
STAR3D: Simultaneous Tracking And Reconstruction of 3D Objects Using

RGB-D Data

Carl Yuheng Ren†, Victor Prisacariu†, David Murray† and Ian Reid‡

†Department of Engineering Science, University of Oxford

‡School of Computer Science, University of Adelaide

†{carl, victor, dwm}@robots.ox.ac.uk

‡ian.reid@adelaide.edu.au

Abstract

We introduce a probabilistic framework for simultane-

ous tracking and reconstruction of 3D rigid objects using

an RGB-D camera. The tracking problem is handled us-

ing a bag-of-pixels representation and a back-projection

scheme. Surface and background appearance models are

learned online, leading to robust tracking in the presence of

heavy occlusion and outliers. In both our tracking and re-

construction modules, the 3D object is implicitly embedded

using a 3D level-set function. The framework is initialized

with a simple shape primitive model (e.g. a sphere or a

cube), and the real 3D object shape is tracked and recon-

structed online. Unlike existing depth-based 3D reconstruc-

tion works, which either rely on calibrated/fixed camera set

up or use the observed world map to track the depth camer-

a, our framework can simultaneously track and reconstruct

small moving objects. We use both qualitative and quan-

titative results to demonstrate the superior performance of

both tracking and reconstruction of our method.

1. Introduction

Many applications need an accurate 3D model of a rigid

object, but without access to a predefined CAD model or

similar, the standard acquisition method involves 3D scan-

ning using a precisely calibrated multi-camera or range sen-

sor system. This is usually extremely costly and difficult to

setup, and often slow. In this paper we introduce a frame-

work for simultaneous tracking and reconstruction of un-

known 3D rigid objects that is simple, fast and effective.

The system is initialized with a simple primitive 3D shape

(e.g. a sphere or a cube), then the 3D shape of the objec-

t being tracked is reconstructed incrementally online. This

flexible framework for 3D reconstruction and tracking has

many real-world applications. For example, it allows user-

s to pick a random rigid object from their home, scan it

and then use it as a controller to interact with a computer.

The proposed framework comprises two modules: a track-

ing module and a reconstruction module. Next we review

recent works related to each module.

3D Tracking. Most existing research work for 3D track-

ing with depth data uses a model-based approach, which

generates pose hypotheses and evaluates them on the ob-

served depth/RGB-D data. To find the best pose hypothe-

sis, such methods define and minimise an objective func-

tion measuring the discrepancy between expected (from the

model hypothesis) and observed visual cues. A common

approach is Iterative Closest Point (ICP) [2]. For example,

in [4], the authors use Kinect input to track hand-held 3D

puppets (rigid objects). The system yields robust and real-

time performance for tracking rigid objects, but accurate 3D

models of puppets with color and textures need to be built

off-line, in advance. The occlusion from the hand is handled

by a color-based segmenter.

More general is the work KinectFusion [7], where the

whole scene structure and camera pose are estimated si-

multaneously. Ray-casting is used to establish point cor-

respondences between the observed point cloud and the re-

constructed world map, and alignment achieved using ICP.

However, the ICP-based tracking in KinectFusion relies on

a static world map, which makes the method unable to track

small moving objects in a static scene. Camera motion

and (inverse) object motion of course induce identical im-

age changes and the authors note in [5] that KinectFusion

could be to reconstruct a moving 3D rigid object from a

static Kinect, but in this case the object needs to be large

enough to occupy the majority of the depth map.

Another school of the RGB-D based trackers [8, 11] uses

sampling-based methods. These rely on the many evalua-

tions of the objective function at arbitrary points in the pose

hypothesis space. In [8], the authors use Particle Swarm

Optimization (PSO) to solve the articulated hand tracking

problem. The system is implemented efficiently on the G-

PU, yielding real-time performance and fast-recovery from

tracking failure. Another similar work that tracks rigid ob-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 Crown Copyright

DOI 10.1109/ICCV.2013.197

1561

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 Crown Copyright

DOI 10.1109/ICCV.2013.197

1561

ject is [11], which uses a particle filter to solve the pose op-

timization. Both works measure the discrepancy between

the expected depth generated by the pose hypothesis and

the observed one and are still very computational expensive

(even with a GPU implementation), as they require a large

number of energy function evaluations.

In [10], the authors use a gradient-based optimization

method to solve the tracking problem but do not explicitly

establish point correspondences between the model and the

observation. Instead, they use 3D level-set embedding func-

tion to encode the 3D object model and, by back-projecting

the observed depth image into object coordinates, they are

able to take advantage of the gradient of the level-set func-

tion to guide the search for the pose. This method is both

very computationally efficient and robust to missing data.

However, the energy function only considers the fitting of

the depth data to the surface of the object, making the track-

er very sensitive to close-to-surface outliers (e.g. a hand

held object). The tracker module presented in this work ex-

tends the back-projection scheme of [10] by formulating a

probabilistic model to use both color and depth information,

resulting in more robust and accurate tracking.

3D Reconstruction. Most traditional 3D reconstruction

methods require a calibrated multiple camera setup and are

based on space carving. The introduction of customizable,

frame-rate RGB-D cameras has made 3D reconstruction us-

ing a single depth camera possible. KinectFusion [7] is a-

mong the most successful systems for real-time 3D recon-

struction. With a single hand-held Kinect device, KinectFu-

sion can incrementally reconstruct the surface of the phys-

ical world that the camera sees, in real-time. However, as

discussed in previous subsection, KinectFusion relies heav-

ily on the world map to track the camera, thus it can not

reconstruct small moving objects in static scenes. Another

related recent work is [12] where the authors use a single,

fixed, un-calibrated Kinect to scan human body in a home

environment. Accurate 3D human shapes are obtained by

combining multiple monocular views of a person moving

in front of the sensor. The SCAPE model [1] is used to con-

strain the alignment of the multiple depth maps from the

various views. In [9], the authors use monocular 2D image

cues to reconstruct 3D shapes. The reconstruction is con-

strained by a learnt low-dimensional 3D shape space. Both

[12] and [9] are capable of reconstructing 3D objects with a

single camera. However, they both rely heavily on a learnt

shape space to constrain the reconstruction. This forces the

reconstructed objects to be within a fixed, prelearned cate-

gory.

Contributions. In this paper, we present a probabilistic

framework for simultaneous tracking and reconstruction of

an unknown rigid object using a single RGB-D camera. We

highlight our contributions below.

1. We introduce a probabilistic model for model-based

3D tracking using RGB-D images. The proposed prob-

abilistic model leads to a differentiable energy func-

tion, which can be efficiently solved by gradient-based

optimization method. Our method yields real-time per-

formance on the GPU and is robust to missing data,

occlusion and outliers.

2. We extend the space carving approach by introducing

a novel probabilistic framework for the reconstruction

of unknown 3D objects. An inside/outside volumetric

model of the object is learnt incrementally online, and

the 3D shape is reconstructed by evolving a 3D level-

set embedding function on this inside/outside model.

The reconstruction method can be implemented in a

massively parallel fashion, resulting in great computa-

tional efficiency.

2. Generative Model

Assuming calibrated color and depth cameras (i.e.

aligned color-depth frames), let Ωd be the depth image do-

main, and Ωc be the color image domain. Ω is the RGB-D

image domain, obtained by re-projecting the color image

onto the depth image. A pixel x ∈ Ω at image coordi-

nates (u, v) has depth value d and color value y. We use

a dot notation to denote the homogeneous coordinate of x:

ẋ = (ud, vd, d)� ∈ R
3. A depth pixel ẋ in the object re-

gion is projected from a 3D point Ẋ = (X,Y, Z, 1)� on the

object surface as:

ẋ = ATo,cẊ To,c = [R|t] ∈ SE3 (1)

where the Euclidean group SE3 := {R, t|R ∈ SO3, t ∈
R

3}, To,c is the 6 DoF pose parametrised by the pose pa-

rameter p that transforms from object coordinates to cam-

era coordinates. A is the depth camera’s intrinsic matrix.

We represent the shape of the 3D object by a 3D signed

distance function (SDF) Φ(X) defined in an object coor-

dinate frame. The surface of the 3D shape is recovered as

the zero level, Φ(X) = 0. The domain outside maps to

positive values, and the domain inside the object maps to

negative values. Although our objective is to recover Φ it

is also useful to introduce a representation of the shape as a

“bag-of-voxels”, {X, V } indexed by i, in which Xi is the

location of a voxel in object coordinates, and Vi an indicator

variable that can take on values in, on or out for inside the

shape, on the surface, or outside the shape, respectively.

Two appearance models are used to describe the color

statistics of the scene: one for the object surface, which

generates the foreground region in the image; and one for

the background. These are represented by their likelihoods,

P (y|V), where V can take on values on or out , because

a pixel inside the volume can never generate a pixel in Ω.

The two appearance models are represented with RGB col-

or histograms using 32 bins per channel. The histogram

can be initialized either from a detection module or from a

user-selected bounding box on the RGB image, in which the

15621562

�
��

�

�

�

�

�

�

�

�

�

�

Figure 1. (Left): Representation of the 3D model Φ, the RGB-D image domain Ωc,d, the surface / background models P (y|V = on) /

P (y|V = out) and the pose T(p). (Right): Graphical model of our generative model for tracking and reconstruction.

foreground model is built from the interior of the bounding

box and the background from the immediate region outside

the bounding box. These initial color likelihoods are used in

conjunction with the local depth information both for track-

ing and reconstruction, and are refined over time. An illus-

tration of all notations are demonstrated in Fig. 1(left).

Fig. 1(right) shows the graphical model for our system.

We use this model both for tracking and for reconstruction,

but these two aspects make use of the information in dif-

ferent ways. In this model the shape Φ generates a set of

voxels {X, V } (indexed by i). This volumetric model, com-

bined with the object pose p, in turn generates the observed

RGB-D images Ω comprising pixels {x, y} (indexed by j).

The full joint distribution corresponding to the model is:

P (Ω0 . . .ΩT ,p0 . . .pT ,Φ, {X, V }) =

P (Φ)
∏
i

P (Xi, Vi|Φ)
∏
t

P (Ωt|{X, V },pt)P (pt) (2)

and our objective is to find the optimal sequence of poses

and the shape, given the observed RGB-D images:

max
Φ,p0...pt

P (Φ,p0 . . .pt|Ω0 . . .Ωt) (3)

Note that there are further justifiable simplifications that can

be made to 2. First, we assume that the observations are

pixel-wise independent meaning that P (Ωt|{X, V },pt) de-

composes into a product of terms P (xj | . . .). Second, note

that the form of the equation permits a recursive update of

Φ and {X, V } which are the constant terms, so all the ev-

idence from frames 0 up to t − 1 can be fused easily with

that at the current frame. Finally, note that in this model,

the locations of voxels X are treated as generated random-

ly from the shape Φ. Under this model all voxels locations

have the same probability of being generated but in prac-

tice the situation is more certain, with every voxel being

generated exactly once. The variables X are maintained in

the model for convenience, but it is the indicator variable of

each voxel V that carries the important information about

the volumetric model.

Even with these simplifications, full inference is ex-

tremely difficult. In the remainder of the paper we perform

approximate inference by finding MAP or maximum likeli-

hood estimates of Φ and pt, alternating steps that estimate

the current pose given the (current estimate of) shape, and

estimating the fixed shape by assuming knowledge of the

current and past poses. We show in Section 5 that this yields

good results in practice.

3. Tracking

For tracking, we assume known shape Φ and optimise

the pose at time t (dropping the subscript on the pose p

henceforth) by maximising the likelihood P (Ω|Φ,p) as a

function of p. To optimise this conditional distribution we

treat the RGB-D image Ω as a bag-of-independent-pixels

{x, y}. Though not all voxels generate a pixel, each pixel x

is generated by a unique voxel X, where X is sampled from

Φ, and x is its (deterministic) projection into the image. Its

color is sampled from the appropriate model conditioned on

V . The likelihood is the product over all pixel likelihoods:

L(p) =
∏
j

P (xj , yj , Vi(j)|Φ,p) (4)

where i(j) indicates that voxel i projects to pixel j.

This generative model is very similar to [3], which uses

level-sets to track 2D deformable objects. In [3] the im-

age and the level-set embedding function are in the same

2D domain, and each value in the level-set function is as-

sociated with a pixel in the image domain. The tracking

is done by maximizing the discrepancy between the fore-

ground/background region with the Heaviside function of

the level-set embedding selecting either foreground or back-

ground. However, in our case, the level-set function is de-

fined in 3D space, and all pixels in the RGB-D image do-

main are generated either from the object surface or from

15631563

outside the object. No pixel is generated from the interior of

the model, and there is not a one-to-one mapping between

pixels in the RGB-D image and voxels. These differences

lead to subtle but important differences in the formulation.

In our work, the per-pixel likelihood of the pose (in

which have marginalised V) is:

P (x, y|Φ,p) =
∑

k=on,out

{P (x|Φ,p, V=k)P (V=k|y)}

(5)

The pixel location likelihoods for the foreground and back-

ground are simply uniform distributions:

P (x|Φ,p, V=on) =
δε(Φ(X))

ηf
(6)

P (x|Φ,p, V=out) =
Hε(Φ(X))

ηb
(7)

ηf =
∑
Ω

δε(Φ(Xi)) ηb =
∑
Ω

Hε(Φ(Xi)) (8)

where X = T
−1
o,cA

−1ẋ is the back-projection into object co-

ordinates of the RGB-D pixel x. Hε and δε are the smoothed

Heaviside and Dirac delta functions, and thus select the out-

side of the object and the surface of the object respectively.

Substituting the likelihoods for x into Eqn. 5 and assum-

ing pixel-wise independence, we obtain pose likelihood as:

P (Ω|Φ,p) ∼
∏
Ω

{Pfδε (Φ(Xi)) + PbHε (Φ(Xi))} (9)

where Pf = P (y|V=on) and Pb = P (y|V=out). This

can be written as an energy summation by taking logs. We

differentiate the energy function w.r.t the pose parameter p:

∂E

∂p
=

∑
Ωc,d

{(
Pf

∂δε
∂Φ + Pb

∂Hε

∂Φ

)
P (xi, yi|Φ,p)

∂Φ

∂Xi

∂Xi

∂p

}
(10)

and optimise pose p using Levenberg-Marquardt.

4. Reconstruction

For the purposes of reconstruction, we initialize the

tracker with a simple initial model (e.g. a sphere), and it-

erate the tracker until it converges to a pose that projects

the initial model close to the object region in the RGB-D

image domain. With the pixel-wise foreground/background

posterior Pf /Pb in Section 3, we remove all the background

pixels (where Pf < Pb) in the RGB-D image. We use Ω̂
to denote this new foreground-only RGB-D image domain.

The reconstruction runs on each Ω̂ and the reconstructed

3D model is used for tracking in the next frame. Our ap-

proach is similar to 2D level-set based image segmentation

methods but operating over a 3D volume. More specifical-

ly, we evolve a 3D level-set embedding function over an in-

side/outside probability volume to maximize the per-voxel

posterior probability of the 3D level-set function, given the

shape prior and all previously observed depth and poses.

In the reconstruction step, we assume the pose of object

given by the tracker is fixed and we optimize

P (Φ|Ω̂0...t,p0...t) ∝ P (Ω̂0...t|Φ,p0...t)P (Φ)

=
∑

k=in,out

P (Ω̂0...t|V=k,p0...t)P (Φ|V=k)P (V=k)

(11)

Note that the equation above applies per voxel X, with V

as the corresponding inside/outside membership of X.

Taking the two terms in the summation in turn, first we

develop the likelihood of generating an RGB-D image Ω
given the pose and voxel memberships. We decompose this

into the per-voxel likelihood i.e. the likelihood that the sin-

gle voxel (X, V) generated the RGB-D pixel x as follows:

Lin(V) = P (x|X, V,p)

=

⎧⎨
⎩

δu(D(X)) D(X) > 0
1− δu(D(X)) D(X) < 0
0.5 otherwise

(12)

Lout(V) = 1− Lin(V) (13)

D(X) =
‖ATo,cX‖2
‖A−1x‖2

− Ω(x) (14)

x = π(ATo,cX) (15)

δu(z) =
2ez/σ

(ez/σ + 1)2
+ 0.5 (16)

where π() is the dehomogenisation function. Here D(X)
is the signed distance of the voxel to the observed surface

measured along the projection ray. Note also that we as-

sume that the volume of the voxels on the object surface is

negligible, so the case V=on is not considered. δu is plot-

ted in Fig. 3(right): we ascribe no confidence to voxels that

are distant to the measured surface (Lin(V) = 0.5), a low

probability of being inside if the voxel is immediately in

front of the surface, and a high probability of being insid-

e the object if the voxel is immediately behind the surface.

Note that this form of likelihood does not increase Lout(V)
if the surface is visible behind the voxel, and so misses the

opportunity to take advantage of the extra information, but

this has not been detrimental in our experiments.

Evaluation of this likelihood for all voxels yields a maxi-

mum likelihood estimate of the volume, which can be easily

accumulated over time via the recurrence relation

P (Ω̂0...t|Xi, Vi=in,p0...t) = P in

t (i) = Lin

t (i)P in

t−1(i)
(17)

Second, we consider the term P (Φ|V=k):

P (Φ(X)|V=in) = 1−Hε(Φ(X)) (18)

P (Φ(X)|V=out) = Hε(Φ(X)) (19)

15641564

Figure 2. Work flow of our reconstruction framework.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

H
(z

)

d=4, a=0.5

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D(X)

L t,tin

σ=4

Figure 3. Plot of H(z) (left) and Lin (right)

Finally we consider the prior P (V). This plays an im-

portant role in stabilising the estimation because any giv-

en RGB-D image only yields information about voxels be-

tween the camera and the object, and nothing behind the

surface of the object. The prior is defined with respect to an

arbitrary shape Ψ, a SDF in which the zero level implicitly

defines the shape. The prior in our algorithm P (V) is then:

P (V = in)=P ({Xi, Vi=in})=H(Ψ) (20)

P (V = out)=P ({Xi, Vi=out})=1−H(Ψ) (21)

H=0.5 + a

(
1

ez/σ + 1
− 0.5

)
, z = Ψ(Xi) (22)

The influence of this prior is controlled by a ∈ (0, 1) and

its smoothness by d. With a = 0 there is no prior, while

a = 1 yields a prior that is very confident away from the

boundary. The form of H is shown in Fig. 3(left) with

d = 4, a = 0.5. We use the same values for H(z) in all

our experiments. Fig. 2 illustrates the formulation of our

reconstruction framework in 2D. Note that observing a 3D

surface is equivalent to observing part of the object contour

along the projection ray.

Substituting Eqn. (17) to (22) into (11) yields (dropping

the per-voxel indicator X here):

P (Φ|Ω0...t,p0...t) =

H(Ψ)(1−Hε(Φ))P in

t + (1−H(Ψ))Hε(Φ)P out

t (23)

20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

Frame number

A
ve

ra
ge

 a
lig

nm
en

t e
rr

or
 (

m
m

)

σ = 40

σ = 20

σ = 16

σ = 12

σ = 10

σ = 8

σ = 4

Figure 8. Quantitative evaluation of the accuracy of our method

for 3D reconstruction with different σ.

We optimise Φ using gradient flow methods as is standard

for level sets. To preserve the SDF property of Φ, we ad-

ditionally add a regularisation “prior” that encourages the

gradient of the level set to have magnitude one [6].

5. Experimental evaluation

We have implemented the algorithm in C++ and Matlab

and performed a variety of evaluations, both qualitative and

quantitative. The tracking module has been ported for GPU

and this yields real-time performance (20ms/frame on an

NVIDIA GTX480 graphic card). Combined “online” track-

ing and reconstruction is currently implemented in Mat-

lab, though its massively parallel nature means it too is a-

mendable to GPU implementation. Qualitative examples of

tracking in real-time and under significant occlusion from

the hand holding a reconstructed object are given in sup-

plementary materials , along with videos showing online

tracking and reconstruction.

We begin with several real-world tracking-

reconstruction sequences, which show that our method

15651565

Figure 4. Film strip showing our algorithm tracking and reconstructing a sponge. For each frame, left shows the color image while right

shows the reconstruction result overlayed with the color image reprojected onto the depth image. Black indicates missing depth data.

Figure 5. Film strip showing our algorithm tracking and reconstructing a hand with fixed articulation pose. For each frame, left shows the

color image while right shows the reconstruction result overlayed with the color image reprojected onto the depth image. Green indicates

missing depth data.

is robust to initialization and outliers and can work in

unconstrained environments. Next we use generated

ground truth data to evaluate the accuracy of both tracking

and reconstruction. Finally, we compare both tracking and

reconstruction results with KinectFusion [7], arguably the

current state-of-the-art.

Figures 4, 5 and 6 show examples of our method simul-

taneously tracking and reconstructing different objects: a

piece of sponge, a hand with fixed articulation pose and a

shoe (see also supplementary videos). The sponge recon-

struction is initialized using a sphere while the other two

using a cube. The last column of each sequence shows the

reconstruction result. All three objects are successfully re-

constructed within a few hundred frames. Note that the se-

quences are filmed in an uncalibrated environment and the

objects are small and moving and could not be reconstruct-

ed by KinectFusion. We used pixels that have Pf > Pb for

reconstruction, but, since in Fig. 5 and Fig. 6 the object is

adjacent to close outliers (the sleeve in Fig. 5 and the hand

in Fig. 6), we only use pixels from the foreground region

which are at least 2 pixels away from any background pixel.

This makes reconstruction results slightly smaller than the

real object, by a fixed margin.

Next we evaluate our tracking and reconstruction per-

formance using ground truth data. We use synthetic RGB-

D sequences for this evaluation because of the difficulty

of acquiring real video with accurate ground truth. We

move a virtual RGB-D camera around an object of vol-

ume ∼ 100×100×100mm3 and generate RGB-D frames.

The surface of the object has been fully observed across the

frames. We present two evaluations: first, we consider a

perfectly known model and perform tracking only, measur-

ing the pose accuracy. Second, we initialize with a spheri-

cal model of radius 50mm and run tracking and reconstruc-

tion on each frame. After each frame we align the recon-

structed 3D shape with the ground truth shape using ICP.

We measure the reconstruction accuracy as the average Eu-

clidean distance between all corresponding point pairs in

the aligned 3D models, and pose accuracy as the difference

between the aligned pose and the ground truth.

As shown in Fig. 7 our tracking accuracy in these “ide-

al” conditions with a known object is < 1◦ in rotation and

< 2mm in translation. In the case of previously unknown

object with reconstructionand tracking, we can still recover

reasonably accurate poses (< 3◦ in rotation and < 8mm in

translation), while reconstructing the 3D shape simultane-

ously. Examples showing tracking with reconstructed data,

even under significant occlusion by the hand holding the

object, are given in supplementary videos.

The constant parameter σ in Eqn. 22 controls the thick-

ness of the reconstructed model, relative to the volume

quantisation. We use a volume of 200×200×200 for all

experiments, with large objects scaled and reconstructed in

the same fixed sized volume. To show the sensitivity of re-

construction accuracy to σ we vary it from 4 to 40 (see Fig.

8). The initial average alignment error is 6mm. For values

15661566

Figure 6. Film strip showing our algorithm tracking and reconstructing a shoe. For each frame, left shows the color image while right

shows the reconstruction result overlayed with the color image reprojected onto the depth image. Green indicates missing depth data.

Figure 7. Quantitative evaluation of the precision our method for tracking 3D rigid object on synthetic data. The error in translation is

measured in mm while rotation is measured in degree.

of σ < 20 the error decreases as more frames are observed

and quickly converges at around frame 150. When σ = 20,

even though the average alignment error does not converge

to < 2mm, the reconstructed shape is still visually correc-

t, but it is larger than the real object. When σ = 40, the

reconstructed shapes become incorrect (i.e. too thick) after

the first few frames, resulting in tracking failure in all fol-

lowing frames, and the shape is not correctly reconstructed.

We used σ = 8 for all our other tests.

In the last experiment, we compare both our tracking and

the reconstruction with KinectFusion[7]. Since KinectFu-

sion requires a static scene to fulfil reconstruction, we place

the object (a piece of sponge) in the centre of a random

scene and use Kinect SDK to record a sequence, in which

we move the Kinect around the object to obtain most views

of the object. Some sample frames are shown in Fig. 9.

The first row shows the color frame, the second row visu-

alize our reconstruction result on re-projected color image

(aligned with depth frame). The third shows the ‘Fusion

frame’ from Kinect SDK, which is the KinectFusion recon-

struction result up to current frame. The last two columns

show the reconstruction results of our method and Kinect-

Fusion. Both methods produce a visually correct result. The

3D model produced by KinectFusion has an incorrect lip on

the top surface, while that part is correctly reconstructed by

our algorithm. Our method does however produce a more

noisy surface below the reconstructed 3D shape, in the ar-

eas that have never been observed by the camera. This is

because noisy outlier depth pixels can propagate incorrect

membership probabilities to areas in the 3D volume where

the related views of object has never be observed.

In Fig. 10, we compare the camera poses produced by

KinectFusion and our method. The KinectFusion camer-

a pose is directly obtained from the Kinect SDK, using a

384 × 384 × 384 volume and 384 voxels/meter. There is

a fixed Euclidean transform between the two sets of poses,

so we align the two camera poses using the trajectories of

two camera centres. As shown in Fig. 10 our tracking result

is very close to the output of KinectFusion despite relying

only on the local geometry of the reconstructed object.

6. Conclusion and future work

In this paper, we have introduced a novel probabilis-

tic framework for simultaneous tracking and reconstruction

using RGB-D data. Our method is able to track and re-

construct a small moving object in unconstrained environ-

ment, and is robust to occlusion and missing data in RGB-

D frames. The reconstruction module in our method e-

volves a 3D level-set embedding function on a per-voxel

inside/outside posterior volume, which is learned incre-

mentally online. The probabilistic formulation of our re-

construction allows us to introduce a shape prior into the

3D shape evolution, and this allows us to initialize the w-

hole tracking-reconstruction framework with very simple

3D models, while improving the 3D model over time. The

shape optimization comprises independent per-voxel oper-

ations and can be implemented in a massively parallel fash-

ion, leading to great computational efficiency.

In future work we plan to extend the reconstruction mod-

ule to take greater advantage of the color information. Cur-

15671567

Figure 9. Film strip showing a comparison between our method and KinectFusion for 3D reconstruction. Each column shows a frame,

the first row shows the color frame, the second row visualized our reconstruction result on re-projected color image (aligned with depth

image), the third row shows the KinectFusion fusion frame. Last two columns shows the final reconstruction result of both methods.

Figure 10. Quantitative comparison between camera pose output when using KinectFusion[7] and our method. Translation is measured in

mm while rotation is measured in degree.

rently, we are using the color information to select fore-

ground pixels for reconstruction, however, the background

pixels can be used to improve the reconstruction as well.

Acknowledgments. This work is funded by the

European Commission under the 7th Framework Pro-

gramme from project ‘REWIRE’ (Grant No. 287713)

and the Australian Research Council (Laureate Fellowship

FL130100102 to IDR).

References

[1] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. Scape: shape completion and animation of

people. ACM Trans. Graph., 24(3):408–416, 2005. 2

[2] P. J. Besl and N. D. McKay. A method for registration of 3-d

shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–

256, 1992. 1

[3] C. Bibby and I. D. Reid. Robust real-time visual tracking

using pixel-wise posteriors. In ECCV (2), pages 831–844,

2008. 3

[4] R. Held, A. Gupta, B. Curless, and M. Agrawala. 3d pup-

petry: a kinect-based interface for 3d animation. In UIST,

pages 423–434, 2012. 1

[5] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. New-

combe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. J.

Davison, and A. W. Fitzgibbon. Kinectfusion: real-time 3d

reconstruction and interaction using a moving depth camera.

In UIST, pages 559–568, 2011. 1

[6] C. Li, C. Xu, C. Gui, and M. D. Fox. Level set evolution

without re-initialization: A new variational formulation. In

CVPR (1), pages 430–436, 2005. 5

[7] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and

A. W. Fitzgibbon. Kinectfusion: Real-time dense surface

mapping and tracking. In ISMAR, pages 127–136, 2011. 1,

2, 6, 7, 8

[8] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient

model-based 3d tracking of hand articulations using kinect.

In BMVC, pages 1–11, 2011. 1

[9] V. A. Prisacariu, A. V. Segal, and I. Reid. Simultaneous

monocular 2d segmentation, 3d pose recovery and 3d recon-

struction. In ACCV (1), pages 593–606, 2012. 2

[10] C. Y. Ren and I. Reid. A unified energy minimization frame-

work for model fitting in depth. In ECCV Workshops (2),

pages 72–82, 2012. 2

[11] R. Ueda. Tracking 3d objects with point cloud library, 2012.

pointclouds.org. 1, 2

[12] A. Weiss, D. A. Hirshberg, and M. J. Black. Home 3d body s-

cans from noisy image and range data. In ICCV, pages 1951–

1958, 2011. 2

15681568

