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Abstract

In this paper, an automatic approach for 3D pose recon-
struction from a single image is proposed. The presence of
human body articulation, hallucinated parts and cluttered
background leads to ambiguity during the pose inference,
which makes the problem non-trivial. Researchers have ex-
plored various methods based on motion and shading in or-
der to reduce the ambiguity and reconstruct the 3D pose.
The key idea of our algorithm is to impose both kinematic
and orientation constraints. The former is imposed by pro-
jecting a 3D model onto the input image and pruning the
parts, which are incompatible with the anthropomorphism.
The latter is applied by creating synthetic views via regress-
ing the input view to multiple oriented views. After applying
the constraints, the 3D model is projected onto the initial
and synthetic views, which further reduces the ambiguity.
Finally, we borrow the direction of the unambiguous parts
from the synthetic views to the initial one, which results in
the 3D pose. Quantitative experiments are performed on
the HumanEva-I dataset and qualitatively on unconstrained
images from the Image Parse dataset. The results show the
robustness of the proposed approach to accurately recon-
struct the 3D pose form a single image.

1. Introduction
The automatic recovery of 3D human pose from a single,

monocular image is a very challenging problem in computer

vision due to the strong ambiguities of estimating human

body articulations from a single image caused by the defor-

mation of an articulated body, self-occlusion, large degrees

of freedom and different poses for the same person perform-

ing actions under different environmental constraints. A so-

lution to this problem may lead to applications in pedestrian

detection and tracking, automotive safety, video annotation,

human action recognition and graphic aspects.

Recent work in 3D pose reconstruction from 2D images

can be categorised into (1) data-driven and (2) structure

from motion based techniques. Data-driven methods pre-

dict the 3D poses via mapping 3D joints from the image

observations or the 2D joint locations [1, 5, 6]. In con-

trast, structure from motion methods extract the 3D points

from the corresponding 2D points in different images for the

same subject [18, 19] through estimating the camera param-

eters, bone lengths and parts directions. Here, we combine

these two techniques to benefit from the advantages of both

and obviating their disadvantages.

Given an input image, we start with an off-the-shelf 2D

body part detector (e.g. Yang and Ramanan [20]) to esti-

mate the 2D joint locations. Due to its limitations in the

presence of self-occlusion, we add an inference step han-

dling self-occlusion, improving the initial input to the 3D

pose estimation. Subsequently, we project a 3D model onto

the 2D joints, which results in a very ambiguous 3D pose.

By enforcing kinematic and geometric constraints, we re-

duce this ambiguity. To solve for any remaining ambiguity,

we use the Twin-GP regression method [5] to predict novel

views from the initial one and project the 3D model onto

the initial and synthetic views to estimate the relative depth

of the parts. Finally, to solve the problem of the part direc-

tions, we ‘borrow’ the unambiguous parts of the synthetic

views to correct ambiguous parts of the initial view.

The key contributions of this paper are:

• A framework for automatic 3D human pose recon-

struction from a single 2D image, evaluated on difficult

human pose scenarios.

• A self-occlusion reasoning method to improve the ini-

tialisation step and to increase the accuracy of state-

of-the-art 2D pose estimation, evaluated on a publicly

available dataset.

• A method to automatically solve for the ambiguity of

the parts’ direction instead of having to rely on user

input as in [18].

2. Background
While there is a plethora of literature on 3D human pose

reconstruction from 2D images, we focus our attention on

research to predict the 3D pose using data-driven or struc-

ture from motion approaches.
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Figure 1: Outline of our processing pipeline: (From the left:) Starting with an input image, 2D part detectors and self-

occlusion reasoning are applied. Next, multiple synthetic views are generated from the initial view. Then, structure from

motion is used to enforce kinematic constraints and reduce the ambiguity. Finally, orientation constraints are enforced from

the synthetic views onto the initial input in order to generate the 3D pose.

The key components of data-driven methods are the

choice of image descriptor, the shape of output and the pre-

diction phase. Generally, the steps are: (1) extract features

from a 2D image and then (2) infer the 3D pose by using

the predefined predictors. Predictors based on sparse re-

gression, nearest neighbours and feature descriptors such as

SIFT have been employed to allow an automatic recovery

of 3D poses from 2D images. Agarwal et al. [1, 3] used sil-

houettes as an image descriptor followed by the relevance

of a sparse regression method to map the extracted silhou-

ettes to 3D pose and applied it to human tracking [2]. Bo et
al. [6] utilised different robust image descriptors (e.g. multi-

level block of SIFT feature descriptor) and predict the 3D

pose in a Bayesian framework. They employed conditional

Bayesian mixtures of experts to map from the image obser-

vations to the corresponding 3D joint locations directly.

Recently, Bo et al. [5] proposed a twin Gaussian process

regression method to estimate the 3D pose from Histogram

of Oriented Gradients (HOG) and HMAX feature descrip-

tors. A limitation of these methods is their need for huge

amounts of training data to model the predictors and rep-

resent the variability of appearance of different people and

viewpoints. Experiments based on these methods have typ-

ically only been performed on lab-controlled data. In this

paper, we propose to reconstruct the 3D pose of a human

body in images / frames in an uncontrolled environment. In

addition, the spatial information is not guaranteed to be em-

pirically captured using image descriptors in methods such

as [5]. These limitations are overcome by our method as

the part localisation for real-world images is based on Pic-

torial Structures (e.g. [20]), which explicitly applies shape

constraints. Moreover, our method still only needs a single

input image as the previous techniques. However, the ear-

lier methods’ focus (e.g. [5]) on mapping from image ob-

servation to 3D reduces the robustness and generalisation.

It suffers in cases of dynamic backgrounds and images with

hallucinated and occluded parts. In contrast, our method

is accurately reconstructing 3D poses for scenes with clut-

tered, changing background and uncontrolled body parts.

Structure from motion based methods have gained much

popularity. The 3D pose is estimated from the 2D corre-

spondences through a set of images / frames via applying

a factorisation method, which was firstly introduced in [17]

for reconstructing the 3D pose of a rigid structure. [8] pro-

posed a factorisation method for non-rigid structures by im-

posing constraints on the object being reconstructed. In an

interesting work by Wei et al. [19], the 3D pose was recov-

ered for articulated object from multiple images of the same

subject in different poses by imposing constraints on the

rigid and non-rigid structure to reduce the ambiguity. They

combine the rigid and non-rigid structure in a non-linear

optimisation framework to estimate the camera parameters

and bone lengths. Their method has been extended by Val-

madre et al. [18] through basic factorisation methods and a

linear least squares solution to the parameters. A fundamen-

tal criticism of the previous structure from motion based

methods is their requirement of multiple images. Further,

for finding a solution to the direction of hallucinated and

hidden parts, they require manual input from the user. We

provide a solution to decode the direction of the ambiguous

parts automatically. The positive effect of this is evident

from the performance of our method in the experiments.

Estimating 3D pose from 2D images has been investi-

gated in other recent works, e.g. [4, 9], which enforce a

temporal consistency to reduce the ambiguity, while we es-

timate the 3D pose from only a single image. Predicting

the 3D pose from point correspondences in a single image

has been earlier investigated in [16]. Recently, Simo-Serra

et al. [15] utilised a similar initialisation step (starting from

noisy 2D points), followed by a different inference scheme.

They used covariance matrix adaptation (CMA) to sample

the 3D pose space, while our proposed method enforces
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both kinematic and orientation constraints. Utilising CMA

may lead to local minima solutions producing inaccurate 3D

hypotheses, while in all of the testing scenarios, our method

provided accurate 3D poses.

3. Proposed Method
As shown in Fig. 1, our proposed algorithm can be out-

lined in three subsequent stages: (1) Initialisation, (2) in-

ferring synthetic views and (3) estimating 3D pose. We

adapted the state-of-the-art mixture of parts detectors [20]

to initialise the pipeline of our algorithm. Although these

detectors are efficient in detecting the articulated body parts,

they still fail in the presence of self-occlusion. In the initial-

isation step, we therefore pursued a small and efficient trick

to overcome the problem of self-occlusion (see Section 3.1).

Projecting the 3D model onto the initial view will re-

sult in ambiguous poses. We explicitly impose geometric

and kinematic constraints to reduce the ambiguity of the 3D

pose via pruning those parts that are incompatible with an-

thropomorphism. However, utilising these constraints only

is not sufficient to completely solve the ambiguous parts,

especially the direction of the limbs (towards or away from

the camera). Thus, to solve the remaining ambiguity, we

need more cues about the direction of the body parts. Here,

we proposed a novel inference method by generating syn-

thetic (additional) views using pose distributions learned

from training data and finally adopted a structure from mo-

tion step to estimate the relative depth of different parts

from the corresponding points in both initial and synthetic

views. This allows solving the problem of the remaining

ambiguous poses not only for simple lab-controlled cases

(e.g. HumanEva datasets [13]), but also for very difficult

hallucinated cases as in the Image Parse (IP) dataset [12].

3.1. Initialisation

Given the importance of the initialisation step, we first

propose a novel way of dealing with self-occlusion to im-

prove the results of the final pose estimation.

Mixture of Pictorial Structures: Yang and Ramanan

[20] perform human pose estimation by representing the hu-

man body parts as a mixture of pictorial structure (MoPS)

where the nodes are the parts in different orientations. Fol-

lowing the pattern of the notations in [20], the score of a

specific pose configuration is:

S(I, p, t) = S(t)+
∑
i∈V

wti
i ·φ(I, pi)+

∑
ij∈E

w
ti,tj
ij ·ψ(pi−pj)

(1)

where φ(I, pi) is the HOG descriptor extracted from loca-

tion pi in image I , the first sum represents the scores of

the image locations against the set of pre-trained appear-

ance templates and the second sum encodes the spring re-

lationships between adjacent parts. Inference is pursued by

(a) (b)

Figure 2: Sample results of applying the body part detectors

(a) with [21] and (b) with self-occlusion handling.

maximising the score over the locations p and types t.
Self-Occlusion Reasoning for MoPS: In tree structured

models, the local scores of children would be correctly tra-

versed to their parents. However in the presence of occlu-

sion (i.e. partially or completely), the tree structure turns

into a graph and the score may traverse to the wrong par-

ent resulting in missing parts and inaccurate detections, as

shown in Fig. 2a. In [11], we proposed a regression based

occlusion rectification method. We observed that occlusion

detection is more difficult than occlusion rectification. In

this paper, we detect occlusion within the MoPS inference

framework, which encodes the kinematic configurations in

a tree. It implicitly assumes that non-adjacent parts are

independent, which is violated under self-occlusion [14].

To make the independence assumption hold so that we can

use belief propagation, we estimate the occluded parts from

their scores. The score of pixel p will be down weighted

to −∞ if it leads part i to be detected inaccurately or even

missing if that pixel is being occluded by any another part.

Under self-occlusion, the score of location p is:

Ŝ(I, p, t) =

{ −∞ if p is occluded,

S(I, p, t) otherwise.
(2)

To find occluded pixels, we pursue the following sce-

nario: for each part i, select k pixels with maximum scores;

obtain its bounding box representing the candidate result

of the part; find the maximum overlapping ratio of other

parts with part i; if it exceeds a threshold σ and if the score

in the location p is smaller than the score of the pixel sur-

rounded by the overlapping region, then handle this part i
as an occluded part at the pixel p. As a result, we break the

spring, which might be constructed between non-adjacent
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Yang [21] 90.2 85.4 68.0 47.1 77.1 75.4 67.1 72.9

Yang [21] + self-occlusion handling 89.8 88.2 68.8 48.1 80.5 77.2 69.8 74.6

Table 1: Effect of handling self-occlusion in MoPS: There is a small but consistent improvement in performance over the

default MoPS formulation [21], using the probability of correct keypoints (PCK) as the evaluation criterion, as in [21].

parts due to self-occlusion and, thus, the local scores are

independent. Then, we use the remaining belief propaga-

tion inference process of [20], resulting in more accurate

detections (Fig. 2b). In the experiments, we empirically set

k = 5 and σ = 0.15. Table 1 shows the improvement due

to the self-occlusion reasoning step over the state-of-the-art

results. For details of the evaluation protocols, see [20].

3.2. Multiple View Synthesis

For generating an accurate 3D pose, we use the approach

of Wei and Chai [19] to project a 3D model onto the vec-

tor x of 2D joints that resulted from the previous step. [19]

assumes that at least five 2D images are available and uses

structure from motion to estimate camera parameters. In

contrast, we use only one 2D image, which implies that the

camera scale parameter will be unity. To remove the am-

biguity for the depth of different parts, we propose to infer

multiple synthetic views from the initial one, which enables

us to impose new constraints about the space of orientation

for each bone, reducing the ambiguity of the 3D poses.

3.2.1 Extracting 3D training Data

In our experiments, all of the training data were collected

from the CMU Motion Capture Database1. The set of data

for each view was collected by selecting 5 frames randomly

from each video sequence. Based on the extracted 3D joints

for each frame, we measured the heading angle of the hu-

man pose and then rotated that 3D pose to extract its 3D

points in the 360 polar angles. Projecting the landmarks

onto the 2D plane with different orientations led to the 2D

points of all joints in all polar angles.

Normalised Skeleton: The usage of the world coor-

dinates in regression often results in bad predictions due to

the large variance in the translation and scaling of the differ-

ent human skeletons pursuing different actions. To achieve

a certain level of invariance to the translation and scaling,

we carry out the normalisation with one template for each

view. The 2D input skeleton is a tree with the cH ip point

as a root, joints represent the nodes and each edge between

a parent and its child nodes represent a bone. Mathemati-

cally, given S = (x1, · · · ,xn) where xi ∈ Rd is an input

skeleton with d joints, the normalisation is done by: Firstly,

translating each xi to the origin with the cH ip joint as a

1http://mocap.cs.cmu.edu

reference point. Secondly, transferring the resulting joints

from Cartesian coordinates to polar format such that Xi =
(li

p,c, θi
p,c; i = 1, · · · , n), where li

p,c = ‖ xp − xc ‖2 is

the absolute length of the bone, residing between the parent

p and child c pair of nodes, and θi
p,c = tan−1

xpy
− xcy

xpx − xcx
is the orientation of the bone relative to the horizontal axis.

Thirdly, scaling the bone lengths of each skeleton li w.r.t.

a predefined base skeleton x0 selected for each view. The

great benefit of the normalisation step, along with a mitiga-

tion of the large variation in scaling and translation, is to fit

the input data in a Gaussian distribution.

3.2.2 Multi-view Extension

The normalisation step is applied to all instances, resulting

in N samples for each view. Subsequently, in this section,

we will construct a specific model to regress from view i to

view j. In our experiments, we collect data from the CMU

Mocap dataset for 16 views (from 0◦ to 360◦ in 22.5◦ steps).

The key idea here is to produce new skeletons from the input

instance by means of regression. For this task, we employ

the Twin Gaussian Process Regression (Twin-GPR) [5] in a

cascaded manner. Finally, we use the constructed models to

infer virtual poses from a certain pose.

Recently, Twin-GPR has been used instead of classic re-

gression methods, such as Gaussian process regression and

ridge regression, in structured prediction of the 3D pose

from image observations. Twin-GPR is a multivariate re-

gression method, which encodes the correlation between

both the inputs and outputs. Following [5], we build regres-

sion models to generate novel views from the input one.

Given Zi = (zi
1, · · · , zi

n) and Zj = (zj
1, ..., z

j
n) are

the normalised instances for two consecutive views i and

j (i.e. i = 0, j = 22.5) for n instances, the objective of

the regression is to estimate the predictive distribution of

an unobserved vector z̃j over the observed Zj data given

the input vectors Zi such that the predictive Gaussian of a

test vector will be measured by minimising the divergence

between the distribution of the inputs [5]:

p(z̃|Zj , Zi = z) ∼ N (μI , CI) (3)

and the distributions of the outputs

p(z̃|Zj , Zi = z) ∼ N (μJ , CJ) (4)
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where z̃ is the normalised vector of the estimated target

pose for testing input vector z, μI and μJ are the mean

vectors of the training poses of views I and J , resp., and

CI =

[
KI KI

z

(KI
z)T K(z, z)

]

CJ =

[
KJ KJ

z̃

(KI
z̃)T K(z̃, z̃)

]

are the positive semi-definite covariance functions, which

encode the correlations between training input vectors I and

a testing vector z, and the correlations between training tar-

get vectors J and the estimated target vector z̃ where, K is

N × N matrix for either the input I or the target J with

Kab = K(a, b) and each of Kz and K z̃ is N × 1 vector

for the correlation between a vector z, z̃ and the matrix I
or J , respectively. The question now is how to compute

the distribution in Eq. 4 without obtaining the estimated

value for z̃. To this end, we employ the Kullback-Leibler

divergence between the two distributions in Eqs. 3 and 4,

DKL(P
I‖P J). Then, BFGS quasi-Newton optimisation is

used to minimise the divergence through an iterative pro-

cess, initialising z̃ with the response of the ridge regressor,

trained independently for each of the output vectors.

Cascaded Twin-GPR: Dollar et al. [10] proposed an

interesting regression method, which gradually reaches the

ground truth in a cascaded fashion. In our framework, we

regress from an input view to other multiple views. A sim-

ple method is to learn the mapping from one view to all

other views. However, this increases the complexity of the

system as the number of models to be learnt is very large.

Inspired by [10], we pose the problem of learning view-

specific regression models as a cascaded Twin-GPR prob-

lem. Let Reg(θi, z
i) be a function based on Twin-GPR,

which maps zi → zj where zi is the normalised vector of

an input pose, zj is the vector of the novel view and θi is

the view of zi. The output of Reg becomes the input of the

next iteration and θ
′
i = θi + δ. At every step, δ is added to

the view and a pose-specific model is used for regression.

Algorithm 1, which is computedN times, outlines the steps

for generating novel views from the input one.

3.2.3 Initial View Estimation

To initialise the cascaded regression process (Alg. 1), we es-

timate the orientation of the initial view. Knowing the initial

view of the human pose significantly reduces the ambigu-

ity of the 3D pose reconstruction [4]. A Gaussian Mixture

Model (GMM) has been adapted to infer the initial view [7].

The GMM is utilised in a Bayesian framework with maxi-

mum likelihood. The data, which has been used to learn

the regression models, also have been utilised to train the

Algorithm 1: Cascaded Twin-GPR based synthetic

view generation

Require: Input pose zi, view θi, step size δ.

Iterations N = (θj − θi)/δ
for view i ∈ N do

Regression: zj = Reg(θi, zi)
Update θi = θi + δ
Update zi = zj

end for

GMM. Now, we have 16 views (= 16 classes). We parti-

tion each class’ members into a number of mixtures (em-

pirically, we used 50 in our experiments). Given the input

image, in the inference, the orientation of the initial view is

determined by the class with the maximum likelihood.

3.3. Estimating 3D Pose

3.3.1 Propagating Ambiguous 3D Poses

To estimate the 3D pose, we start with the 2D joints of

the initial view and elevate to 3D pose. The 3D pose is

parametrised as a vector v = [vT
1 , · · · ,vT

n ] of n 3D points

corresponding to 2D input points u = [uT
1 , · · · ,uT

n ]. The

3D pose retrieval can be seen as a solution of a linear sys-

tem, if multiple input images are available. In contrast, we

use only one image and a set of 2D points. We assume the

internal camera parameters A to be known. The projection

of a point vi onto ui may be written as wi[u
T
i 1]

T = Avi

where wi is a projection scalar [15]. From the known val-

ues of A and ui, we can obtain the projection matrix M
of size 2n × 3n that relates 3D points (in a camera coor-

dinate system) to 2D locations. We can then express this

matrix for all joints as Mv = 0. Solving this equation

requires more constraints. The kinematic constraints have

been enforced via learning the upper and lower bounds of

bone angles from the training data as in [19]. This results in

an ambiguous 3D pose, such as the one in Fig. 1.

3.3.2 Inferring Disambiguated 3D Pose

To solve the ambiguity and obtain an accurate 3D pose, we

followed two subsequent steps. As mentioned before, struc-

ture from motion based methods reconstruct the 3D pose via

estimating the camera scale, bone length and depth by pro-

jecting the 3D model onto the 2D point correspondences in

different images. Having only one 2D image implies that

the camera scale parameter is 1. Firstly, we remove the am-

biguity of the depth for different parts with the help of the

synthetic views. Given point correspondences for the input

and synthetic views, our aim is to estimate the bone lengths

and depths of different parts. The regression step to create

multiple synthetic views can result in different bone scales.
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To overcome this problem and given that we work with just

one image (showing one human body), we can safely con-

strain the problem by fixing the corresponding bone lengths

in all views to be the same as in the initial input image.

Secondly, we need to estimate the relative depth of each

part. Valmadre and Lucey [18] compute the magnitude of

the depth of each part via a factorisation method starting

from a weak perspective projection between the 2D corre-

spondences of different images and then deriving the re-

quired parameters by minimising the reconstruction error.

Inspired by [18], we utilise the same factorisation approach

on the correspondences from the initial view and some of

the synthetic views inferring the relative depth of each part.

However, in many cases the ambiguity around the sign

of the joint angles still remains. The approach of Valmadre

and Lucey [18] failed to solve the ambiguity for many poses

with hallucinated parts and, hence, the user was asked to

manually determine the direction (i.e. either front or back)

of the ambiguous parts. In our proposed framework, we

developed an efficient solution to this problem. A per-

spective projection is applied on the basic view of the im-

age. Then, we determine the remaining ambiguous parts

G = (g1, ...gl), which still may be in either front or back

direction. We repeat the previous two steps on all of the

synthetic views, where we project the 3D model onto each

synthetic view, which results in a 3D model for each view

with some parts being ambiguous and others not. We search

over all unambiguous parts in the 3D poses, obtained from

the synthetic views, which are corresponding to the ambigu-

ous partsG. This enforces the orientation constraints. Then,

we iteratively borrow the direction to the 3D pose of the in-

put image until all ambiguities are removed.

In this step, some images require just 2 or 3 instances

of synthetic views, while others need all n views. That is

why we add one view at a time and stop when all ambigu-

ous parts are removed. The part is still ambiguous if it has

two or more possible directions. The big advantage of us-

ing structure from motion after regressing multiple views is

to prune the noisy predictions introduced by the regression

process and to improve the result of the final 3D pose.

4. Experiments
We evaluate the performance of our method in recover-

ing the 3D pose from a single image in different experi-

ments in both quantitative and qualitative ways.

4.1. Data

All data used in training both the cascaded Twin-GPR

and the GMM estimating the view of the input pose are col-

lected from the CMU Mocap dataset. We randomly select

5 frames from each sequence of all of the available motion

sequences. This results in 14229 frames in total. For each

of them, we extract 16 views by rotating the 3D skeleton.

We test our approach on different datasets: the HumanEva-

I dataset [13] for quantitative evaluations and images from

Image Parse dataset [12] for qualitative evaluations.

4.2. Quantitative Evaluation on HumanEva Dataset

The performance of our algorithm is evaluated on the

walking and jogging actions of the HumanEva-I dataset

[13]. By using the validation sequences for testing, we show

the robustness of our method for recovering the 3D pose.

The sequences for training the regression models are ex-

tracted from the CMU Mocap dataset, which demonstrates

the generalisation capacity of our algorithm.

The numerical evaluation and comparison with state-of-

the-art methods is shown in Table 2. We follow [15] and

perform our experiments on the same sequences used to

evaluate their method. The mean error and standard devia-

tion are in mm. In our method, all values represent absolute

errors as in [4, 9]. However, in [5, 15], the values are the rel-

ative errors. Regarding positioning our algorithm, the clos-

est method is Simo-Serra et al. [15] where the two methods

are initialised with noisy observations. In [4, 9], temporal

consistency constraints are imposed to remove the ambigu-

ity, requiring multiple images. In contrast, our method es-

timates 3D pose from a single image. Apart from [5], our

method performs better than all other methods. [5] relies on

a strong assumption by employing background subtraction

and, thus, cannot easily deal with changing backgrounds.

In contrast, we test our method on images with different

and cluttered backgrounds without the need for prior back-

ground subtraction. Moreover, in [5], the training, vali-

dation and testing sequences are all from the HumanEva-I

Walking

S1 S2 S3

Proposed 75.1 (35.6) 99.8 (32.6) 93.8 (19.3)
[15] 99.6 (42.6) 108.3 (42.3) 127.4 (24.0)

[9] 89.3 108.7 113.5

[4] - 107 (15) -

[5] 38.2 (21.4) 32.8 (23.1) 40.2 (23.2)

Jog

S1 S2 S3

Proposed 79.2 (26.4) 89.8 (34.2) 99.4 (35.1)
[15] 109.2 (41.5) 93.1 (41.1) 115.8 (40.6)

[5] 42.0 (12.9) 34.7 (16.6) 46.4 (28.9)

Table 2: Quantitative comparison of our algorithm with

state-of-the-art methods on the walking and jogging se-

quences from the HumanEva-I dataset. Values are in mm.

Values outside the parentheses are the average mean error

per joint from the ground truth. Values in parentheses show

the standard deviation. [4, 9] do not provide an evaluation

for jogging. [5] assumes prior background subtraction.
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dataset. In our method, we show its good generalisation ca-

pability by training the regression models on frames from

CMU Mocap and testing on sequences from HumanEva-I.

In the initialisation step, we propose a solution to the

problem of overlapping and missing parts due to self-

occlusion by breaking the springs between non-adjacent

nodes. However, it is clear that the problem partially still

exists and needs a more robust technique to reduce the noisy

observations. Inspired by [15], a rigid alignment between

the produced shapes and ground truth values is computed,

which reduces the reconstruction error further. In our ex-

periments, the average of the reconstruction error is around

200mm and the aligned error is 90mm on average. Note

that most of the errors are due to the offset in the 2D points

resulting from the output of the initialisation step.

W.r.t. the computational time, estimating the 3D pose

takes around 1min for each input image including the time

required to get the initial 2D view.

4.3. Qualitative Evaluation

To test the robustness of our algorithm for hallucinated

images with a large degree of freedom and strong self-

occlusion, two experiments are conducted. As the ground

truth of the 3D poses for these images is not available, a

qualitative visual comparison is presented.

In the first experiment (see Fig. 3), we visually compare

our approach and Valmadre et al. [18]. For both techniques,

the initialisation is performed via manually annotated 2D

points. [18] uses multiple, different images to recover the

3D pose. Our approach uses only a single image. Further-

more, the method of Valmadre et al. fails to remove all am-

biguities, in particular, the sign of the joint angles. It re-

quires the user to specify the direction (positive or negative).

In our method, the algorithm succeeds in the vast majority

of cases to remove this type of ambiguity by sharing the sign

of the unambiguous parts in the various synthetic views.

Fig. 3 (b) and (c) represent the 3D output for the method

in [18] and our algorithm, respectively. Specifically, the

motivation behind this comparison is to show the advantage

of employing structure from motion after regressing multi-

ple views from the initial one. Noise that results from the

regression predictions is filtered out afterwards in the fac-

torisation, which reduces the ambiguity in the final stage.

In the second experiment (see Fig. 4), we evaluate the

impact of the proposed self-occlusion handling (cf. Sec.

3.1). The experiments are performed on images from the IP

dataset [12]. Fig. 4a shows the results of our algorithm ini-

tialised with the output of a Mixture of Pictorial Structures

[20]. Fig. 4b shows the output for the same images but with

the self-occlusion handling mechanism. It is visually evi-

dent that handling self-occlusion improves the initialisation

accuracy and stops the error from being propagated to the

synthesised views and then to the final 3D pose.

(a) (b) (c)

Figure 3: Qualitative comparison: (a) Input image. (b)

Results of recovering the 3D pose for the input image by

Valmadre et al. [18], using multiple images with different

poses to build the 3D. (c) Results of the proposed approach,

which is initialised with 2D points from a single image. The

3D poses are normalised and centred on the origin.

5. Conclusions

We propose a 3D pose reconstruction algorithm from a

single 2D image. In the initialisation step, we utilise a well-

known 2D part detectors to produce the 2D joints. We pro-

pose a novel way to improve the output of this step by han-

dling self-occlusion. To enforce more constraints, we gen-

erate synthetic views by regressing the initial view to mul-

tiple oriented views. The ambiguity is reduced by imposing

kinematic and orientation constraints on the 3D ambiguous

pose resulting from the projection of a 3D model onto the

initial pose. The experiments show promising results of the

proposed algorithm. However, noisy observations can still

affect the accuracy of the final 3D pose. Future work in-
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(a)

(b)

Figure 4: Visual comparison of the final 3D pose estimate

(a) without and (b) with self-occlusion handling. In (a),

self-occlusion leads to erroneous initialisation, which prop-

agates to the final 3D pose. In (b), the initialisation is accu-

rate, leading to an accurate 3D pose estimate.2

cludes providing a more robust handling of self-occlusion

and testing on different ‘in the wild’ situations.
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