fact that, ΨTKΨ = MTM and with the follow-

ing change of variable

Δ = S
1

2VT
(
λ1(I−C)(I−C)T − λ2I

)
VS

1

2 ,

we arrive at the following optimization problem, which is

equivalent to (11)

M∗ = min
M

trace
(
MTΔM

)
s.t. MTM = I. (14)

Problem (14) is the classical minimum eigenvalue problem

whose solution is given by the � eigenvectors associated

with the first � smallest eigenvalues of Δ [22]. Once the

optimal M∗ is found, the optimal Ψ∗ can be recovered as

Ψ∗ = VS−
1

2M∗.

Hence, we have proved the following proposition:

Proposition 2 The optimal solution of (10) when C is fixed

is

Ψ∗ = VS−
1

2M∗, (15)

where V and S come from the eigen decomposition of K =
VSVT , and M∗ ∈ R

N×t is the optimal solution of the

following minimum eigenvalues problem

M∗ = min
M

trace
(
MTΔM

)
s.t. MTM = I. (16)

where

Δ = S
1

2VT
(
λ1(I−C)(I−C)T − λ2I

)
VS

1

2 .
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3.3. Update step for C

For a fixed Ψ, we have to solve the following problem to

obtain C :

min
C

‖C‖1 + λ1‖B−BC‖2F s.t. diag(C) = 0, (17)

where B = ΨTK. This problem is the same as the SSC

problem, except that the data matrix Y is replaced by the B

matrix. Therefore, it can be solved by the ADMM method

in [6].

4. Non-Linear Latent Space SSC (NLS3C)

In [6], it was shown that the performance of the SSC

method depends on the principle angles between subspaces

and the distribution of the data in each subspace. The small-

est principle angle, θij , between two subspaces Si and Sj is

defined as

cos(θi,j) = max
ai∈Siaj∈Sj

aTi aj

‖ai‖2‖aj‖2 .

In particular, when the smallest principle angle between

subspaces and the number of data points in each subspace is

small, the SSC clustering error increases. By mapping the

data onto a high-dimensional feature space and then pro-

jecting back onto a low-dimensional space, one may be able

deal with this small-principle-angles problem.

Let Φ : RD → H be a mapping from the input space

to the reproducing kernel Hilbert space H. The non-linear

mapping P can be characterized by a compact linear opera-

tor P : H → R
t. Let K ∈ R

N×N be a positive semidefinite

kernel Gram matrix whose elements are computed as

[K(Y,Y)]i,j = [〈Φ(Y),Φ(Y)〉H]i,j
= Φ(yi)

TΦ(yj)

= κ(yi,yj),

(18)

where κ : R
D × R

D → R is the kernel function

and Φ(Y) = [Φ(y1),Φ(y2), · · · ,Φ(yN )]. Some

commonly used kernels include polynomial ker-

nels κ(x,y) = 〈(x,y〉+ a)
b
, Gaussian kernels

κ(x,y) = exp
(−σ‖x− y‖2) , and hyperbolic tan-

gent kernels κ(x,y) = tanh(sxTy + o), where a, b, σ, s
and o are the parameters of the kernel functions.

With the above definitions, the cost function for the non-

linear LS3C can be written as follows

J (P ,C,Y) = ‖C‖1 + λ1‖PΦ(Y)−PΦ(Y)C‖2F
+ λ2‖Φ(Y)−P

T
PΦ(Y)‖2F .

This formulation is the same as that in (8) except that Y is

now replaced by Φ(Y). Furthermore, similar to Proposi-

tion 1, it can be shown that the optimal projection takes the

following form

P
∗ = ΨTΦ(Y)T . (19)

As a result, we get the following cost function

J (Ψ,C,K) = ‖C‖1 + λ1‖ΨT
K(I−C)‖2F

+ λ2trace
(
(I−ΨΨT

K)TK(I−ΨΨT
K)

) (20)

and the constraint PP
T = I becomes ΨT

KΨ = I. This

optimization problem can be solved in the same way as the

linear case. Note that the dimension of the output space is

upper bounded by the number of training samples. Both the

linear and non-linear methods for finding the sparse coef-

ficient matrix in the latent space along with the projection

matrix are summarized in Algorithm 1. Note that the opti-

mization problem is non-convex. However, numerical sim-

ulations have shown that the algorithm usually converges to

a local minimum in a few iterations.

Algorithm 1: Simultaneous dimension reduction and

sparse coding for both linear and non-linear case.

Input: Kernel matrix K ∈ R
N×N , λ1, λ2.

Initialization:

- Set iteration J = 1. Perform eigen decomposition K = VSVT .

- Set Ψ = V(:, I), where I is the index set of the d largest

eigenvalues of K.

Stage 1: Fix Ψ and update C

- Compute B = Ψ
T
K.

- Solve the sparse optimization problem (17) to obtain C.

Stage 2: Fix C and update Ψ

- Compute Δ = S
1

2 VT
(
λ1(I−C)(I−C)T − λ2I

)
VS

1

2 .

- Perform eigen decomposition of Δ = UΛUT .

- Set M = U(:, IJ ), where IJ is the index set of the d smallest

eigenvalues of Δ.

- Update Ψ = VS
− 1

2 M.

- Increment J = J + 1. Repeat from stage 1 until stopping

conditions reached.

Output: C and Ψ.

Similar to the SSC method, once the sparse coefficient

matrix C is found, spectral clustering is applied on the affin-

ity matrix W = |C| + |C|T to obtain the segmentation of

the data in the low-dimensional latent space. The resulting

latent space SSC (LS3C) and non-linear latent space SSC

(NLS3C) methods are summarized in Algorithm 2.

Algorithm 2: Latent Space Sparse Subspace Clustering for

both linear and non-linear cases.

Input: Kernel matrix K ∈ R
N×N , λ1, λ2.

Algorithm:

- Apply Algorithm 1 to find the sparse coefficient matrix C.

- Normalize the columns of C as ci ←
ci

‖ci‖∞
.

- Form a similarity graph with N nodes and set the weights on the

edges between the nodes by W = |C|+ |C|T .

- Apply spectral clustering to the similarity graph.

Output: Cluster labels for all signals.
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5. Experimental Results

In this section, we evaluate our proposed method on

both synthetic and real datasets. We compare our method

with several state-of-the-art subspace clustering algorithms

such as SSC [6], Low-Rank Representation (LRR) [15],

Low-Rank Subspace Clustering (LRSC) [7], Local Sub-

space Affinity (LSA) [29] and Spectral Curvature Cluster-

ing (SCC) [3]. For all the experiments, we set the maxi-

mum number of iteration in our Algorithm 1 to J = 3. We

set λ1 = λ2 = 50. All the experiments are done on an

OS X system with 2.6 GHz Intel Core i7 processor using

Matlab. Subspace clustering error is used to measure the

performance of different algorithms. It is defined as

subspace clustering error =
#of misclassified points

total#of points
×100.

5.1. Synthetic Data

In this section, we generate a synthetic data to study

the performance of LNS3C and NLS3C when the data in

each subspace and the smallest principle angle between sub-

spaces are small. We follow the same experimental setting

as in [6]. We consider n = 3 subspaces of dimension d = 3
embedded in D = 50 dimensional space. We generate the

bases {Ti ∈ R
D×d}3i=1

such that rank ([T1,T2,T3]) =
2d. Also, the subspaces are generated such that θ12 = θ23 =
θ. Furthermore, we generate the same number of points,

Ng, in each subspace at random and change the value of

Ng.
For a fixed value of d, we change the minimum angle be-

tween subspaces, θ, as well as the number of points in each

subspace Ng . For each pair of (θ,Ng), we compute the

subspace clustering error. Since the performance of SSC

and NSSC methods are based on how well the sparse co-

efficients are found, we also calculate the subspace sparse

recovery error. For the data points {yi}3Ng

i=1
, the sparse re-

covery error ESR is given by

ESR =
1

3Ng

3Ng∑
i=1

(
1− ‖ciqi‖1‖ci‖1

)
,

where cTi = [ci1
T , ci2

T , ci3
T ] represents the sparse coeffi-

cients ofyi ∈ Sqi and cij corresponds to the points in Sj .
We vary the smallest principle angle between subspaces

and the number of points in each subspace as θ ∈ [6, 60]
and Ng ∈ [d+ 1, 20d], respectively. For each pair (θ,Ng),
we calculate the average subspace clustering error as well as

the average ESR over 20 trials. In each trial we randomly

generate data points and subspaces. Results of this experi-

ment are shown in Figure 2. When θ and Ng decrease both

the sparse recovery and clustering errors of all the methods

increase. Also, the clustering error is highly dependent on

the sparse recovery error and both errors follow the same

pattern. In other words, clustering results are highly depen-

dent on how well the sparse coefficients are recovered. By

comparing the decay of errors, one can see that in the case

where both θ and Ng are small, our methods perform better

than the SSC method. The error decays faster in the case of

LS3C and NLS3C than SSC. This can be explained by the

fact that our method finds the projection directly from data

and preserves the sparse structure of data in the latent space.

In this experiment, for NLS3C we used a polynomial kernel

with parameters b = 1 and a = 0.015.

5.2. Motion Segmentation

In motion segmentation, the idea is to segment a video

sequence into multiple spatiotemporal regions correspond-

ing to different rigid body motions. Suppose that we have

tracked N feature points over F frames in a video sequence,

{xij}, where i = 1, · · · , N and j = 1 · · · , F . Each fea-

ture trajectory yi ∈ R
2F is obtained by stacking the feature

points in the video, i.e

yT
i = [xT

1i,x
T
2i, · · · ,xT

Fi].

Then, the objective is to separate these feature trajectories

according to their motions. It has been shown that tra-

jectories of a general rigid motion under affine projection

span a 4n-dimensional linear subspace [4]. In other words,

feature trajectories of n rigid motions lie in a union of n-

dimensional subspaces of R2F . Hence, the problem of clus-

tering the trajectories according to the different motion is

equivalent to the problem of clustering affine subspaces. In

our framework, this can be achieved by solving (7) that en-

forces the constraint that CT1 = 1.
We apply our joint dimensionality reduction and sub-

space clustering framework to the Hopkins155 motion seg-

mentation database [24]. The dataset contains 155 video se-

quences where 120 video sequences contain 2 motions and

35 video sequences have 3 motions. For each sequence,

a tracker is used to extract the point trajectories and the

outliers are extracted manually [24]. On average, each se-

quence of 2 motions has 266 feature trajectories and 30

frames and each sequence of 3 motions has 398 feature tra-

jectories and 29 frames. For the NLS3C, we used a polyno-

mial kernel with parameters a = 0.8 and b = 1.

Table 1 compares the performance of different methods.

For the methods other than LS3C and NLS3C, the data is

first projected onto the 4-dimensional subspace using PCA

[6]. As can be seen from this table, on average our method

LS3C performs the best on both 2 motion and 3 motion

sequences. It is able to learn the projection directly from

the data better than PCA. Non-linear LS3C also obtains

small clustering errors compared to the other competitive

subspace clustering methods.

In the second set of experiments with the Hopkins155

dataset, we study the performance of different methods as
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Figure 2. Subspace clustering errors and subspace-sparse recovery errors for three randomly generated disjoint subspaces with different

smallest principle angles and different number of points. The average subspace clustering and subspace-sparse recovery errors of the SSC

method are shown in (a) and (d), respectively. The average subspace clustering and subspace-sparse recovery errors of the LS3C method

are shown in (b) and (e), respectively. The average subspace clustering and subspace-sparse recovery errors of the NLS3C method are

shown in (c) and (f), respectively.

Algorithms

(2 Motions)

SSC LRR SCC LSA LRSC LS3C NLS3C

Mean 1.83 3.41 3.04 3.61 3.87 1.62 1.79

Median 0.00 0.00 0.00 0.51 0.26 0.00 0.00

Algorithms

(3 Motions)

SSC LRR SCC LSA LRSC LS3C NLS3C

Mean 4.40 4.86 7.91 7.65 7.72 4.38 4.89

Median 0.56 1.47 1.14 1.27 3.80 0.56 0.85

Algorithms

(All)

SSC LRR SCC LSA LRSC LS3C NLS3C

Mean 2.41 3.74 4.14 4.52 4.74 2.31 2.56

Median 0.00 0.00 0.00 0.57 0.58 0.00 0.00

Table 1. Clustering errors on the Hopkins155 dataset with the 4n-

dimensional data points.

we vary the subspace dimensions. We project the data onto

the following dimensional subspaces: {2n, 6n, 8n, 10n}.
For the LRR and SSC methods, we project the data onto

the low-dimensional space using random projections. Ran-

dom projections have been used for dimensionality reduc-

tion in many sparsity-based algorithms [28], [5] and they

have been shown to preserve the sparsity of data provided

certain conditions are met [1]. Let P be an t × D random

matrix with t ≤ D such that each entry pi,j of P is an in-

dependent realization of q, where q is a random variable on

a probability measure space (Ω, ρ). It has been shown that

given any set of points Λ, the following are some of the ma-

trices that provide the sparsest solution via �1 minimization

problem provided that enough measurements are taken [1]:

• RP1: t × D random matrix P whose entries pi,j are

independent realizations of Gaussian random variables

pi,j ∼ N
(
0, 1

t

)
.

• RP2: Independent realizations of ±1 Bernoulli ran-

dom variables

pi,j
.
=

{
+1/

√
t, with probability 1

2

−1/√t, with probability 1

2
.

We use both RP1 and RP2 to project the data points onto a

low-dimensional space. The average clustering error results

are summarized in Table 2. As can be seen from this ta-

ble that LS3C and NLS3C consistently outperform the other

methods in all dimensions. It is also interesting to note that

the performance of both SSC and LRR varies depending on

the projection matrix used for dimensionality reduction. In

other words, features are important for both SSC and LRR.

RP2 performs a little worse than the RP1. In contrast, our

method automatically learns the features directly from the

data and consistently performs better than LRR and SSC.

5.3. Rotated MNIST Dataset

The rotated MNIST benchmark [13] contains gray scale

images of hand-written digits of size 28 × 28 pixels. The

230



Algorithms

(2 Motions)

SSC

(RP2)

SSC

(RP1)

LRR

(RP2)

LRR

(RP1)

LS3C NLS3C

2n-Dim 5.08 4.29 13.91 12.73 3.23 3.86

6n-Dim 2.40 2.65 8.35 8.44 2.31 2.57

8n-Dim 2.60 2.92 7.79 7.36 2.29 2.57

10n-Dim 2.40 2.59 7.90 7.74 2.29 2.57

Table 2. Average clustering errors on the Hopkins155 dataset with

different dimensional data points.

images were originally taken from the MNIST dataset in-

troduced in [14], and transformed in several ways to cre-

ate more challenging classification problems. In the first

dataset, called the mnist-rot, digits are rotated by ran-

dom angles generated uniformly between 0 and 2π radians.

The second dataset, called the mnist-rot-back-image, is

created by inserting random backgrounds into mnist-rot
dataset. The mnist-back-rand dataset is created by insert-

ing random backgrounds in the original MNIST digit im-

ages. For all 3 datasets, there are 10000, 2000, and 50000

images for training, validation, and testing, respectively.

Figure 3 shows sample images from the above datasets.

Figure 3. Sample digits from the rotated MNIST dataset. (a) Digits

with random rotations, (b) Digits with random rotations and image

backgrounds, (c) Digits with random backgrounds.

We evaluate the clustering performance of LS3C and

NLS3 as well as SSC and LRR on this challenging dataset.

It was shown in [10] that handwritten digits with some vari-

ations lie on 12-dimensional subspaces. Hence, n hand-

written digits can be modeled as data points lying close to a

union of 12-dimensional subspaces. Since this dataset con-

tains a large amount of samples (about 62,000 samples), we

only use samples from the training and the validation sets

(12,000 samples) for clustering. In particular, we select 10

samples per digit and generate a small subset containing 100

samples from 10 digits. We use these samples for clustering

and repeat the process 120 times so that all the samples from

the training and the validation sets are used for clustering.

We report the average clustering performances of differ-

ent methods in Table 3. As can be seen from this table, in all

cases, NLS3C performances compare favorably to the state-

of-the-art. By non-linearly projecting the data we are able

to capture the compact structure of data that is more robust

against noise. Polynomial kernel with a = 1, b = 4 is used

in this experiment. The performance of LS3C is also com-

parable to that of SSC. Even though LRR and SSC can sep-

arate the background and remove noise from the data, they

do not perform well on this dataset. This is the case because

these methods can not find the sparse and low-rank rep-

resentation of the samples when the data contains random

rotations. In contrast, our non-linear projection learns the

rotation mapping directly from the data. Figure 4 displays

the transformations learned by our method on the mnist-
rot dataset. Each subplot of Figure 4 corresponds to a row

of the matrix P = ΨTYT . They have a strong similar-

ity to circular harmonic functions, thus, can capture more

rotational invariant features. These transformations make a

good sense given that the dataset consists of a lot of varia-

tions along the circular direction.

Dataset SSC LRR LS3C NLS3C

(a) 67.75 75.48 67.62 66.49

(b) 74.31 80.06 74.30 72.38

(c) 58.59 77.75 58.68 54.63

Avg. Time (sec) 13.86 16.20 13.06 13.10

Table 3. Average clustering errors on the rotated MNIST datasets:

(a) mnist-rot, (b) mnist-rot-back-image, (c) mnist-back-

rand.

Two most computationally heavy steps of SSC and our

method are the computation of sparse coefficients and spec-

tral clustering. Since the sparse coefficients are found in the

low-dimensional space, computation of sparse coefficients

is more efficient in our case than SSC. This can be seen by

comparing the average times in Table 3. On average our

method takes about 13 seconds to cluster 100 digits of size

28 × 28, whereas SSC takes about 14 seconds. LRR is the

most computationally heavy method compared to LS3C and

SSC.

Figure 4. Example of transformations learned by the LS3C method

from the rotated MNIST dataset.

6. Conclusion

We have proposed a simultaneous dimensionality reduc-

tion and sparse coding method in the low-dimensional la-

tent space for SSC. An efficient optimization method is pre-

sented. Furthermore, the method is made non-linear so that

it can deal with the small principle angle problem. Through

extensive clustering experiments on several datasets, it was
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shown that the proposed LS3C and NLS3C methods are ro-

bust and can perform significantly better than many state-

of-the-art subspace clustering methods.
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