

Abstract

This paper presents an approach to text recognition in

natural scene images. Unlike most existing works which
assume that texts are horizontal and frontal parallel to the
image plane, our method is able to recognize perspective
texts of arbitrary orientations. For individual character
recognition, we adopt a bag-of-keypoints approach, in which
Scale Invariant Feature Transform (SIFT) descriptors are
extracted densely and quantized using a pre-trained
vocabulary. Following [1, 2], the context information is
utilized through lexicons. We formulate word recognition as
finding the optimal alignment between the set of characters
and the list of lexicon words. Furthermore, we introduce a
new dataset called StreetViewText-Perspective, which
contains texts in street images with a great variety of
viewpoints. Experimental results on public datasets and the
proposed dataset show that our method significantly
outperforms the state-of-the-art on perspective texts of
arbitrary orientations.

1. Introduction
Reading text in natural scene images refers to the problem

of recognizing words that appear on, e.g., bill boards and road
signs. If such words can be recognized, they can be used for a
wide range of applications: content-based image retrieval,
sign translation, intelligent driving assistance, and navigation
aid for the visually-impaired and robots. Partly due to this
reason, scene text recognition has received increased interests
from the community, e.g., [1–4], in recent years.

In this paper, we focus on text recognition in street images,
which facilitates the application of business name search on
online maps [1]. This application is motivated by the
availability of ground-level, 360� views of various locations
on Google Maps and Microsoft Bing Maps. These geo-tagged
images contain useful text information, e.g., business names
and addresses. The large-scale nature of street image data
provides an exciting opportunity to benefit millions of users.

However, scene text recognition is very challenging due to
three main problems. First, the appearances of scene
characters are almost unconstrained, i.e., they vary drastically
in fonts, colors and sizes. Moreover, the characters typically
appear on cluttered backgrounds. Second, scene characters

often suffer from various deformations such as uneven
illumination, blurring and perspective distortion. Third, in
complex scenes such as street images, text may not be the
main object. Other objects such as buildings, cars and
pedestrians can interfere with the recognition process.

As an illustration of the complexity of street images, the
recognition accuracy of Optical Character Recognition
(OCR) engines on words cropped from these images is as low
as 35% [1]. For comparison, the typical OCR accuracy on
scanned documents is more than 90%.

Although there are existing works to recognize text in
natural scene images, e.g., [1–4], their scopes are limited to
horizontal texts which are frontal parallel to the image plane.
However, in practice, scene texts can appear in any
orientation, and with perspective distortion. Thus, the
important issue of handling perspective texts has been
neglected by previous works. In this paper, we attempt to
address the recognition of perspective texts of arbitrary
orientations in complex scenes (such as street images).

Using a traditional visual feature such as Histogram of
Oriented Gradients (HOG) (as employed in [1, 2]) would lead
to a low accuracy on perspective texts. The reason is that the
feature is not able to handle the different character poses. To
deal with this problem, one approach is to train a classifier on
discretized poses of individual characters. However, the
major drawback of this approach is that it is labor-intensive
and time-consuming to collect enough training samples for a
large number of character classes (62 classes for English
characters and digits), each with, say, 10 discrete poses. In
addition, when collecting character samples from natural
scenes, it is difficult to control the character poses accurately.

Hence, we take a different approach and use Scale
Invariant Feature Transform (SIFT) in a bag-of-keypoints
approach. Because SIFT is robust to both rotation and
viewpoint change, our system is trained on only frontal
characters (from commonly used datasets in the literature
such as ICDAR 2003 [5]). Our extensive experiments show
that this approach achieves good accuracies, while avoiding
the high cost of collecting samples of perspective characters.

Following recent works [1, 2], the scope of this paper is
limited to cropped word recognition with a lexicon, i.e., a list
of words of interest. The lexicon serves as a form of context
information, and is especially relevant for the application of
business name search. Given a street image and its address, the
lexicon can be built by collecting the shop names around the
address via a search engine [1]. There are also other

Recognizing Text with Perspective Distortion in Natural Scenes

Trung Quy Phan1*, Palaiahnakote Shivakumara2+, Shangxuan Tian1* and Chew Lim Tan1*

1School of Computing, National University of Singapore
2Faculty of Computer Science and Information Technology, University of Malaya

{phanquyt, tians, tancl}@comp.nus.edu.sg, shiva@um.edu.my

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.76

569

applications where such a lexicon is available. Ballan et al.
[6] used a list of soccer players’ names for text recognition in
sports videos. Graves et al. [7] constructed a list of the most
common English words for handwriting recognition. Another
example is the list of products in a supermarket, which can be
used for the application of aiding the visually-impaired.
Figure 1 illustrates the problem setting.

Our contributions are as follows. (1) We present an
approach to recognize perspective scene texts of arbitrary
orientations. This issue is of great practical importance, but
has been neglected by most previous works. (2) Our system is
trained on only frontal characters, which drastically reduces
the cost of collecting training data. (3) For performance
evaluation, we introduce a new dataset called
StreetViewText-Perspective, which contains texts in street
images with a variety of viewpoints. On this dataset, our
method compares favorably to the state-of-the-art.

2. Related work
A comprehensive review of text extraction methods is

provided in [8]. In general, there are two main steps: text
detection and text recognition. The first step aims to locate
the text positions in an image, usually by drawing a bounding
box around each word. The typical features used for detection
are stroke widths [9, 10], Maximally Stable Extremal Regions
(MSER) [11, 12] and HOG [1]. In the second step, the
detected words are recognized into text strings. We discuss
some of the recent works below.

Character recognition. A building block for word
recognition is individual character recognition. The typical
features used for recognition are HOG [1, 2] and Gabor filters
[13]. More recently, unsupervised feature learning has been
explored in [14, 15]. However, since these features are not
robust to rotation and viewpoint change, they may not work
well for perspective characters of arbitrary orientations.

Frontal word recognition. Weinman et al. [13] and Smith
et al. [3] proposed a novel similarity constraint to force
characters which were visually similar to take the same label.
However, these methods were only tested on simple sign
images where most of the words appeared on plain
backgrounds. Wang et al. [1, 16] adopted an object
recognition framework for word recognition. These methods
require all characters of a word to be correctly recognized and

thus, they cannot handle cases where one or more characters
are occluded. Recent works formulate word recognition as an
optimization problem by using Conditional Random Field
(CRF) [2, 17], Viterbi alignment [15] and weighted finite-
state transducers [4]. However, these works were only tested
on frontal texts.

Perspective text recognition. One approach is to rectify
perspective texts prior to recognition, e.g., [11, 18, 19].
However, these methods rely heavily on the quality of the
binarized character shapes. Thus, although they work for
texts on plain backgrounds, it is unclear whether they can
handle texts with cluttered backgrounds (as in street images).
Gandhi et al. [20] rectified perspective texts in image
sequences by utilizing the motion information. This method
requires camera calibration, and does not work for still
images. In a recent work, Li et al. [21] recognized perspective
characters without rectification. However, this work only
focused on character recognition, and did not address word
recognition. The dataset was also limited to simple sign
images. Therefore, despite its importance, the recognition of
perspective texts has not been adequately addressed.

3. Character detection and recognition
An overview of our approach to perspective text

recognition is shown in Figure 2. We describe the detection
and recognition of characters below. The optimized
alignment of the recognized characters with the lexicon will
be discussed in the next section.

3.1. Detection of character candidates
In the first step, we use MSERs [22] to detect the potential

character locations in a cropped word image (hereafter
referred to as character candidates). The main idea of MSER
is to identify regions which remain stable over a range of
thresholds on the intensity values. It has been shown that
scene characters can be extracted as MSERs [11, 12]. MSERs
are also robust to viewpoint change [23]. Hence, they are
suitable for perspective characters.

However, not all the extracted MSERs from a cropped
word correspond to characters. Thus, we classify them into
text MSERs and non-text MSERs using four features: the
relative height, the aspect ratio, the number of holes and the
number of horizontal crossings [11, 12]. The text MSERs are
retained while the non-text MSERs are discarded.

In [11, 12], the text MSERs were directly used for text
detection. However, in this paper, we use the MSER bounding
boxes instead. The reason is that although MSERs provide a
useful initial segmentation of the characters, they do not
always correspond to the whole characters. Figure 3 shows an

Figure 2: The flowchart of the proposed method.

Figure 1: The problem of cropped word recognition. A “cropped
word” refers to the region cropped from the original image
based on the word bounding box returned by a text detector,
e.g., [10]. Given a cropped word image, the task is to recognize
the word using the provided lexicon.

Lexicon: GARAGE,
SAKE, YOGA, BAR, …

Lexicon: GARAGE,
SAKE, YOGA, BAR, …

Text
detector

Cropped word
recognition

570

example where the MSERs corresponding to ‘E’ and ‘S’ have
incomplete shapes. Therefore, using the MSER bounding
boxes as character candidates helps to recover some of the
missing parts (if any) of the characters.

3.2. Estimation of character probabilities
For each character candidate detected in the previous

section, we need to estimate the probability that it takes
character label ��. In this paper, we focus on English
characters: �� ∈ � where � = {�, … , �, �, … , 	, 0, … , 9}.
Formally, we would like to estimate
(��|��), the probability
that �� , the
th character candidate, takes label ��.

As mentioned before, our goal is to train the system on
only frontal characters (to reduce the cost of collecting
training data). This requires the features extracted from the
character candidates to be robust to rotation and viewpoint
change. Thus, we propose to use SIFT. SIFT has been
explored for text recognition in [24, 25] and for word spotting
in [26, 27]. The first two works extracted the descriptors only
at sparse interest points, which is not sufficient for
perspective characters (to be explained later). The last two
works were only tested on frontal scanned document images.
In contrast, we adopt dense SIFT (which was used for scene
classification in [28]) for perspective character recognition.

More specifically, the patch inside a character candidate is
normalized to a fixed size of 48 × 48. We use a grid with
spacing of 2 pixels. At each grid point, we extract SIFT
descriptors at multiple scales. Note that only the locations and
the scales are fixed. The dominant gradient directions of the
descriptors may vary across different grid points, as well as
across different scales at the same grid point. (In the
literature, the term “dense SIFT” sometimes refers to an
extraction scheme where the orientations of the dense interest
points are fixed. However, we allow them to vary to ensure
the rotation-invariance of the descriptors.)

The rationale for using dense SIFT is that it provides more
information to discriminate among a large number of classes
(62 character classes). With the original SIFT, the descriptors
are only extracted at sparse interest points. However, scene
characters typically suffer from deformations, e.g., blurring
and uneven illumination, which reduce the number of
detected interest points. More importantly, instances of the
same class often suffer from different types of deformations.
Thus, the sets of detected interest points are not consistent,
which negatively affects the matching of the descriptors.
Figure 4 shows that using dense SIFT helps to overcome the
above problems.

Moreover, instead of matching the descriptors directly, we
use a bag-of-keypoints approach [29]. By ignoring the spatial
information of the keypoints, this approach allows for more
distortion between the training and the testing samples. K-
means clustering is used to build a vocabulary of 3,000 visual
words from a random subset of (dense) SIFT descriptors
extracted from training samples. (Section 6.4 shows how the
recognition accuracy varies with respect to the vocabulary
size.) With this vocabulary, the descriptors of a character
candidate are assigned to the nearest clusters. The feature
representation then becomes a histogram which counts the
number of descriptors belonging to each visual cluster. We
use a standard SVM package [30] with Histogram
Intersection Kernel [31] to estimate
(��|��) ∈ [0, 1]. (The
training and the testing data are described in Section 6.)

The fact that our method recognizes perspective characters
directly is an advantage over methods which rely on
rectification such as [11, 19]. The rectification process is
error-prone due to the challenges of scene characters,
including blurring and cluttered backgrounds.

3.3. Non-maximal suppression
Since multiple MSERs may be detected for the same

character [12], we perform non-maximal suppression on the
set of character candidates. A character candidate is
suppressed if it has a significant overlap with another
character candidate and the latter has a higher confidence.
The overlap ratio is calculated based on the two MSER areas.
The confidence of a character candidate is defined as the
maximum character probability:

����
�����(��) = ���
(��|��)�� ∈ � (1)

After suppression, the remaining character candidates are
fed into the next step for word recognition.

MSER and SIFT have been used separately for character
detection and character recognition in previous works.

 (a) Interest points using (b) Interest points using
 normal SIFT dense SIFT

Figure 4: Using normal SIFT leads to few descriptor matches. In
contrast, dense SIFT provides more information for character
recognition. The left image in each pair is from the training set
while the right one is from the test set. Note the fact that the
right one is a rotated character. For better illustration, in (b), we
only show one scale at each point. (Best viewed in color.)

 (c) Descriptor matching using (d) Descriptor matching using
 normal SIFT dense SIFT

 (a) Cropped word image (b) MSERs

(c) Character candidates based on MSER bounding boxes
Figure 3: Character detection based on MSERs. For better
illustration, only the non-overlapping MSERs are shown in (b).
The handling of overlapping MSERs will be discussed later.

571

However, to the best of our knowledge, this paper is the first
attempt to combine them in a coherent way to recognize
perspective characters while using only frontal training data.

4. Word recognition
The recognition of perspective texts of arbitrary

orientations is much more difficult than that of frontal,
horizontal texts due to additional challenges. With arbitrary
orientation, it is difficult to distinguish characters such as ‘6’
and ‘9’, and ‘u’ and ‘n’, unless there is context information.
Furthermore, some characters may be hard to read (due to
severe distortions) or even occluded. To deal with these
problems, we use a lexicon as the context information. We
formulate word recognition as finding the optimal alignment
between the character candidates and the lexicon words.

Let � denote the lexicon of an image. Let � = {��, … , ��}
be the set of character candidates. Each character candidate
can take a label from � ∪ {�}, where � = {�, … , �, �, … , 	, 0, … , 9} and � is the empty label. Let ��
denote an alignment vector of � to a word � ∈ �. ��(
) = � (� > 0) represents that �� is aligned with �(�), the �th
character of string �. ��(
) = 0 indicates that �� takes the
empty label.

For example, in Figure 5, ���!"##$(6) = 7 indicates that �% is aligned with the 7th character (‘R’). ���!"##$(1) = 0
and ���!"##$(3) = 0 because �� and �& take the empty label.
Note that for this image, some of the characters are missed
(‘N’) or partially detected (‘P’ and ‘O’). However, the
alignment vector still allows for a flexible matching.

We also define ��
'�*��+�(��) to be the alignment score,
which measures how well the labels of the character
candidates match the word � (to be explained more later).
The optimal word �∗ can then be found as follows:

�∗ = �+'��� .����+�*��+�(�)
� ∈ � (2)

where

.����+�*��+�(�) = ��� ��
'�*��+�(��)
�� ∈ �� (3)

 �� denotes the set of all the possible alignments between the
character candidates and word �.

Intuitively, Equations (2) and (3) mean that for each word
in the lexicon, we compute its maximum alignment score.
Then, among all the lexicon words, the one with the highest
maximum alignment score is returned as the optimal word.

4.1. Ordering of character candidates
Our alignment algorithm requires the character candidates

to be ordered into a sequence. For simplicity, we assume that
text is written from left to right or from top to bottom. If a
word is nearer to the horizontal orientation, the character
candidates are ordered by the x-coordinates. Otherwise, they
are ordered by the y-coordinates. A word is classified as
either nearer to the horizontal orientation or nearer to the
vertical orientation based on the angle of the major axis of its
bounding quadrilateral. (For perspective words, we use
quadrilaterals to mark the word locations (Section 5).)

4.2. Alignment score
As mentioned before, the alignment score measures how

well the labels of the character candidates match a word. It is
computed based on the individual scores of the character
candidates. Let *��+�(��, ��) be the score of assigning label �� to character candidate ��:

*��+�(��, ��) = /
(��|��),
� �� ≠ �
1 − ����
�����(��),
� �� = �� (4)

If a character candidate takes a non-empty label, we directly
use the corresponding SVM probability. Otherwise, if it takes
the empty label, we use a penalty score (inspired by [2]). The
purpose of the penalty score is to discourage character
candidates with high confidence from taking the empty label.

The alignment score of the whole word is the sum of the
individual scores of the character candidates:

��
'�*��+�(��) = 5 *��+� 8��, �:��(
);<�
�?� (5)

Recall that ��(
) is the index of string � that �� is aligned to.
Thus, �:��(
); ∈ � is the label assigned to �� .

4.3. Optimized alignment algorithm
Equation (2) is implemented by looping through the words

in the lexicon. For each word �, we need to compute .����+�*��+�(�) (Equation (3)). The rest of this section
describes our optimized alignment algorithm for doing this.
Since � is fixed in Equation (3), we drop � in some of the
below notations for clarity.

Let @(��, A) be the optimal alignment score of character
candidates ��, ��B�, … , ��, with �� aligned at index A of �. @
can be computed using dynamic programming. The
initialization is as follows:

for
 = � down to 1
 for A = ���(�) down to 1
 @(��, A) = *��+�:��, �(A); + ∑ *��+�(�E, �)�E?�B� (6)
 end for
end for

Intuitively, Equation (6) means that only �� is assigned a non-
empty label while ��B�, … , �� are assigned the empty label.
Hence, we use the score of �� and add the penalty scores of ��B�, … , ��. After that, we update @ backwards:

��

Figure 5: A sample alignment between a set of 6 character
candidates (shown in yellow) and the word “PIONEER”. The
top row shows the value of the alignment vector (of length 6).

572

for
 = � down to 1
 for A = ���(�) down to 1

 if @(��, A) < ��� G@:�H, I; + ∑ *��+�(��, �)H−1�=
+1+ *��+�:�
, �(A); J
H, I

 (7)

 update @(��, A) to ��� (.)
H, I

 end if
 end for
end for

where H ∈ [
 + 1, �] and I ∈ [A + 1, ���(�)]. �L can be
thought of as the first character candidate with a non-empty
label after �� . Intuitively, the right hand side (RHS) of
Equation (7) means that we loop through the combinations of H and I. For each combination of H and I:

� We use @:�L, I;, the optimal alignment score for
�L, … , ��, as the starting point. (Note that because we
compute @ backwards, @:�L, I; has already been
computed, and thus we can use its value.)

� We then add the penalty scores of assigning the
empty label to ��B�, … , �LM�.

� Finally, we add the score of �� .
After we have looped through all the combinations of H and I,
if the RHS of Equation (7) is greater than the initialized value
of @(��, A) (in Equation (6)), we update the value of the latter
to the former.

In our implementation, to reduce the computational time,
we restrict the range of A based on ��’s relative position in the
image. For example, if �� is near the left boundary of the
image, A’s range can be restricted to only the first few indices
of �. I’s range can also be restricted in a similar way.

When all @’s have been computed, .����+�*��+�(�)
in Equation (3) is obtained by:
 .����+�*��+�(�)
= ��� G@(��, A) + 5 *��+�(�E, �)�M�

E?� J

, A

 (8)

The intuition of Equation (8) is that we loop through the
combinations of
 and A. For each combination of
 and A, ��
acts as the first character candidate with a non-empty label
(among all the detected character candidates). Hence, we use
the score of �� and add the penalty scores of ��, … , ��M�.

Our optimized alignment algorithm has a few advantages
over existing works. First, it explicitly allows the empty label,
and thus is able to handle cases where one or more characters
are missed or occluded. This is an advantage over [1], which
does not allow skipping characters. Second, many methods,
e.g., [1, 4], require normalization for word length to avoid
bias towards shorter words. In contrast, because the
magnitude of our alignment score depends on the number of
character candidates (and not on the lexicon word length), no
normalization is required.

5. StreetViewText-Perspective dataset
Most of the standard datasets for scene text recognition,

e.g., [1, 5, 13, 17, 32], are limited to frontal texts. For
example, the annotators of the Street View Text (SVT)
dataset were instructed to “minimize skew” when choosing
the angles of texts [1]. Recently, there are more challenging
datasets: NEOCR [33] and MSRA-TD500 [10], which
include texts of arbitrary orientations and perspective texts.
However, these two datasets are still not ideal for evaluating
perspective text recognition for two reasons. First, because
they are not specifically designed for perspective texts, many
of the words in these datasets are still frontal. Second, in
practice, we often have the context information, e.g., the GPS
location and the address, of the image, which can be used to
improve text recognition. However, this information has been
discarded in these datasets.

Hence, although we do include MSRA-TD500 in our
experiments, we also introduce a new dataset called
StreetViewText-Perspective (SVT-Perspective)1, which is
specifically designed for evaluating perspective text
recognition. It also preserves the address, i.e., the context
information, of the input images. Our dataset is built based on
the original SVT dataset [1] for two reasons. (SVT is a public
dataset that contains images taken from Google Street View
with frontal texts of shop names, street names, etc.)

First, we would like to reuse the lexicons in SVT, which
were collected by Amazon Mechanical Turk workers. As a
consequence, our dataset contains images taken at the same
addresses on Google Street View. However, instead of
choosing the frontal texts, we intentionally picked side-view
angles such that texts are still readable to humans. The
lexicon of each image was taken to be the same as that of the
corresponding SVT image. Second, as our images were taken
at the same locations, they allow for a meaningful analysis of
the degradation in performance between frontal and
perspective texts.

For each image in our dataset, the words were manually
annotated using quadrilaterals. Similar to SVT, we only
annotated the words that were present in the image-specific
lexicons. Figure 6 shows a comparison of an image from
SVT and an image from SVT-Perspective.

Our dataset contains 238 images, which correspond to the
images in the SVT test set. The number of cropped words is
639. The words are of a variety of viewpoints and
orientations. Their heights vary from 9 to 330 pixels.

6. Experimental results
We performed experiments on perspective texts, texts of

arbitrary orientations and frontal texts. For the first class of
texts, we used our own dataset for reasons explained in the
previous section. For the second class of texts, we picked
MSRA-TD500 [10] because it is a very recent dataset that is
specifically designed for texts of arbitrary orientations. (Note
that in terms of size, NEOCR [33] is larger than MSRA-
TD500. However, it also contains more languages. The

1 Available at http://www.comp.nus.edu.sg/~phanquyt/

573

English subsets of these two datasets, which are our focus in
this paper, are comparable in size [10, 33].) For the third and
final class of texts, among the various datasets that have been
used in the literature [13, 17, 32], we chose ICDAR 2003 [5]
and SVT [1] because they are the most widely used datasets
with many reported results.

MSRA-TD500 only contains annotations at the text line
level. Thus, to evaluate word recognition, we manually added
word-level annotations2 for the English words in this dataset
(denoted as MSRA-TD500-Word).

For ICDAR 2003, we used the benchmarks for character
recognition (ICDAR-Char) and word recognition (ICDAR-
Word). For SVT, we used both the original word-level
annotations (SVT-Word) and the character-level annotations
provided in [2] (SVT-Char).

Due to the large number of visual words used (Section
3.2), we need to collect enough data to train the character
classifier. We used samples from ICDAR-Char (only the
training subset) and two other public datasets for frontal
texts: Weinman’s dataset [13] and Chars74k [32] (only the
English subset). In total, we had 19,800 training samples.
This training set was used for all the experiments in this
section.

6.1. Experiment on perspective texts
In this experiment, we used our SVT-Perspective dataset

for evaluation. We obtained the source codes of [1] and [15]
from the authors’ websites. We also re-implemented [2]
following the descriptions in the paper, and included ABBYY
FineReader 9.0 [34], a commercial OCR engine, in the
comparative study. We used the same experimental settings
as [1, 2]. In particular, words with less than 3 characters or
containing non-alphanumeric characters were ignored.

The second column of Table 1 shows that our method
significantly outperformed the other methods. The increase in
accuracy from 45.7% (of [2]) to 62.3% (of our method)
represents a relative improvement of 36%. In Figure 10 (on
the last page), our method recognized the words correctly
despite the blurring, occlusion and large variation in text
appearance. (Due to space constraint, additional results are
given in Figure 11 in supplementary material.)

2 Available at http://www.comp.nus.edu.sg/~phanquyt/

Table 1. Recognition accuracy on perspective words (in %)

Method SVT-Perspective-
Word

SVT-Perspective-
Word (Full)

FineReader 9.0 [34] 16.9 9.7
K. Wang et al. [1] 40.5 26.1
Mishra et al. [2] 45.7 24.7
T. Wang et al. [15] 40.2 32.4
Our method 62.3 42.2

Table 2. Accuracy on words of arbitrary orientations (in %)
Method MSRA-TD500-Word (Full)

FineReader 9.0 [34] 23.2
K. Wang et al. [1] 44.5
Mishra et al. [2] 27.8
T. Wang et al. [15] 20.8
Our method 58.4

These results demonstrate the advantage of using dense
SIFT to recognize perspective texts of arbitrary orientations.
Our optimized alignment algorithm also contributes to the
handling of characters that are occluded or hard to read.
Moreover, we have shown that using only frontal characters
for training is a sensible and realistic approach because it
avoids the cost of collecting perspective character samples.

We would like to emphasize that our training data did not
contain any samples from SVT. The data came from other
datasets, as aforementioned. Thus, the successful recognition
of the perspective words is due to the generalization power of
dense SIFT and SVM (and not because of the similarity
between SVT and SVT-Perspective).

We also analyzed how the recognition accuracy varied
with the lexicon size. Intuitively, a larger lexicon makes it
more difficult to recognize a word, especially if there are
several similar words in the lexicon. In addition to the
original lexicon size (of around 50 words per image), we used
another lexicon size denoted as Full. This lexicon contained
377 words (an increase of 7.5 times in size) and was
constructed by putting all the ground truth words in the test
set into a list (following the procedure in [1]). The third
column of Table 1 shows that even when a larger lexicon was
used, our method still achieved the best accuracy.

6.2. Experiment on texts of arbitrary orientations
In this experiment, we ran the same set of methods on

MSRA-TD500-Word. Since this dataset does not have
lexicons, we constructed a Full lexicon of 395 words in a
similar way as in the previous section. Table 2 shows that our
method also significantly outperformed the other methods on
this dataset. The increase in accuracy from 44.5% (of [1]) to
58.4% (of our method) represents a relative improvement of
31%. Figure 7 shows sample results of our method.

AZONA EXPO HYDRANT TARGET
Figure 7: Sample recognition results of our method for words of
arbitrary orientations.

Lexicon: PICKLES,
PUB, HOTEL, INN, …

Lexicon: PICKLES,
PUB, HOTEL, INN, …

 (a) SVT image (b) SVT-Perspective image
Figure 6: An image from SVT and the corresponding image
from SVT-Perspective. Both images are taken at the same
address, and thus have the same lexicon. In (b), the bounding
quadrilaterals are shown in black for “PICKLES” and “PUB”.

574

We are the first to report the recognition accuracy on
MSRA-TD500, a very recent public dataset for text of
arbitrary orientations. The fact that our method performed
well on both SVT-Perspective and MSRA-TD500
demonstrates its advantage over existing methods.

6.3. Experiment on frontal texts
In the previous sections, we do not evaluate cropped

character recognition because SVT-Perspective and MSRA-
TD500 do not have character-level annotations. In contrast,
ICDAR and SVT do have annotations at the character level.
Thus, we compared the character recognition accuracy (using
62 classes) on cropped character images. We have also
included the results reported by other recent works.

Table 3 shows that on SVT-Char, our method achieved the
state-of-the-art accuracy of 67.0%. The previous best known
result on this dataset was 61.9% [2].

On ICDAR-Char, our method outperformed [1]. Although
its accuracy was lower than those of [14, 15], these results
should be interpreted with the following consideration: when
rotation-invariant features are used, it is difficult to
distinguish pairs of characters such as ‘u’ and ‘n’, and ‘6’ and
‘9’, especially because no context information is available at
the character level. Therefore, because our method uses
rotation-invariant features, it is at a slight disadvantage
compared to the other methods, including [14, 15]. Figure 8
shows sample results of our method.

The next experiment is on word recognition. Each image in
SVT-Word comes with a lexicon (of around 50 words). On
the other hand, ICDAR-Word does not have lexicons. For fair
comparison, we used the lexicons provided in [1]. Table 4
shows that on SVT-Word, our method achieved the best
recognition accuracy. Our accuracy of 73.7% is slightly
higher than the previous best known result of 73.6% [17]. On
ICDAR-Word, our method achieved the third best accuracy.
Sample results of our method are shown in Figure 9.

Furthermore, the fact that the images in SVT and SVT-

Table 3. Cropped character recognition accuracy (in %)
Method ICDAR-Char SVT-Char

FineReader 9.0 [34] 21.0 11.7
K. Wang [1] 64.0 N.A
Mishra [2] N.A 61.9
Coates [14] 81.7 N.A
T. Wang [15] 83.9 N.A
Our method 75.6 67.0

Table 4. Recognition accuracy on frontal words (in %)
Method ICDAR-Word SVT-Word

FineReader 9.0 [34] 56.0 35.0
K. Wang [1] 76.0 57.0
T. Wang [15] 90.0 70.0
Novikova [4] 82.83 72.9
Mishra [2] 81.8 73.3
Mishra [17] 80.3 73.6
Our method 82.2 73.7

Table 5. Degradation in performance between frontal texts and
perspective texts (in %)

Method SVT-
Word

SVT-Perspective-
Word

%
change

FineReader [34] 35.0 16.9 -51.7
K. Wang [1] 57.0 40.5 -28.9
Mishra [2] 73.34 45.75 -37.7
T. Wang [15] 70.0 40.2 -42.6
Our method 73.7 62.3 -15.5

Perspective were taken at the same addresses on Google
Street View allows for an analysis of the performance
degradation between frontal and perspective texts. The drop
in accuracy of our method (-15.5%) was significantly lower
than those of the other methods (Table 5). This shows that
our method is more robust against rotation and perspective
distortion, which is important for practical applications.

6.4. Additional experiments
On SVT-Perspective (with the original lexicons), the

average processing time of our unoptimized Matlab code was
38.6 seconds. This was measured on a machine with Intel
Core i5 processor (quad-core, 3.2 GHz) and 4 GB RAM. Our
code can be optimized by e.g., using a trie structure for the
lexicon to avoid redundant computation [1].

We also analyzed how our accuracy varied with respect to
the number of visual words (Section 3.2). This experiment is
included in the supplementary material.

7. Conclusion
We have described a method for recognizing perspective

scene texts of arbitrary orientations. Our work serves as a
step towards practical applications (of scene text extraction)

3 Achieved using a slightly larger lexicon for ICDAR-Word.
4 Taken from [2].
5 Obtained from our re-implementation of [2], which follows the

paper closely. Its accuracy on SVT-Word was 69.1%, which is close to
the 73.3% accuracy reported in [2] for the same dataset.

Figure 9: Sample results of our method for frontal words. It was
able to recognize the words under challenging scenarios:
transparent text, occlusion, fancy font, similar text and
background colors and strong highlight.

CELCON

NEUMOS

REDUCTIONS

SHINING COPIES

 (a) Success cases (b) Failure cases
Figure 8: Sample character recognition results of our method. In
(a), the characters were correctly recognized despite the strong
highlight, small occlusion, similar text and background colors,
and rotation. In (b), the characters were wrongly recognized due
to low resolution, strong shadow and rotation invariance. The
last character was recognized as ‘6’.

575

in two aspects. First, most existing works make the simplistic
assumption that text is horizontal and frontal parallel to the
image plane. However, in many real-world scenarios, this
assumption does not hold. Thus, by handling perspective
texts, this work has attempted to address an important
research gap. Second, an attractive feature of our method is
that it is trained on only frontal character samples, and thus
does not require collecting samples of perspective characters.
This drastically reduces the cost of data collection.

The second aspect is achieved by the use of dense SIFT in
a bag-of-keypoints framework, which is robust to rotation
and viewpoint change. Our optimized alignment algorithm is
also designed to handle the challenges of perspective texts,
e.g., one or more characters may be hard to read or occluded.

Another contribution is the SVT-Perspective dataset,
which we propose to evaluate perspective text recognition.
On this dataset, our method compares favorably to the state-
of-the-art, with a 36% improvement in recognition accuracy.
Similarly, on a public dataset for texts of arbitrary
orientations, our method achieves a 31% improvement in
recognition accuracy over the compared methods. Therefore,
our results and dataset serve as a baseline for future studies
on perspective texts of arbitrary orientations.

Acknowledgments
We thank Quang Loc Le, Bolan Su and Hung Huu Hoang

for their helpful comments on the manuscript. We would also
like to thank Qianpan Jiang, Thanh Phu Tran and Quan Liu
for their help in annotating the SVT-Perspective dataset. This
research is supported in part by A*STAR grant 0921010051.

References
[1] K. Wang, B. Babenko, and S. Belongie. End-to-End Scene Text

Recognition. In ICCV 2011.
[2] A. Mishra, K. Alahari, and C. V. Jawahar. Top-Down and Bottom-up

Cues for Scene Text Recognition. In CVPR 2012.
[3] D. L. Smith, J. Field, and E. Learned-Miller. Enforcing Similarity

Constraints with Integer Programming for Better Scene Text
Recognition. In CVPR 2011.

[4] T. Novikova, O. Barinova, P. Kohli, and V. Lempitsky. Large-Lexicon
Attribute-Consistent Text Recognition in Natural Images. In ECCV
2012.

[5] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young.
ICDAR 2003 Robust Reading Competitions. In ICDAR 2003.

[6] L. Ballan, M. Bertini, A. Del Bimbo, and G. Serra. Semantic Annotation
of Soccer Videos by Visual Instance Clustering and Spatial/temporal
Reasoning in Ontologies. Multimedia Tools and Applications, 2010.

[7] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J.
Schmidhuber. A Novel Connectionist System for Unconstrained
Handwriting Recognition. IEEE TPAMI, 2009.

[8] J. Liang, D. Doermann, and H. Li. Camera-based Analysis of Text and
Documents: A Survey. IJDAR, 2005.

[9] B. Epshtein, E. Ofek, and Y. Wexler. Detecting Text in Natural Scenes
with Stroke Width Transform. In CVPR 2010.

[10] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting Texts of Arbitrary
Orientations in Natural Images. In CVPR 2012.

[11] L. Neumann and J. Matas. A Method for Text Localization and
Recognition in Real-world Images. In ACCV 2010.

[12] L. Neumann and J. Matas. Real-Time Scene Text Localization and
Recognition. In CVPR 2012.

[13] J. J. Weinman, E. Learned-Miller, and A. R. Hanson. Scene Text
Recognition Using Similarity and a Lexicon with Sparse Belief
Propagation. IEEE TPAMI, 2009.

[14] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J.
Wu, and A. Y. Ng. Text Detection and Character Recognition in Scene
Images with Unsupervised Feature Learning. In ICDAR 2011.

[15] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-End Text
Recognition with Convolutional Neural Networks. In ICPR 2012.

[16] K. Wang and S. Belongie. Word Spotting in the Wild. In ECCV 2010.
[17] A. Mishra, K. Alahari, and C. V. Jawahar. Scene Text Recognition

using Higher Order Language Priors. In BMVC 2012.
[18] C. R. Dance. Perspective Estimation for Document Images. In

Document Recognition and Retrieval 2001.
[19] G. K. Myers, R. C. Bolles, Q.-T. Luong, J. A. Herson, and H. B.

Aradhye. Rectification and Recognition of Text in 3-D Scenes. IJDAR,
2005.

[20] T. Gandhi, R. Kasturi, and S. Antani. Application of Planar Motion
Segmentation for Scene Text Extraction. In ICPR 2000.

[21] L. Li and C. L. Tan. Recognizing Planar Symbols with Severe
Perspective Deformation. IEEE TPAMI, 2010.

[22] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. In BMVC 2002.

[23] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F.
Schaffalitzky, T. Kadir, and L. Van Gool. A Comparison of Affine
Region Detectors. IJCV, 2005.

[24] Q. Zheng, K. Chen, Y. Zhou, C. Gu, and H. Guan. Text Localization
and Recognition in Complex Scenes Using Local Features. In ACCV
2010.

[25] M. Iwamura, T. Kobayashi, and K. Kise. Recognition of Multiple
Characters in a Scene Image Using Arrangement of Local Features. In
ICDAR 2011.

[26] I. Z. Yalniz and R. Manmatha. An Efficient Framework for Searching
Text in Noisy Document Images. In DAS 2012.

[27] M. Rusinol, D. Aldavert, R. Toledo, and J. Llados, Browsing
Heterogeneous Document Collections by a Segmentation-Free Word
Spotting Method. In ICDAR 2011.

[28] A. Bosch, A. Zisserman, and X. Munoz. Scene Classification Via pLSA.
In ECCV 2006.

[29] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
Categorization with Bags of Keypoints. In ECCV 2004.

[30] LIBSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[31] S. Maji, A. C. Berg, and J. Malik. Efficient Classification for Additive

Kernel SVMs. IEEE TPAMI, 2013.
[32] T. E. de Campos, B. R. Babu, and M. Varma. Character Recognition in

Natural Images. In VISAPP 2009.
[33] R. Nagy, A. Dicker, and K. Meyer-Wegener. NEOCR: A Configurable

Dataset for Natural Image Text Recognition. In CBDAR 2011.
[34] ABBYY FineReader 9.0. http://www.abbyy.com/.

Figure 10: Sample recognition results for texts of arbitrary orientations and with perspective distortion.

MARL-
BORO

LIGHTS

CENTER ADLER
BAR SAN

NEW THE INC T. Wang [15]
TOURS CREAM SQUARE Mishra [2]

K. Wang [1] THIRTEEN PACIFIC COFFEES

Our method JEROME MURPHY ROCK
PMS SAN

FIRST
SAKE
FRY

GARAGE

576

