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Abstract

Lipreading from visual channels remains a challeng-
ing topic considering the various speaking characteristics.
In this paper, we address an efficient lipreading approach
by investigating the unsupervised random forest manifold
alignment (RFMA). The density random forest is employed
to estimate affinity of patch trajectories in speaking facial
videos. We propose novel criteria for node splitting to avoid
the rank-deficiency in learning density forests. By virtue of
the hierarchical structure of random forests, the trajecto-
ry affinities are measured efficiently, which are used to find
embeddings of the speaking video clips by a graph-based
algorithm. Lipreading is formulated as matching between
manifolds of query and reference video clips. We employ the
manifold alignment technique for matching, where the L∞-
norm-based manifold-to-manifold distance is proposed to
find the matching pairs. We apply this random forest man-
ifold alignment technique to various video data sets cap-
tured by consumer cameras. The experiments demonstrate
that lipreading can be performed effectively, and outperfor-
m state-of-the-arts.

1. Introduction
Automatic lipreading plays an important role in commu-

nications in noisy environments, e.g. in stadiums and bars

where noises overcome speaking signals. The lipreading is

traditionally viewed as a supplement to speech recognition

[18]. In recent years, more researches are put on lipread-

ing solely from visual channels. Lipreading on a prede-

fined phrase data set has been demonstrated to be effective

[1, 5, 13, 15, 24, 25, 26] in speaker dependent and inde-

pendents scenarios. However, the robust lipreading from

visual channels still faces challenges in the following three

aspects. First, it is generally unrealistic or uncomfortable

to collect large enough stylized data from one subject by

asking him or her to repeat the phrases many times. The sit-

uation becomes worse when it comes to the lipreading of a

set of subjects. Considering the variations of lip shapes and

styles related to speaking speeds and intensities, it is often

Figure 1. Flowchart of our system.

hard to collect a data set covering all possible lip motion-

s. The generalization capacity is desirable in the lipread-

ing tasks. Second, the lipreading system should be real-

time considering the communication requirements. Third,

the current lipreading systems based on ordinary videos suf-

fer from illumination and texture variations. It is relatively

hard to achieve accurate 3D lip motions from monocular

color videos.

Confronted with these problems, we propose a novel

framework to handle lipreading of phrases by the alignment

of random forest manifolds as shown in Fig. 1. The lipread-

ing is performed in the low-dimensional manifold instead of

the original feature space, where the video clip represented

by a set of patch trajectories is converted to a simplex mo-

tion pattern manifold. For the purpose of graph-based em-

bedding, the affinity of patch trajectories are estimated by

an unsupervised density random forest, which is known for

fast training and online testing, and the generalization ca-

pacity. In our experiments, the depth videos are combined

together with the color videos to deal with the illumination

and texture variations.

Density random forest and rank-deficiency. The ran-

dom forest often works in a supervised manner, which is

trained with labeled data to get a reasonable partition of vi-

sual words for image categorization [14], pose estimation

[20], and object detection [9]. Different from the super-

vised random forests, our random forest manifold frame-

work works in an unsupervised manner. The underlying

data distribution and affinity are estimated without prior la-

beling. By introducing a dummy set, a classification ran-

dom forest was used to cluster unlabeled data set [2]. The
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optimal node splitting can also be determined by finding a

feature pair to produce the largest variance of feature dif-

ference [23]. Recently, the density forest was introduced

under a Gaussian distribution assumption in tree nodes [6].

The determinant of the covariance matrix was used to mea-

sure the clustering compactness in node splitting. However,

the rank-deficiency problem usually exists in the covariance

matrices of the high dimensional data set. In that case, the

zero-valued determinant can be no longer used to estimate

the information gain. We address the rank-deficiency prob-

lem by proposing novel criteria in node splitting by combin-

ing the trace-based distribution measurement and a scatter

index to estimate the optimal node splitting. To the best of

our knowledge, this paper is the first attempt to handle the

rank-deficiency problem in building unsupervised density

forests from the high dimensional data.

Random forest manifold and lipreading. Consider-

ing the high efficiency of random forest, it has been used

to find data embeddings. Gray et al. [10] employed a su-

pervised classification random forest to derive the distance

matrix of medical images and data embedding. Crimisi et

al. [6] addressed the forest manifold of low dimensional

toy data, where the Laplacian eigenmaps was employed to

find the embedding from the affinity matrix produced by

the density forest. In this work, a density forest is built

to measure affinities of the patch trajectories. Combined

with graph-based embedding, the video clips are embedded

to low dimensional motion patterns. Once given a query

phrase video, the extracted patch trajectories are fed to the

random forest for a pairwise affinity matrix and embedding.

The lipreading in this paper is formulated as the match-

ing of motion pattern manifolds of the query and those of

labeled references by alignments in the embedding space.

The manifold pairs with the minimum distance are consid-

ered to share the same phrase label.

The main contribution of this paper is to propose novel

criteria to handle the rank-deficiency problem in building

density forests. We integrate the trace-based cluster com-

pactness measurement together with a scatter index to es-

timate information gain during node splitting. By virtue of

the unsupervised random forest manifold, the lipreading can

be performed by matching simplex motion patterns effec-

tively.

1.1. Related Work

Automatic lipreading has been studied in computer vi-

sion for several years [18]. Saenko et al. [19] employed the

Hidden Markov Model to capture the dynamics of visual

speech signals. Zhao et al. [24] proposed a spatiotempo-

ral version of LBP features for lipreading. Aside from the

lipreading in the original feature space, automatic lipread-

ing in manifolds has also been investigated. Aharon and

Kimmel [1] applied nonlinear dimension reduction tech-

niques to analyze visual lip images. The embedding space

with representative key images can be used for lipreading by

matching uttering contours. Zhou et al. [25, 26] combined

LBP-like features and embedding techniques for lipreading,

where the visual feature vectors were mapped to determin-

istic curves. Different from the above lipreading in color

videos solely, we integrate multimodal data and fusions of

feature channels to improve the recognition performance,

where the density forests and the manifold alignment are

employed for an efficient lipreading system.

The manifold alignment provides an approach to estab-

lish correspondence between two embedding spaces. La-

fon et al. [12] estimated an affine function from predefined

landmarks for the correspondence in a diffusion embedding

space. A manifold mapping can be defined by linear local

maps of the tangent planes [11]. Wang et al. [22] built a

mutual embedding space for manifold alignment, where the

transformations were solved by eigenvector decomposition

of the Laplacian matrix. An extended affine transforma-

tion for the non-holistic manifold alignment was proposed

in [17]. In this work, the affine transformation is used to

align the embedded motion patterns, where the L∞-based

manifold-to-manifold distance is proposed to measure sim-

ilarities of embedded simplex motion patterns.

2. Patch Trajectory
The patch trajectories are extracted from speaking videos

captured by consumer depth cameras (Kinect). We employ

AAM [4] to track local facial features in the lower faces

including lips and jaws from the color videos as shown in

Fig. 2. Since the color and depth cameras in Kinect are

calibrated in advance, the features in depth videos can be

located synchronously. The small patches around the lips

are extracted and result in patch trajectories.

The patch trajectory features include the trajectory shape

s as the difference of patch positions in adjacent frames.

The shape vector s = (�xi|i = 2, ..., n), and �xi = xi −
xi−1, where n is the length of one video clip. The shape

vectors are normalized, and s
max||�xi|| → s.

The HOG feature [7] is known as the distribution of in-

tensity gradients and edge orientations, which is employed

to describe the local color and depth patches. Local binary

pattern (LBP[16]) is a powerful features for texture classi-

fication, and combined with HOG as feature descriptors in

our experiments. The shape and texture features are con-

catenated together to describe the patch trajectory t, and

t = (s, h), where h is the combined texture features of HOG

and LBP with respect to the color and depth images.

The feature vector of the patch trajectory is relatively

high-dimensional, i.e. ns + nh × n, where ns is the dimen-

sionality of the trajectory shape vector s, nh is the bin num-

ber of combined texture features. In this paper, the lipread-

ing is performed in a low-dimensional embedding space for

130



Figure 2. Patch trajectory extraction in a video clip. The green

contours around lips and jaws are resulted from an AAM tracker.

The patches extracted on color (a) and depth (b) images (black

outlined). (c)The patch trajectory and the corresponding texture

feature histogram h in the color and depth images.

efficiency instead of in the original feature space. We pro-

pose the random forest manifold to represent lip motions.

3. Random Forest Manifold

The random forest manifold technique integrates the un-

supervised density forest for affinity estimation and graph-

based embedding. The framework takes advantages of an

efficient affinity estimation in both the training and query

by hierarchical tree structures (See Section 3.2.1).

The density forest with a novel node splitting strategy

is introduced to handle the rank-deficiency as described in

Section 3.1. Given one data set, the random forest yields an

affinity matrix as described in Section 3.2. The graph-based

embedding algorithm is employed to find manifolds from

the data affinities (Section 3.3).

3.1. Unsupervised Random Forest

Given the unlabeled data set T = {ti|i = 1, ..., nt}, a set

of trees are trained independently. Density forest provides

an unsupervised method to estimate the underlying data dis-

tribution [6] with a Gaussian distribution assumption in tree

nodes. The differential of multi-variate Gaussian entropy

H is defined by the determinant of the covariance matrix,

which can be seen as the volume of the hyperellipsoid that

bounds the uncertainty of the data distribution.

H = ln ((2πe)κ|σ(Tj)|) , (1)

where σ is the covariance matrix of the κ-variant Gaussian

distribution. Tj is the data set of the j-th node. | · | is the

matrix determinant.

Figure 3. Density forest of patch trajectories. Each tree can yield

an affinity matrix of patch trajectories.

The optimal node splitting parameters, including fea-

ture channel and random splitting threshold, are obtained by

maximizing the information gain. The density forest tend-

s to produce the compact local clusters. It works well for

low dimensional toy data with a full-rank covariance matrix.

However, when it comes to the rank-deficiency, the whole

scheme fails. Unfortunately, it is always the case in the re-

al data sets, where the high dimensionality and the possible

intrinsic dependency of the sparse data make the rank of co-

variance matrix lower than both the instance number and di-

mensionality. It’s deserved to note that the rank-deficiency

is not only ubiquitous in high dimensional data, it can be

observed in low dimensional data. As shown in Fig. 4, the

corner data include point clouds on two planes, where the

rank of the local data points can be of 2 instead of that of

original covariance matrix of 3.

Confronted with this problem, we propose criteria for

node splitting as an integration of a trace-based distribution

measurement I1 and a scatter index I2.

I1 = −
∑
i=l,r

mT i
j

mTj

ln
(
tr

(
σ(T i

j )
))
, (2)

where tr(·) is the matrix trace, and mT i
j

denotes the size

of left or the right children nodes. As described in [21],

generally the trace is not a good metric for covariance ma-

trices for lack of invariance to scales and sensitiveness to the

parameter units. In our experiments, all shape and texture

feature vectors are normalized to avoid the scale problems.

The scatter index I2 is given as

I2 =
‖μl − μr‖∞∑
i=l,r φ(T

i
j , μi)

, (3)

where φ(T i
j , μi) = maxt∈T i

j
‖t− μi‖∞. μi is the centroids

of the children nodes. Note that I2 is maximized when the

data inside each child node are close to the centroid and the
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centroids of two children nodes are apart. The binary test ϕ
in node splitting is defined as

ϕ(tu, tv, τ)c =

{
1, if (tu − tv)c < τ,
0, otherwise.

(4)

u and v are randomly selected frame indices in the trajecto-

ry. (tu − tv)c is the feature difference between the u-th and

the v-th frame in feature channel c. In each node splitting,

the randomly selected (u, v, τ)c splits the data set into two

parts. The objective function I is defined as a combination

of I1 and I2.

I(u, v, τ)c = I1 + λI2. (5)

The parameter set (u, v, τ)c that maximizes the objective

function I is selected for node splitting. The constant λ is

empirically set at 50 in all the experiments.

The tree growth is terminated when the point number in-

side one node is below a predefined threshold or reaches the

specific depth.

3.2. Affinity

The forest leaves L define a partition of the training data.

When feeding an instance t to one tree, it will finally reach a

leaf 	(t), and 	 ∈ L, after a sequence of binary tests. In case

two instances reach the same leaf node, they are assumed to

be similar with respect to the tree, where the affinity be-

tween the two instances is added by 1, and 0 otherwise. The

symmetric affinity matrixA is obtained in this way (Fig. 3).

With an ensemble of density trees, the forest tends to yield

a generalized affinity of the data set. The final affinity A is

defined as a weighted combination ofAk from independent

trees.

A =
1

nT

nT∑
k=1

Ak, (6)

where nT is the tree number. Since only points inside one

leaf node cluster are considered to be similar, the affinity

matrix from the random forest automatically possesses the

local neighborship. Thus, A can be viewed as a geodesic

affinity (distance) matrix of the original data set. On the

contrary, when using L2 distance metric, there is no prior on

local neighbourship. The kNN-like algorithm is needed to

find local neighbourship from the pairwise distance matrix

with additional time costs.

3.2.1 Random Forest vs kNN

Compared with the ordinary L2 norm and kNN for the affin-

ity, our method can greatly reduce the time cost. The time

complexity of the kNN-graph algorithm is O(ρNα) [3] for

ρ-dimensional data, and α ∈ (1, 2). N is the instance num-

ber. The empirical α can be 1.11 − 1.14 [8]. In our work,

the time complexity of the forest traversal for the affinity is

O(NνnT ), and the tree depth ν = log2(N/nl). nl is the

leaf size. For a moderate-scale training data set, ν ∈ [5, 9].
The tree number nT is set empirically at 17 in all our ex-

periments. More importantly, the time complexity of our

method has no relations with the dimensionality, which is

desirable for the high dimensional data (see Section 5.4).

It’s deserved to note that there is no pairwise distance

computation in our method, where the comparison to the

thresholds when traversing trees is very fast and is negli-

gible in time. However, in kNN-graph-based method, al-

though the cost of pairwise distance of small subsets or

sampled point pairs is much smaller than the dense pair-

wise distance computation of the original data set, it is stil-

l time-demanding considering the complex operations im-

plied, e.g. L2 and earth mover distance.

3.3. Embedding

The density tree derives the affinity matrix and the neigh-

boring relationship of the data set simultaneously. The mul-

tidimensional scaling(MDS) algorithm is employed for the

embedding by minimizing the stress function. The origi-

nal data set is embedded to a low dimensional space in an

Isomap-like manner. We apply the random forest manifold

method to a set of toy data as shown in Fig. 4. The em-

beddings based on the random forest affinity is similar to

those by the L2 norm and kNN, while the latter is more

time-consuming.

By virtue of the random forest manifold embedding, the

original video clip consisting of a set of patch trajectories is

converted to a simplex pattern in a low dimensional space,

where each point is corresponding to a patch trajectory.

4. Lipreading
In the phrase lipreading scenarios, there is a predefined

reference phrase corpus. The lipreading is performed by

finding the most similar reference clip and assigning its la-

bel to the query clip.

In our experiments, the patch trajectories from the pre-

defined phrase data set serve as the training data for the ran-

dom forest. Once given the affinity matrix of trajectories,

the reference phrases can be embedded to a low dimensional

motion pattern set Θ = {Pr}. Given the query video clips,

the corresponding motion pattern manifold Pq is computed

by the proposed method. The lipreading is performed in the

embedding space by searching a reference motion pattern

Pr that best matches the query Pq .

P ∗r = argmin
Pr∈Θ

dm(Pr, Pq). (7)

dm(·) is the manifold-to-manifold distance as described in

Section 4.1. The embedding preserves the geodesic affin-

ity (distance) of the original data set. However, there is

no guarantee that two motion pattern manifolds share the

same spatial configuration. For instance, two manifolds can
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be of different scales. The direct manifold distance com-

putation by the distance sum of closest point pairs is non-

sense. We employ the manifold alignment technique [17]

to estimate the pattern correspondence and the manifold-to-

manifold distance.

4.1. Manifold Alignment

The goal of manifold alignment is to transform the refer-

ence and the query motion patterns, Pr and Pq , to a mutual

embedding space.

In case the query and reference video clips share the

same patch extraction configurations, the correspondence

between the two manifolds are known in advance. Other-

wise, the feature correspondence can be obtained with the

help of local structures. Each point in the motion pattern is

corresponding to a patch trajectory, and the local shape de-

scriptor bi of the i-th point is defined as bi = {di,j}, where

entry di,j is distance between the i-th point of the motion

pattern with its j-th nearest neighbor. The local correspond-

ing Ψ is obtained by locating similar local structures , and

Ψ = {(i∗, j∗) = argmin
i,j
‖bri − bqj‖}, (8)

where bri and bqj are local shape descriptors of the reference

and query motion patterns respectively.

The motion patterns are normalized beforehand to avoid

the scale variations across embedding spaces. An affine

transformation M is estimated by the least square method

based on the local feature matchings, and P r
Ψ ≈ M · P q

Ψ,

where M is a (mr) × (mq + 1) dimensional affine trans-

formation matrix. mr and mq are the dimensions of the

reference and the query motion patterns. Note that there are

no requirements that Pr and Pq bear the same dimensionali-

ty. The distance dm between the Pr and Pq is defined as the

distance sum of closest point pairs after the transformation

of the query pattern Pq.

dm(Pr, Pq) = min

nq∑
i=1, p

r, i′∈Pr

pq, i∈M ·Pq

‖pr, i′ − pq, i‖∞, (9)

where nq is the point number of Pq. pr,i′ is pq,i’s counterpart

in Pr. The phrase label of the reference motion pattern with

the minimum distance to Pq is assigned to the query clip

for lipreading. The dimensionality selection is performed

to find the optimal matching pairs. We test a set of man-

ifold matchings with different dimensionalities from 3 to

20. For a query video, the dimensionality with the smallest

matching distance is selected.

5. Experiments
5.1. Data Set

We performed the experiments on the following visu-

al uttering data sets, where the first two, KinectVS, and

Figure 4. The random forest manifold embeddings of toy data sets.

From left to right: punctured spheres, 3D clusters, twin peaks, and

corner. The upper row is the original data set. The middle row is

the embedding by our method, while the lower is the embedding

based on the L2 norm.

Figure 5. Samples color and depth image sequences of phrase Hel-
lo. The first row is the color images. The second row is the corre-

sponding depth images. The third row is the 3D meshes related to

the depth images.

OULUVS, are phrases data sets, and the next two, AVLet-

ters, AVLetters2, are letters data sets, and the last one is a

digits data set. In our experiments, 60% extracted trajec-

tories are used to learn the density random forest, and the

remaining portion for testing.

KinectVS consists 20 subjects uttering 20 phrases (Table

1) six times. The color and depth video data are both cap-

tured by Kinect at a resolution of 640 × 480 (Fig. 5). The

Laplacian smoothing is applied to the depth images in the

preprocessing to remove the device noises.

OULUVS [24] consists 20 subjects uttering 10 phrases (Ta-

ble 1) five times at a resolution of 720× 576.

AVletters [13] has 10 subjects uttering letters A to Z three

times. The data set contains pre-cropped lip images of 80×
60.

AVLetters2 [5] consists color videos of 5 subjects uttering

letters A to Z seven times with a resolution of 1920× 1080.

CUAVEsam 1 has two sample videos of digit 0 to 9 at a

resolution of 720 × 480. We use the first eight repetitions

with frontal faces.
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Table 1. Twenty daily used phrases.

1st part(1-10) ([24]) 2nd part (11-20)

Hello; Excuse me; I am sor-
ry; Thank you; Good bye;
See you; Nice to meet you;
You are welcome; How are
you; Have a good time

Who’s calling; Time is up;
I agree; I love this game;
So far so good; Any thing
else; Whats up; So do I; Be
careful; Bottoms up

Table 2. Lipreading performances in subject dependent experi-

ments when using different criteria in node splitting, i.e. trace-

based cluster compactness I1, scatter index I2, and I .

Criterion I1 I2 I

KinectVS 83.5 78.4 94.1
OULUVS 89.2 76.3 97.3
AVLetters 61.2 53.2 69.6
AVLetters2 87.7 72.2 91.8
CUAVEsam 91.5 93.5 100

5.2. Subject Dependent (SD)

In the subject dependent experiments, the training and

the testing data are from the same set of subjects. As de-

scribed in Section 3.1, the criterion for the node splitting is

a combination of a trace-based cluster compactness I1 and

a scatter index I2. We compare the fusion with those using

I1, I2 solely as shown in Table 2. The fused version is better

than using each criterion alone. We think the reason is that

the scatter index can enhance the uncertainty measurement

of the data distribution.

The patch trajectory is composed of multi-feature chan-

nels, i.e. trajectory shapes, textures of color and depth im-

age patches. When building random forests, the feature

channels and the corresponding thresholds are selected ran-

domly, and then optimized. All feature channels are fused

without extra work. The lipreading results based on the

shapes (RFMAshape), the color (RFMAHOG+LBP (color))

and depth patches (RFMAHOG(depth)) solely and integra-

tion of all feature channels together (RFMAfusion) are

shown in Table 3. In KinectVS data set, the fusion of all

feature channels outperforms those using single modal da-

ta.

We have compared our method with the recent lipread-

ing works [24, 25, 26] on OULUVS data set, where the fea-

tures of the patch trajectories are only extracted from color

videos. Table 3 shows accuracies with various feature chan-

nels combinations. The fusion of the color patch features

(HOG and LBP) and the trajectories shape (RFMAfusion)

outperformed the reported state-of-the-arts. We have ap-

plied our methods to letter sets (Table 4). The performances

in the high resolution AVLetters2 is better than that in the

low-resolution AVLetters set, and our method produces the

higher scores in both data sets.

1 http://www.clemson.edu/ces/speech/cuave.htm

As we can see, the image resolution has a close rela-

tion to the performance (Table 4). The experiments on the

low-resolution KinectVS data set (with approx. 45× 25 lip

regions) can produce a comparable results to those on the

OULUVS data set (with approx. 135× 80 lip regions) with

the help of the depth videos (Table 3). It is a promising way

to achieve a powerful lipreading system by virtue of multi-

modal data.

5.3. Subject Independent (SI)

In the subject independent experiments, the training and

the query data are from different subjects. We employ the

leave-one-out strategy, where the patch trajectories from

one subject are removed, and the remaining data are used

as the training data for the random forest manifolds.

In the data preprocessing, we registered all the faces to

avoid the scale problem. For instance, the lip and jaw re-

gions of one subject may be larger than other guys, and

the shape vectors would be apparently different from oth-

ers. As shown in Table 3, the accuracy of subject indepen-

dent experiment is lower than that of SD experiments. Al-

most all automatic lipreading literatures reported this prob-

lem [1, 24, 26], which comes from the personal charac-

teristics during speaking, and some person-specific texture

difference caused by moustache, skin color, lip and teeth

shapes. Similar to the SD experiments, the fusion of all fea-

ture channels of our method produces an improvement to

[24, 26].

5.4. Time Cost for Affinity

Our method can greatly reduce the time cost in affinity

estimation (see Fig. 6). We compare the time costs for affin-

ity matrices of 3D corner data and 2730-dimensional patch

trajectories data by the proposed random forest and the kNN

graph-based method [3]. For all varying sizes of data set-

s tested, our method is faster. Since the forest traversal is

extremely fast and has no relations to the data dimension-

ality, our method is especially superior to the kNN for high

dimensional and large data sets.

5.5. Parameter Analysis

Patch Size. In the patch trajectory extraction, a smal-

l image region around the salient marker is extracted, and

concatenated together as a patch trajectory. It is interesting

to note that, the optimal patch size of the color and depth

videos are different. As shown in Fig. 7, the video patch

size of KinectVS is set at 15 × 15, while the patch size for

depth video is set at 7× 7. We think it is due to the noise in

the depth images around the trajectories. The larger patch

size, the more noise accumulations with an impairment to

accuracies. However, in the color video, a comparatively

large patch size can hold more texture information. The

patch size depends on the resolution and quality of videos.
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Table 3. Lipreading performances of subject dependent (SD)

and subject independent (SI) experiments on phrase data sets,

KinectVS and OULUVS.(† via manual feature extraction)

Data Set Features Auto. Tracking

SD SI

KinectVS

RFMAshape 72.4 43.5

RFMAHOG+LBP (color) 91.5 82.1

RFMAHOG(depth) 79.4 57.5

RFMAfushion 94.1 87.7

OULUVS

RFMAHOG 89.1 83.4

RFMAHOG+LBP 93.6 86.4

RFMAfusion 97.3 89.7
Deterministic Curve [26] 85.1(96.5†) 81.3

Graph Embedding [25] n/a(90.7†) n/a

Local Spatiotemporal

descriptors [24]

64.2(70.2†) 58.6

Table 4. Lipreading performance on letter data sets.

Data Set Features Accuracy

AVLetters

RFMAHOG 56.3

RFMAHOG+LBP 62.5

RFMAfushion 69.6
Deep Autoencoder [15] 64.4

Multiscale Spatial Analysis [13] 44.6

Local Spatiotemporal descrip-

tors [24]

58.85

AVLetters2
RFMAfusion 91.8
AAM & Sieves[5] 89.4

Figure 6. The time cost in computation of affinity matrices by

kNN [3] and our random forest of 3D corner data (a) and 2730-

dimensional patch trajectories (b) of different sizes.

Leaf Size. One termination condition of tree growth is

the minimum leaf size threshold nl. The nodes stop split-

ting when the number of points inside reaches the prede-

fined threshold. The larger leaf size, the smaller tree will

be built. On the contrary, the small leaf size, e.g. one point

in the leaf node, will lead to a very deep tree with nt leaf

nodes and log2 nt levels for a balanced tree. With various

leaf size thresholds, the forest tends to yield different affin-

ity matrices. As shown in Fig. 8(a), the small leaf size

threshold yields a sparser matrix than that of the large leaf

size. It can be explained by the affinity estimation described

in Section 3.2. In the tree with a small leaf size, the clus-

ters corresponding to the leaf node could be compact, and

Figure 7. Accuracy variations with different patch sizes in color

(a) and depth (b) videos.

Figure 8. The affinity matrix and the embedding of corner data

with different leaf sizes of 20, 60 and 100 (from left to right).

(b) The difference e between the affinity matrices by our random

forest and L2 norm with different forest sizes in corner data.

the probability of two instances reaching the same leaf node

becomes small. In the lipreading experiments, the accuracy

reaches a local maximum when nl is set at 30.

It’s deserved to node that, there is one danger with a large

leaf size where the points inside the same leaf node are not

similar, which could impair the embedding (Fig. 8 (a)).

Forest Size. It is believed that in the random forest the

more trees, the more accurate fitting to the original data dis-

tribution and affinity estimation. However, the comparative-

ly large computation cost is introduced both in the training

and testing processes with increasing forest size. We mea-

sure the difference e between the affinity matrices, A and

AL2
, computed by our random forests and the L2 norm fol-

lowed by kNN.
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e =
‖(A⊕AL2)‖2F

nA
, (10)

where ⊕ is the xor of matrix entries. nA is the size of A.
‖ · ‖F is Frobenius norm. We test the corner data with

different forest sizes as shown in Fig. 8(b). When the tree

number is more than 20, the difference is below 0.015. The

difference e decreases when enlarging the forest size. The

accuracy reaches a local maximum when the forest size is

17 in lipreading experiments.

6. Conclusions
We have presented a random forest manifold technique

and applied it to lipreading in color and depth videos. The

video clips represented as a set of patch trajectories are con-

verted to simplex motion patterns in the embedding space.

The lipreading is realized by motion pattern matching based

on the manifold alignment. The whole process is unsuper-

vised, where the proposed criteria can deal with the rank-

deficiency in building density forests. Our framework takes

advantage of the efficient training and testing of random

forest, especially for affinity estimation, together with the

unsupervised manifold distance estimation by the manifold

alignment. The proposed method can handle large data set

efficiently, and at the same time can perform lipreading in

relatively low-resolution videos effectively.
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