
 

 
Abstract 

 
This paper presents an approach to text recognition in 

natural scene images. Unlike most existing works which 
assume that texts are horizontal and frontal parallel to the 
image plane, our method is able to recognize perspective 
texts of arbitrary orientations. For individual character 
recognition, we adopt a bag-of-keypoints approach, in which 
Scale Invariant Feature Transform (SIFT) descriptors are 
extracted densely and quantized using a pre-trained 
vocabulary. Following [1, 2], the context information is 
utilized through lexicons. We formulate word recognition as 
finding the optimal alignment between the set of characters 
and the list of lexicon words. Furthermore, we introduce a 
new dataset called StreetViewText-Perspective, which 
contains texts in street images with a great variety of 
viewpoints. Experimental results on public datasets and the 
proposed dataset show that our method significantly 
outperforms the state-of-the-art on perspective texts of 
arbitrary orientations. 
 

1. Introduction 
Reading text in natural scene images refers to the problem 

of recognizing words that appear on, e.g., bill boards and road 
signs. If such words can be recognized, they can be used for a 
wide range of applications: content-based image retrieval, 
sign translation, intelligent driving assistance, and navigation 
aid for the visually-impaired and robots. Partly due to this 
reason, scene text recognition has received increased interests 
from the community, e.g., [1–4], in recent years. 

In this paper, we focus on text recognition in street images, 
which facilitates the application of business name search on 
online maps [1]. This application is motivated by the 
availability of ground-level, 360� views of various locations 
on Google Maps and Microsoft Bing Maps. These geo-tagged 
images contain useful text information, e.g., business names 
and addresses. The large-scale nature of street image data 
provides an exciting opportunity to benefit millions of users. 

However, scene text recognition is very challenging due to 
three main problems. First, the appearances of scene 
characters are almost unconstrained, i.e., they vary drastically 
in fonts, colors and sizes. Moreover, the characters typically 
appear on cluttered backgrounds. Second, scene characters 

often suffer from various deformations such as uneven 
illumination, blurring and perspective distortion. Third, in 
complex scenes such as street images, text may not be the 
main object. Other objects such as buildings, cars and 
pedestrians can interfere with the recognition process. 

As an illustration of the complexity of street images, the 
recognition accuracy of Optical Character Recognition 
(OCR) engines on words cropped from these images is as low 
as 35% [1]. For comparison, the typical OCR accuracy on 
scanned documents is more than 90%. 

Although there are existing works to recognize text in 
natural scene images, e.g., [1–4], their scopes are limited to 
horizontal texts which are frontal parallel to the image plane. 
However, in practice, scene texts can appear in any 
orientation, and with perspective distortion. Thus, the 
important issue of handling perspective texts has been 
neglected by previous works. In this paper, we attempt to 
address the recognition of perspective texts of arbitrary 
orientations in complex scenes (such as street images). 

Using a traditional visual feature such as Histogram of 
Oriented Gradients (HOG) (as employed in [1, 2]) would lead 
to a low accuracy on perspective texts. The reason is that the 
feature is not able to handle the different character poses. To 
deal with this problem, one approach is to train a classifier on 
discretized poses of individual characters. However, the 
major drawback of this approach is that it is labor-intensive 
and time-consuming to collect enough training samples for a 
large number of character classes (62 classes for English 
characters and digits), each with, say, 10 discrete poses. In 
addition, when collecting character samples from natural 
scenes, it is difficult to control the character poses accurately. 

Hence, we take a different approach and use Scale 
Invariant Feature Transform (SIFT) in a bag-of-keypoints 
approach. Because SIFT is robust to both rotation and 
viewpoint change, our system is trained on only frontal 
characters (from commonly used datasets in the literature 
such as ICDAR 2003 [5]). Our extensive experiments show 
that this approach achieves good accuracies, while avoiding 
the high cost of collecting samples of perspective characters. 

Following recent works [1, 2], the scope of this paper is 
limited to cropped word recognition with a lexicon, i.e., a list 
of words of interest. The lexicon serves as a form of context 
information, and is especially relevant for the application of 
business name search. Given a street image and its address, the 
lexicon can be built by collecting the shop names around the 
address via a search engine [1]. There are also other 
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applications where such a lexicon is available. Ballan et al. 
[6] used a list of soccer players’ names for text recognition in 
sports videos. Graves et al. [7] constructed a list of the most 
common English words for handwriting recognition. Another 
example is the list of products in a supermarket, which can be 
used for the application of aiding the visually-impaired. 
Figure 1 illustrates the problem setting. 

Our contributions are as follows. (1) We present an 
approach to recognize perspective scene texts of arbitrary 
orientations. This issue is of great practical importance, but 
has been neglected by most previous works. (2) Our system is 
trained on only frontal characters, which drastically reduces 
the cost of collecting training data. (3) For performance 
evaluation, we introduce a new dataset called 
StreetViewText-Perspective, which contains texts in street 
images with a variety of viewpoints. On this dataset, our 
method compares favorably to the state-of-the-art. 

2. Related work 
A comprehensive review of text extraction methods is 

provided in [8]. In general, there are two main steps: text 
detection and text recognition. The first step aims to locate 
the text positions in an image, usually by drawing a bounding 
box around each word. The typical features used for detection 
are stroke widths [9, 10], Maximally Stable Extremal Regions 
(MSER) [11, 12] and HOG [1]. In the second step, the 
detected words are recognized into text strings. We discuss 
some of the recent works below. 

Character recognition. A building block for word 
recognition is individual character recognition. The typical 
features used for recognition are HOG [1, 2] and Gabor filters 
[13]. More recently, unsupervised feature learning has been 
explored in [14, 15].  However, since these features are not 
robust to rotation and viewpoint change, they may not work 
well for perspective characters of arbitrary orientations. 

Frontal word recognition. Weinman et al. [13] and Smith 
et al. [3] proposed a novel similarity constraint to force 
characters which were visually similar to take the same label. 
However, these methods were only tested on simple sign 
images where most of the words appeared on plain 
backgrounds. Wang et al. [1, 16] adopted an object 
recognition framework for word recognition. These methods 
require all characters of a word to be correctly recognized and  

 
 

thus, they cannot handle cases where one or more characters 
are occluded. Recent works formulate word recognition as an 
optimization problem by using Conditional Random Field 
(CRF) [2, 17], Viterbi alignment [15] and weighted finite-
state transducers [4].  However, these works were only tested 
on frontal texts. 

Perspective text recognition. One approach is to rectify 
perspective texts prior to recognition, e.g., [11, 18, 19]. 
However, these methods rely heavily on the quality of the 
binarized character shapes. Thus, although they work for 
texts on plain backgrounds, it is unclear whether they can 
handle texts with cluttered backgrounds (as in street images). 
Gandhi et al. [20] rectified perspective texts in image 
sequences by utilizing the motion information. This method 
requires camera calibration, and does not work for still 
images. In a recent work, Li et al. [21] recognized perspective 
characters without rectification. However, this work only 
focused on character recognition, and did not address word 
recognition. The dataset was also limited to simple sign 
images. Therefore, despite its importance, the recognition of 
perspective texts has not been adequately addressed. 

3. Character detection and recognition 
An overview of our approach to perspective text 

recognition is shown in Figure 2. We describe the detection 
and recognition of characters below. The optimized 
alignment of the recognized characters with the lexicon will 
be discussed in the next section. 

3.1. Detection of character candidates 
In the first step, we use MSERs [22] to detect the potential 

character locations in a cropped word image (hereafter 
referred to as character candidates). The main idea of MSER 
is to identify regions which remain stable over a range of 
thresholds on the intensity values. It has been shown that 
scene characters can be extracted as MSERs [11, 12]. MSERs 
are also robust to viewpoint change [23]. Hence, they are 
suitable for perspective characters. 

However, not all the extracted MSERs from a cropped 
word correspond to characters. Thus, we classify them into 
text MSERs and non-text MSERs using four features: the 
relative height, the aspect ratio, the number of holes and the 
number of horizontal crossings [11, 12]. The text MSERs are 
retained while the non-text MSERs are discarded. 

In [11, 12], the text MSERs were directly used for text 
detection. However, in this paper, we use the MSER bounding 
boxes instead. The reason is that although MSERs provide a 
useful initial segmentation of the characters, they do not 
always correspond to the whole characters. Figure 3 shows an  

Figure 2: The flowchart of the proposed method. 

Figure 1: The problem of cropped word recognition. A “cropped 
word” refers to the region cropped from the original image 
based on the word bounding box returned by a text detector, 
e.g., [10]. Given a cropped word image, the task is to recognize 
the word using the provided lexicon. 

Lexicon: GARAGE, 
SAKE, YOGA, BAR, … 

Lexicon: GARAGE, 
SAKE, YOGA, BAR, … 

Text 
detector 

Cropped word 
recognition 
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example where the MSERs corresponding to ‘E’ and ‘S’ have 
incomplete shapes. Therefore, using the MSER bounding 
boxes as character candidates helps to recover some of the 
missing parts (if any) of the characters. 

3.2. Estimation of character probabilities 
For each character candidate detected in the previous 

section, we need to estimate the probability that it takes 
character label ��. In this paper, we focus on English 
characters: �� ∈ � where � = {�, … , �, �, … , 	, 0, … , 9}. 
Formally, we would like to estimate 
(��|��), the probability 
that �� , the 
th character candidate, takes label ��. 

As mentioned before, our goal is to train the system on 
only frontal characters (to reduce the cost of collecting 
training data). This requires the features extracted from the 
character candidates to be robust to rotation and viewpoint 
change. Thus, we propose to use SIFT. SIFT has been 
explored for text recognition in [24, 25] and for word spotting 
in [26, 27]. The first two works extracted the descriptors only 
at sparse interest points, which is not sufficient for 
perspective characters (to be explained later). The last two 
works were only tested on frontal scanned document images. 
In contrast, we adopt dense SIFT (which was used for scene 
classification in [28]) for perspective character recognition. 

More specifically, the patch inside a character candidate is 
normalized to a fixed size of 48 × 48. We use a grid with 
spacing of 2 pixels. At each grid point, we extract SIFT 
descriptors at multiple scales. Note that only the locations and 
the scales are fixed. The dominant gradient directions of the 
descriptors may vary across different grid points, as well as 
across different scales at the same grid point. (In the 
literature, the term “dense SIFT” sometimes refers to an 
extraction scheme where the orientations of the dense interest 
points are fixed. However, we allow them to vary to ensure 
the rotation-invariance of the descriptors.) 

The rationale for using dense SIFT is that it provides more 
information to discriminate among a large number of classes 
(62 character classes). With the original SIFT, the descriptors 
are only extracted at sparse interest points. However, scene 
characters typically suffer from deformations, e.g., blurring 
and uneven illumination, which reduce the number of 
detected interest points. More importantly, instances of the 
same class often suffer from different types of deformations. 
Thus, the sets of detected interest points are not consistent, 
which negatively affects the matching of the descriptors. 
Figure 4 shows that using dense SIFT helps to overcome the 
above problems. 

 
 

Moreover, instead of matching the descriptors directly, we 
use a bag-of-keypoints approach [29]. By ignoring the spatial 
information of the keypoints, this approach allows for more 
distortion between the training and the testing samples. K-
means clustering is used to build a vocabulary of 3,000 visual 
words from a random subset of (dense) SIFT descriptors 
extracted from training samples. (Section 6.4 shows how the 
recognition accuracy varies with respect to the vocabulary 
size.) With this vocabulary, the descriptors of a character 
candidate are assigned to the nearest clusters. The feature 
representation then becomes a histogram which counts the 
number of descriptors belonging to each visual cluster. We 
use a standard SVM package [30] with Histogram 
Intersection Kernel [31] to estimate 
(��|��) ∈  [0, 1]. (The 
training and the testing data are described in Section 6.) 

The fact that our method recognizes perspective characters 
directly is an advantage over methods which rely on 
rectification such as [11, 19]. The rectification process is 
error-prone due to the challenges of scene characters, 
including blurring and cluttered backgrounds. 

3.3. Non-maximal suppression 
Since multiple MSERs may be detected for the same 

character [12], we perform non-maximal suppression on the 
set of character candidates. A character candidate is 
suppressed if it has a significant overlap with another 
character candidate and the latter has a higher confidence. 
The overlap ratio is calculated based on the two MSER areas. 
The confidence of a character candidate is defined as the 
maximum character probability: 
 

����
�����(��) = ��� 
(��|��)�� ∈ �  (1) 
 

 

After suppression, the remaining character candidates are 
fed into the next step for word recognition. 

MSER and SIFT have been used separately for character 
detection and character recognition in previous works. 

 (a) Interest points using (b) Interest points using 
 normal SIFT dense SIFT 

Figure 4: Using normal SIFT leads to few descriptor matches. In 
contrast, dense SIFT provides more information for character 
recognition. The left image in each pair is from the training set 
while the right one is from the test set. Note the fact that the
right one is a rotated character. For better illustration, in (b), we 
only show one scale at each point. (Best viewed in color.) 

 (c) Descriptor matching using (d) Descriptor matching using 
 normal SIFT dense SIFT 

 (a) Cropped word image (b) MSERs 

(c) Character candidates based on MSER bounding boxes 
Figure 3: Character detection based on MSERs. For better
illustration, only the non-overlapping MSERs are shown in (b). 
The handling of overlapping MSERs will be discussed later. 
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However, to the best of our knowledge, this paper is the first 
attempt to combine them in a coherent way to recognize 
perspective characters while using only frontal training data. 

4. Word recognition 
The recognition of perspective texts of arbitrary 

orientations is much more difficult than that of frontal, 
horizontal texts due to additional challenges. With arbitrary 
orientation, it is difficult to distinguish characters such as ‘6’ 
and ‘9’, and ‘u’ and ‘n’, unless there is context information. 
Furthermore, some characters may be hard to read (due to 
severe distortions) or even occluded. To deal with these 
problems, we use a lexicon as the context information. We 
formulate word recognition as finding the optimal alignment 
between the character candidates and the lexicon words. 

Let � denote the lexicon of an image. Let � = {��, … , ��} 
be the set of character candidates. Each character candidate 
can take a label from � ∪  {�}, where � = {�, … , �, �, … , 	, 0, … , 9} and � is the empty label. Let �� 
denote an alignment vector of � to a word � ∈ �. ��(
) = � (� > 0) represents that ��  is aligned with �(�), the �th 
character of string �. ��(
) = 0 indicates that ��  takes the 
empty label. 

For example, in Figure 5, ���!"##$(6) = 7 indicates that �% is aligned with the 7th character (‘R’). ���!"##$(1) = 0 
and ���!"##$(3) = 0 because �� and �& take the empty label. 
Note that for this image, some of the characters are missed 
(‘N’) or partially detected (‘P’ and ‘O’). However, the 
alignment vector still allows for a flexible matching. 

We also define ��
'�*��+�(��) to be the alignment score, 
which measures how well the labels of the character 
candidates match the word � (to be explained more later). 
The optimal word �∗ can then be found as follows: 
 

�∗ = �+'��� .����+�*��+�(�)
� ∈ �  (2) 

 

where 
 

.����+�*��+�(�) = ��� ��
'�*��+�(��)
�� ∈ ��  (3) 

 �� denotes the set of all the possible alignments between the 
character candidates and word �. 

Intuitively, Equations (2) and (3) mean that for each word 
in the lexicon, we compute its maximum alignment score. 
Then, among all the lexicon words, the one with the highest 
maximum alignment score is returned as the optimal word. 

4.1. Ordering of character candidates 
Our alignment algorithm requires the character candidates 

to be ordered into a sequence. For simplicity, we assume that 
text is written from left to right or from top to bottom. If a 
word is nearer to the horizontal orientation, the character 
candidates are ordered by the x-coordinates. Otherwise, they 
are ordered by the y-coordinates. A word is classified as 
either nearer to the horizontal orientation or nearer to the 
vertical orientation based on the angle of the major axis of its 
bounding quadrilateral. (For perspective words, we use 
quadrilaterals to mark the word locations (Section 5).) 

4.2. Alignment score 
As mentioned before, the alignment score measures how 

well the labels of the character candidates match a word. It is 
computed based on the individual scores of the character 
candidates. Let *��+�(��, ��) be the score of assigning label �� to character candidate ��: 
 

*��+�(��, ��) = / 
(��|��), 
� �� ≠ �
1 − ����
�����(��), 
� �� = �� (4) 

 
 

If a character candidate takes a non-empty label, we directly 
use the corresponding SVM probability. Otherwise, if it takes 
the empty label, we use a penalty score (inspired by [2]). The 
purpose of the penalty score is to discourage character 
candidates with high confidence from taking the empty label. 

The alignment score of the whole word is the sum of the 
individual scores of the character candidates: 

 

��
'�*��+�(��) = 5 *��+� 8��, �:��(
);<�
�?�  (5) 

 

Recall that ��(
) is the index of string � that ��  is aligned to. 
Thus, �:��(
); ∈ � is the label assigned to �� . 

4.3. Optimized alignment algorithm 
Equation (2) is implemented by looping through the words 

in the lexicon. For each word �, we need to compute .����+�*��+�(�) (Equation (3)). The rest of this section 
describes our optimized alignment algorithm for doing this. 
Since � is fixed in Equation (3), we drop � in some of the 
below notations for clarity. 

Let @(��, A) be the optimal alignment score of character 
candidates ��, ��B�, … , ��, with ��  aligned at index A of �. @ 
can be computed using dynamic programming. The 
initialization is as follows: 
 

for 
 = � down to 1 
  for A = ���(�) down to 1 
    @(��, A) =  *��+�:��, �(A); + ∑ *��+�(�E, �)�E?�B�  (6) 
  end for 
end for 
 

Intuitively, Equation (6) means that only ��  is assigned a non-
empty label while ��B�, … , �� are assigned the empty label. 
Hence, we use the score of ��  and add the penalty scores of ��B�, … , ��. After that, we update @ backwards: 

��  

Figure 5: A sample alignment between a set of 6 character 
candidates (shown in yellow) and the word “PIONEER”. The 
top row shows the value of the alignment vector (of length 6). 
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for 
 = � down to 1 
  for A = ���(�) down to 1 

    if @(��, A) < ��� G@:�H, I; + ∑ *��+�(��, �)H−1�=
+1+ *��+�:�
, �(A); J
H, I

 (7) 

      update @(��, A) to ��� (. )
H, I  

    end if 
  end for 
end for 
 

where H ∈ [
 + 1, �] and I ∈ [A + 1, ���(�)]. �L can be 
thought of as the first character candidate with a non-empty 
label after �� . Intuitively, the right hand side (RHS) of 
Equation (7) means that we loop through the combinations of H and I. For each combination of H and I: 

� We use @:�L, I;, the optimal alignment score for 
�L, … , ��, as the starting point. (Note that because we 
compute @ backwards, @:�L, I; has already been 
computed, and thus we can use its value.) 

� We then add the penalty scores of assigning the 
empty label to ��B�, … , �LM�. 

� Finally, we add the score of �� . 
After we have looped through all the combinations of H and I, 
if the RHS of Equation (7) is greater than the initialized value 
of @(��, A) (in Equation (6)), we update the value of the latter 
to the former. 

In our implementation, to reduce the computational time, 
we restrict the range of A based on ��’s relative position in the 
image. For example, if ��  is near the left boundary of the 
image, A’s range can be restricted to only the first few indices 
of �. I’s range can also be restricted in a similar way. 

When all @’s have been computed, .����+�*��+�(�) 
in Equation (3) is obtained by: 
 .����+�*��+�(�)
= ��� G@(��, A) + 5 *��+�(�E, �)�M�

E?� J

, A

 (8) 

 

The intuition of Equation (8) is that we loop through the 
combinations of 
 and A. For each combination of 
 and A, ��  
acts as the first character candidate with a non-empty label 
(among all the detected character candidates). Hence, we use 
the score of ��  and add the penalty scores of ��, … , ��M�. 

Our optimized alignment algorithm has a few advantages 
over existing works. First, it explicitly allows the empty label, 
and thus is able to handle cases where one or more characters 
are missed or occluded. This is an advantage over [1], which 
does not allow skipping characters. Second, many methods, 
e.g., [1, 4], require normalization for word length to avoid 
bias towards shorter words. In contrast, because the 
magnitude of our alignment score depends on the number of 
character candidates (and not on the lexicon word length), no 
normalization is required. 

5. StreetViewText-Perspective dataset 
Most of the standard datasets for scene text recognition, 

e.g., [1, 5, 13, 17, 32], are limited to frontal texts. For 
example, the annotators of the Street View Text (SVT) 
dataset were instructed to “minimize skew” when choosing 
the angles of texts [1]. Recently, there are more challenging 
datasets: NEOCR [33] and MSRA-TD500 [10], which 
include texts of arbitrary orientations and perspective texts. 
However, these two datasets are still not ideal for evaluating 
perspective text recognition for two reasons. First, because 
they are not specifically designed for perspective texts, many 
of the words in these datasets are still frontal. Second, in 
practice, we often have the context information, e.g., the GPS 
location and the address, of the image, which can be used to 
improve text recognition. However, this information has been 
discarded in these datasets. 

Hence, although we do include MSRA-TD500 in our 
experiments, we also introduce a new dataset called 
StreetViewText-Perspective (SVT-Perspective)1, which is 
specifically designed for evaluating perspective text 
recognition. It also preserves the address, i.e., the context 
information, of the input images. Our dataset is built based on 
the original SVT dataset [1] for two reasons. (SVT is a public 
dataset that contains images taken from Google Street View 
with frontal texts of shop names, street names, etc.) 

First, we would like to reuse the lexicons in SVT, which 
were collected by Amazon Mechanical Turk workers. As a 
consequence, our dataset contains images taken at the same 
addresses on Google Street View. However, instead of 
choosing the frontal texts, we intentionally picked side-view 
angles such that texts are still readable to humans. The 
lexicon of each image was taken to be the same as that of the 
corresponding SVT image. Second, as our images were taken 
at the same locations, they allow for a meaningful analysis of 
the degradation in performance between frontal and 
perspective texts. 

For each image in our dataset, the words were manually 
annotated using quadrilaterals. Similar to SVT, we only 
annotated the words that were present in the image-specific 
lexicons. Figure 6 shows a comparison of an image from 
SVT and an image from SVT-Perspective. 

Our dataset contains 238 images, which correspond to the 
images in the SVT test set. The number of cropped words is 
639. The words are of a variety of viewpoints and 
orientations. Their heights vary from 9 to 330 pixels. 

6. Experimental results 
We performed experiments on perspective texts, texts of 

arbitrary orientations and frontal texts. For the first class of 
texts, we used our own dataset for reasons explained in the 
previous section. For the second class of texts, we picked 
MSRA-TD500 [10] because it is a very recent dataset that is 
specifically designed for texts of arbitrary orientations. (Note 
that in terms of size, NEOCR [33] is larger than MSRA- 
TD500. However, it also contains more languages. The 
 

1 Available at http://www.comp.nus.edu.sg/~phanquyt/ 
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English subsets of these two datasets, which are our focus in 
this paper, are comparable in size [10, 33].) For the third and 
final class of texts, among the various datasets that have been 
used in the literature [13, 17, 32], we chose ICDAR 2003 [5] 
and SVT [1] because they are the most widely used datasets 
with many reported results. 

MSRA-TD500 only contains annotations at the text line 
level. Thus, to evaluate word recognition, we manually added 
word-level annotations2 for the English words in this dataset 
(denoted as MSRA-TD500-Word). 

For ICDAR 2003, we used the benchmarks for character 
recognition (ICDAR-Char) and word recognition (ICDAR-
Word). For SVT, we used both the original word-level 
annotations (SVT-Word) and the character-level annotations 
provided in [2] (SVT-Char). 

Due to the large number of visual words used (Section 
3.2), we need to collect enough data to train the character 
classifier. We used samples from ICDAR-Char (only the 
training subset) and two other public datasets for frontal 
texts: Weinman’s dataset [13] and Chars74k [32] (only the 
English subset). In total, we had 19,800 training samples. 
This training set was used for all the experiments in this 
section. 

6.1. Experiment on perspective texts 
In this experiment, we used our SVT-Perspective dataset 

for evaluation. We obtained the source codes of [1] and [15] 
from the authors’ websites. We also re-implemented [2] 
following the descriptions in the paper, and included ABBYY 
FineReader 9.0 [34], a commercial OCR engine, in the 
comparative study. We used the same experimental settings 
as [1, 2]. In particular, words with less than 3 characters or 
containing non-alphanumeric characters were ignored. 

The second column of Table 1 shows that our method 
significantly outperformed the other methods. The increase in 
accuracy from 45.7% (of [2]) to 62.3% (of our method) 
represents a relative improvement of 36%. In Figure 10 (on 
the last page), our method recognized the words correctly 
despite the blurring, occlusion and large variation in text 
appearance. (Due to space constraint, additional results are 
given in Figure 11 in supplementary material.) 
 

2 Available at http://www.comp.nus.edu.sg/~phanquyt/ 

Table 1. Recognition accuracy on perspective words (in %) 

Method SVT-Perspective-
Word 

SVT-Perspective-
Word (Full) 

FineReader 9.0 [34] 16.9 9.7 
K. Wang et al. [1] 40.5 26.1 
Mishra et al. [2] 45.7 24.7 
T. Wang et al. [15] 40.2 32.4 
Our method 62.3 42.2 
 

Table 2. Accuracy on words of arbitrary orientations (in %) 
Method MSRA-TD500-Word (Full) 

FineReader 9.0 [34] 23.2 
K. Wang et al. [1] 44.5 
Mishra et al. [2] 27.8 
T. Wang et al. [15] 20.8 
Our method 58.4 

 

 
 

These results demonstrate the advantage of using dense 
SIFT to recognize perspective texts of arbitrary orientations. 
Our optimized alignment algorithm also contributes to the 
handling of characters that are occluded or hard to read. 
Moreover, we have shown that using only frontal characters 
for training is a sensible and realistic approach because it 
avoids the cost of collecting perspective character samples. 

We would like to emphasize that our training data did not 
contain any samples from SVT. The data came from other 
datasets, as aforementioned. Thus, the successful recognition 
of the perspective words is due to the generalization power of 
dense SIFT and SVM (and not because of the similarity 
between SVT and SVT-Perspective). 

We also analyzed how the recognition accuracy varied 
with the lexicon size. Intuitively, a larger lexicon makes it 
more difficult to recognize a word, especially if there are 
several similar words in the lexicon. In addition to the 
original lexicon size (of around 50 words per image), we used 
another lexicon size denoted as Full. This lexicon contained 
377 words (an increase of 7.5 times in size) and was 
constructed by putting all the ground truth words in the test 
set into a list (following the procedure in [1]). The third 
column of Table 1 shows that even when a larger lexicon was 
used, our method still achieved the best accuracy. 

6.2. Experiment on texts of arbitrary orientations 
In this experiment, we ran the same set of methods on 

MSRA-TD500-Word. Since this dataset does not have 
lexicons, we constructed a Full lexicon of 395 words in a 
similar way as in the previous section. Table 2 shows that our 
method also significantly outperformed the other methods on 
this dataset. The increase in accuracy from 44.5% (of [1]) to 
58.4% (of our method) represents a relative improvement of 
31%. Figure 7 shows sample results of our method. 

AZONA EXPO HYDRANT TARGET 
Figure 7: Sample recognition results of our method for words of 
arbitrary orientations. 

Lexicon: PICKLES, 
PUB, HOTEL, INN, … 

Lexicon: PICKLES, 
PUB, HOTEL, INN, … 

 (a) SVT image (b) SVT-Perspective image 
Figure 6: An image from SVT and the corresponding image 
from SVT-Perspective. Both images are taken at the same 
address, and thus have the same lexicon. In (b), the bounding 
quadrilaterals are shown in black for “PICKLES” and “PUB”. 
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We are the first to report the recognition accuracy on 
MSRA-TD500, a very recent public dataset for text of 
arbitrary orientations. The fact that our method performed 
well on both SVT-Perspective and MSRA-TD500 
demonstrates its advantage over existing methods. 

6.3. Experiment on frontal texts 
In the previous sections, we do not evaluate cropped 

character recognition because SVT-Perspective and MSRA-
TD500 do not have character-level annotations. In contrast, 
ICDAR and SVT do have annotations at the character level. 
Thus, we compared the character recognition accuracy (using 
62 classes) on cropped character images. We have also 
included the results reported by other recent works. 

Table 3 shows that on SVT-Char, our method achieved the 
state-of-the-art accuracy of 67.0%. The previous best known 
result on this dataset was 61.9% [2]. 

On ICDAR-Char, our method outperformed [1]. Although 
its accuracy was lower than those of [14, 15], these results 
should be interpreted with the following consideration: when 
rotation-invariant features are used, it is difficult to 
distinguish pairs of characters such as ‘u’ and ‘n’, and ‘6’ and 
‘9’, especially because no context information is available at 
the character level. Therefore, because our method uses 
rotation-invariant features, it is at a slight disadvantage 
compared to the other methods, including [14, 15]. Figure 8 
shows sample results of our method. 

The next experiment is on word recognition. Each image in 
SVT-Word comes with a lexicon (of around 50 words). On 
the other hand, ICDAR-Word does not have lexicons. For fair 
comparison, we used the lexicons provided in [1]. Table 4 
shows that on SVT-Word, our method achieved the best 
recognition accuracy. Our accuracy of 73.7% is slightly 
higher than the previous best known result of 73.6% [17]. On 
ICDAR-Word, our method achieved the third best accuracy. 
Sample results of our method are shown in Figure 9. 

Furthermore, the fact that the images in SVT and SVT- 

Table 3. Cropped character recognition accuracy (in %) 
Method ICDAR-Char SVT-Char 

FineReader 9.0 [34] 21.0 11.7 
K. Wang [1] 64.0 N.A 
Mishra [2] N.A 61.9 
Coates [14] 81.7 N.A 
T. Wang [15] 83.9 N.A 
Our method 75.6 67.0 
 

Table 4. Recognition accuracy on frontal words (in %) 
Method ICDAR-Word SVT-Word 

FineReader 9.0 [34] 56.0 35.0 
K. Wang [1] 76.0 57.0 
T. Wang [15] 90.0 70.0 
Novikova [4] 82.83 72.9 
Mishra [2] 81.8 73.3 
Mishra [17] 80.3 73.6 
Our method 82.2 73.7 

 

Table 5. Degradation in performance between frontal texts and 
perspective texts (in %) 

Method SVT-
Word 

SVT-Perspective-
Word 

% 
change 

FineReader [34] 35.0 16.9 -51.7 
K. Wang [1] 57.0 40.5 -28.9 
Mishra [2] 73.34 45.75 -37.7 
T. Wang [15] 70.0 40.2 -42.6 
Our method 73.7 62.3 -15.5 

 

Perspective were taken at the same addresses on Google 
Street View allows for an analysis of the performance 
degradation between frontal and perspective texts. The drop 
in accuracy of our method (-15.5%) was significantly lower 
than those of the other methods (Table 5). This shows that 
our method is more robust against rotation and perspective 
distortion, which is important for practical applications. 

6.4. Additional experiments 
On SVT-Perspective (with the original lexicons), the 

average processing time of our unoptimized Matlab code was 
38.6 seconds. This was measured on a machine with Intel 
Core i5 processor (quad-core, 3.2 GHz) and 4 GB RAM. Our 
code can be optimized by e.g., using a trie structure for the 
lexicon to avoid redundant computation [1]. 

We also analyzed how our accuracy varied with respect to 
the number of visual words (Section 3.2). This experiment is 
included in the supplementary material. 

7. Conclusion 
We have described a method for recognizing perspective 

scene texts of arbitrary orientations. Our work serves as a 
step towards practical applications (of scene text extraction) 

 
3 Achieved using a slightly larger lexicon for ICDAR-Word. 
4 Taken from [2]. 
5 Obtained from our re-implementation of [2], which follows the 

paper closely. Its accuracy on SVT-Word was 69.1%, which is close to 
the 73.3% accuracy reported in [2] for the same dataset. 

Figure 9: Sample results of our method for frontal words. It was 
able to recognize the words under challenging scenarios: 
transparent text, occlusion, fancy font, similar text and 
background colors and strong highlight. 

CELCON 

NEUMOS 

REDUCTIONS 

SHINING COPIES 

 (a) Success cases (b) Failure cases 
Figure 8: Sample character recognition results of our method. In 
(a), the characters were correctly recognized despite the strong 
highlight, small occlusion, similar text and background colors, 
and rotation. In (b), the characters were wrongly recognized due 
to low resolution, strong shadow and rotation invariance. The 
last character was recognized as ‘6’. 
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in two aspects. First, most existing works make the simplistic 
assumption that text is horizontal and frontal parallel to the 
image plane. However, in many real-world scenarios, this 
assumption does not hold. Thus, by handling perspective 
texts, this work has attempted to address an important 
research gap. Second, an attractive feature of our method is 
that it is trained on only frontal character samples, and thus 
does not require collecting samples of perspective characters. 
This drastically reduces the cost of data collection. 

The second aspect is achieved by the use of dense SIFT in 
a bag-of-keypoints framework, which is robust to rotation 
and viewpoint change. Our optimized alignment algorithm is 
also designed to handle the challenges of perspective texts, 
e.g., one or more characters may be hard to read or occluded. 

Another contribution is the SVT-Perspective dataset, 
which we propose to evaluate perspective text recognition. 
On this dataset, our method compares favorably to the state-
of-the-art, with a 36% improvement in recognition accuracy. 
Similarly, on a public dataset for texts of arbitrary 
orientations, our method achieves a 31% improvement in 
recognition accuracy over the compared methods. Therefore, 
our results and dataset serve as a baseline for future studies 
on perspective texts of arbitrary orientations. 
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Figure 10: Sample recognition results for texts of arbitrary orientations and with perspective distortion. 
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