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Abstract

We present Alternating Regression Forests (ARFs), a
novel regression algorithm that learns a Random Forest by
optimizing a global loss function over all trees. This inter-
relates the information of single trees during the training
phase and results in more accurate predictions. ARFs can
minimize any differentiable regression loss without sacri-
ficing the appealing properties of Random Forests, like low
computational complexity during both, training and testing.
Inspired by recent developments for classification [19], we
derive a new algorithm capable of dealing with different
regression loss functions, discuss its properties and investi-
gate the relations to other methods like Boosted Trees.

We evaluate ARFs on standard machine learning bench-
marks, where we observe better generalization power com-
pared to both standard Random Forests and Boosted Trees.
Moreover, we apply the proposed regressor to two computer
vision applications: object detection and head pose estima-
tion from depth images. ARFs outperform the Random For-
est baselines in both tasks, illustrating the importance of
optimizing a common loss function for all trees.

1. Introduction
Random Forests (RFs), introduced in [1, 3], are ensem-

bles of randomized decision trees. They are relatively easy

to implement and have several appealing characteristics.

For instance, RFs are fast to train and to evaluate, can han-

dle high-dimensional input and output spaces, are robust to

noise and flexible while being competitive with other learn-

ing algorithms. These benefits make them especially in-

teresting for computer vision applications, where they have

been applied to various tasks, e.g ., object detection [9] and

tracking [11], semantic segmentation [20] or object catego-

rization [16], to name but a few.

During training, each tree of the forest is grown inde-

pendently by recursively splitting the labeled training data

until some stopping criteria are fulfilled, in order to disam-

biguate the uncertainty of the predictions. The combination

of the trees results in a strong and highly non-linear pre-

dictor, applicable to many different tasks like classification,

regression or density estimation [5].

However, RFs minimize the uncertainty of the predic-

tions only locally, i.e ., on the node level of independent

trees. While this allows for easy parallelization, the global

structure of the forest is not taken into account, which might

be a potential drawback and is also in contrast to other

well established machine learning algorithms like Boost-

ing or Support Vector Machines. To overcome this issue,

[19] presents Alternating Decision Forests (ADFs), a RF

formulation for the classification task, which can incorpo-

rate different losses over all trees and reports improved per-

formance in machine learning and computer vision experi-

ments.

Recently, RFs have also been extensively used in com-

puter vision to solve different regression tasks. In this case,

class labels are real valued vectors and the target domain is

disambiguated by growing the randomized trees. This mode

of operation has led to state-of-the-art in many computer vi-

sion applications, such as, facial fiducial detection [4, 6] or

pose estimation of heads [7, 8] and humans [10].

In this paper, we propose a novel Random Forest training

procedure named Alternating Regression Forests (ARFs),

which, inspired by [19], globally optimizes differentiable

regression loss functions. In particular, we formulate the

training of Random Regression Forests as a general risk

minimization problem and model the whole forest as a

stage-wise classifier, akin to Gradient Boosting [12] and

ADFs [19]. The iterative training procedure alternates be-

tween growing the forest by one level and evaluating the

global loss for all training samples. In contrast to ADFs,

where importance weights are assigned in a classification

task, we calculate loss-specific “pseudo targets” with the

residuals of the current state of the forest. These new target

variables are optimized in the next iteration of the forest,

which can be done in parallel for each tree, thus maintain-

ing the low computational costs of RFs. These iterations

continue until the same stopping criteria as in standard RFs

are met.
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After having reviewed the basics of Random Regression

Forests in Sec. 3.1, we describe the ARF training procedure

in detail in Sec. 3.3. Additionally, we discuss the properties

of ARFs, the influence of different choices of the regression

loss function and give some insights about the relations to

other approaches like Boosted Trees or standard Random

Regression Forests.

In Sec. 4, we perform three different experiments to as-

sess the performance of ARFs. First, we show regression

performance on several standard machine learning bench-

marks and analyze the relevant parameters. Second, we ex-

tend Hough Forests [9] for object detection by applying the

ARF principle to the regression split nodes and show im-

proved results on three test sets. Finally, we integrate ARFs

into the human head pose estimation system of Fanelli et

al . [8] and show that our proposed regressor gives more ac-

curate predictions.

2. Related Work
Recently, Random Forests (RFs) have been increasingly

employed for difficult regression tasks in several computer

vision applications, enabled by the non-parametric and

highly non-linear structure of RFs. This allows for learn-

ing complex mappings from input to output spaces.

One recent successfull application is facial fiducial esti-

mation from 2D images [6]. In this work, a Random Re-

gression Forest is used to learn a mapping from small im-

age patches to several facial feature points, like the mouth

or eye corners. The prediction of the RF is conditioned

on an estimated head pose and gives state-of-the-art results

on standard benchmarks. Another task is human head pose

estimation [7] from single depth images, where a Random

Regression Forest is trained to estimate the position of the

head (e.g ., the nose tip) in 3D and also the pose in Euler

angles. Similar approaches have also been used for human

pose estimation [10], where several body joint locations are

regressed from single depth images.

RFs have also been employed in joint classification and

regression tasks, where the objective function is formulated

jointly for both tasks. Hough Forests (HFs) for object de-

tection [9] or head detection and simultaneous pose esti-

mation [8] are just two examples. In our experiments (see

Sec. 4), we show that integrating our proposed regression

algorithm into two of these applications gives better perfor-

mance.

Random Regression Forests were also used in combina-

tion with Random Field models in [14]. The proposed Re-

gression Tree Field builds on a Gaussian Random Field and

its parameters are trained from image data with regression

trees. In [13], this approach is extended and applied for im-

age restoration tasks and yields state-of-the-art results. The

paper also shows how the regression trees can be optimally

trained for minimizing the Random Field energy.

In contrast to single tree optimization, we present a re-

gression algorithm based on an ensemble of trees and show

how this ensemble can be optimized with a global loss

function. Our approach is inspired by Gradient Boost-

ing [12] and Alternating Decision Forests (ADFs) [19],

which presents a similar approach for classification tasks.

Boosted Trees for regression [12] are also related to our

proposed regressor. Thus, we point out the similarities and

differences to Alternating Regression Forests (ARFs) in a

more detailed discussion (see Sec. 3.4). Moreover, in the

experiments (see Sec. 4) we compare ARFs with RFs and

also Boosted Trees.

3. Alternating Regression Forests
To derive Alternating Regression Forests (ARFs), we

first briefly review standard Random Regression Forests and

show how a global loss function can be integrated into Ran-

dom Forests (RFs) for classification [19]. Inspired by this

concept, we then present our novel regressor in Sec. 3.3.

We show how a Random Regression Forest can be trained

in a risk minimization framework, akin to Gradient Boost-

ing [12] and Alternating Decision Forests (ADFs) [19],

however, without sacrificing the low computational costs of

standard RFs. Finally, we discuss the properties of the new

algorithm, the employed loss functions and point out the

relations between ARFs, RFs and Gradient Boosting [12].

3.1. Random Forests for Regression

In general, for regression we are given labeled training

samples {xi,yi}Ni=1, where xi ∈ X = R
M and yi ∈ Y =

R
K , sampled from a joint probability distribution q(x,y).

The dimensions of the input and output variables are given

as M and K, respectively, and N is the total number of

training examples.

Random Regression Forests typically describe a non-

linear mapping M : RM → R
K , where an example x is

mapped to a target prediction y. This mapping is learned by

an ensemble of binary decision trees {Tt}Tt=1 (T being the

number of trees in the ensemble), each trained on a subset

of the training data (c.f . bagging [3]). A single decision tree

Tt recursively splits the given training data into two parti-

tions, such that the uncertainty of the target variables in the

resulting subsets is minimized.

In particular, each node in a tree randomly samples a set

of splitting functions φ(x), each separating the data into two

disjoint subsets, L and R, respectively. All splitting func-

tions are then evaluated by measuring the information gain

I = H(L∪R)− |L|
|L|+ |R|H(L)− |R|

|L|+ |R|H(R) , (1)

where H(·) is the entropy over the target labels and | · | de-

notes the size of a set. For classification, H(·) is the discrete
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entropy. For regression tasks, the differential entropy

h(q) =

∫
Y

q(y|x) log(q(y|x)) dy (2)

over continuous outputs can be employed, where q(y|x) de-

notes the conditional probability of a target variable given

the input sample. Assuming q(·, ·) to be a Gaussian distri-

bution and having only a finite set S of samples, the differ-

ential entropy can be written in closed form as

hGauss(S) =
K

2
(1− log(2π)) +

1

2
log(det(ΣS)) , (3)

where det(ΣS) is the determinant of the estimated covari-

ance matrix of the target variables in S.

The splitting function φ∗(x) giving the highest informa-

tion gain is fixed for this node and the data is separated

accordingly into the subsets L and R. This procedure of

splitting the data continues until some stopping criteria are

reached, e.g ., a maximum tree depth or a minimum number

of samples left in the splitting node. If one of these crite-

ria is fulfilled, a leaf node is created by estimating a density

model p(y) from all samples falling in this leaf, in order to

predict the target value.

The most simple way to estimate the probability distri-

bution p(y) is by calculating the sample mean over the tar-

get variables reaching a leaf node. However, there are also

more elaborate variants like fitting a Gaussian (including

a covariance estimation), kernel density estimation or non-

parametric densities [18].

3.2. Optimizing a Global Loss

As described in the previous section, RFs only decide

locally on the node level how the data is further split, with-

out considering the state of the whole classifier. While this

allows for easy parallelization and thus leads to low com-

putational costs, the learning procedure is not globally con-

trolled by an appropriate loss function.

The recently proposed ADFs [19] tackle this issue by re-

formulating the training phase of RFs as a stage-wise classi-

fier. The trees are trained breadth-first up to depth Dmax and

each level of depth d corresponds to a single stage. After

training stage d − 1, the current prediction of each training

sample xi can be calculated by evaluating the current state

of the RF, i.e ., the forest trained up to stage d − 1. Then,

similar to Gradient Boosting [12], the gradient of the loss

for each training sample can be calculated and exploited to

optimize a global loss function over the whole Random For-

est in the next stage d.

For classification tasks, this can be achieved by assign-

ing each training sample xi a weight wd
i for training stage d,

i.e ., depth d of the forest. The weights of the training sam-

ple are derived from the corresponding gradient of the loss

function and have a straight-forward interpretation: Train-

ing samples that are hard to classify get assigned a high

weight and “easy” samples a low weight, which forces the

classifier of the current stage d to concentrate on “hard”

samples. Thus, ADFs optimize a global loss over all trees

by keeping a weight distribution over the training samples,

which gets updated in each stage d according to the given

loss function and the current state of the classifier. The clas-

sifier alternates between weight updates and training of a

single stage. Contrary to [17, 15], where only nodes within

a single tree are entangled, ADFs entangle all trees in the

forest, as each local node split depends on the output of all

other trees.

In the following, we exploit these ideas to develop Alter-

nating Regression Forests, which can optimize any differ-

entiable, global regression loss.

3.3. Training Alternating Regression Forest

We now formulate Alternating Regression Forests as a

stage-wise risk minimization problem for regression tasks.

The general learning objective can be written as loss mini-

mization problem:

argmin
Θ

∑
{xi,yi}

l(yi;FDmax
(xi; Θ)) , (4)

where l(·) is a differentiable loss function and FDmax
=∑Dmax

d=0 fd(x,Θd) denotes the random forest with a tree

depth of Dmax as an additive classifier, akin to Boosting [12]

and ADFs [19]. Please note that the summation is defined

over the stages, i.e ., depths, not over the trees. The pa-

rameters Θd correspond to the parameters of all splitting

functions φ(x) in depth d of the whole forest. To keep the

notation uncluttered, Θ denotes all splitting functions of the

corresponding forest F (·). The minimization problem (4)

can be rewritten as a greedy stage-wise optimization

argmin
Θd

∑
{xi,yi}

l(yi;Fd−1(xi; Θ) + fd(xi; Θd)) , (5)

where Fd−1(x; Θ) is the classifier trained up to stage d− 1
(i.e ., the Random Forest of depth d − 1) and Θd are the

parameters to be optimized in the current stage.

We start with an initial classifer F0 = f0(x; Θ0), which

corresponds to the T root nodes, and each iteration d adds

a new level of depth to the forest. A classifier Fd−1(xi; Θ)
trained up to iteration d−1 gives predictions for all training

samples xi, according to the accumulated probability distri-

butions p(y) stored in the corresponding nodes. These pre-

dictions yield a corresponding loss, which should be mini-

mized (c.f . Eq. (5)). In contrast to ADFs [19], where im-

portance weights for each sample are calculated to approx-

imate the optimization of a global loss, we employ a more

elaborate way for training the next stage fd(x). Similar to
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Gradient Boosting [12], we calculate so-called “pseudo tar-

gets”

− gd
i = −

[
∂l(yi, F (xi))

∂F (xi)

]
F (x)=Fd−1(x)

(6)

for each sample i, which correlate with the negative gradi-

ent of the loss function w.r.t. the output of the current classi-

fier. These pseudo targets form an intermediate training set

{xi,−gd
i } for the current iteration. This data is then used to

train fd(x), i.e ., the depth d of the forest, according to the

information gain criterion, Eq. (1) (see Fig. 1).

Please note that training depth d of the forest corre-

sponds to transforming the leaf nodes in Fd−1(x) into split-

ting nodes and creating new leaf nodes in depth d, which

make predictions about the “pseudo targets”−gd
i . Unlike in

Boosting (with trees or decision stumps as weak learners),

where the path of any sample x is unknown beforehand,

in ARFs, this path is always fixed as we have a hierarchi-

cal classifier structure. Thus, we can immediately add the

target distribution ppa(y) of the parent node, i.e ., the new

split node in depth d − 1, to the current target distributions

pch(y) of the new child nodes in depth d. After having up-

dated pch(y) for iteration d, we can set the prediction of ppa

to 0 and continue the training of ARFs with iteration d+ 1.

The intermediate classifier Fd(x) can thus be used like a

standard RF for making predictions. In Algorithm 1, we

summarize the complete training procedure of ARFs.

During inference, RFs, Boosting with decision

stumps/trees as weak learner, and ARFs are exactly

the same, except for the aggregation of the predictions. A

given test sample x is routed through all trees Tt and thus

ends up in T leaf nodes, each storing its estimated target

variable distribution p(y). These distributions are either

averaged (RFs and ARFs) or accumulated (Boosting) over

the ensemble to yield the final prediction. Nevertheless, the

computational complexity of all methods during testing is

the same.

Algorithm 1 Training of Alternating Regression Forests

Require: Labeled training set {xi,yi}Ni=1 ∈ X × Y
Require: Number of trees T , maximum tree depth Dmax

1: Init F0 = f0(x) as T root nodes with p(y)
2: for d from 1 to Dmax do
3: Check stopping criteria for all nodes in depth d
4: Calculate “pseudo targets” −gdi (Eq. (6))

5: Find Θd, i.e ., φ∗(x) for “pseudo targets” (Eq. (1))

6: Calculate pchild(y) in (intermediate) leaf nodes

7: Add pparent(y) to corresponding pchild(y)
8: Fd(x; Θ) = Fd−1(x; Θ) + fd(x; Θd)
9: end for

Figure 1: Illustration of the “pseudo targets” in ARFs used

to train the intermediate stages.

3.4. Discussion

In the following, we specify the loss functions used in

our implementation and briefly discuss the properties of the

algorithm compared to related approaches.

In general, any differentiable loss function can be inte-

grated into ARFs, however, we use three of the most com-

mon regression losses, the Squared, the Absolute, and the

Huber loss, well known from robust statistics [12]. The

Squared loss is the most restrictive one, giving relatively

high penalty to samples that are incorrectly regressed, com-

pared to, e.g ., the Absolute loss. The Huber loss [12] can be

adapted with the parameter δ, resulting in different shapes

of the loss. It behaves like a Squared loss for residuals be-

low δ and like an Absolute loss for residuals larger than δ.

We further want to discuss the relations between ARFs

and Boosting (with decision stumps/trees). Although ARFs

can be equivalently formulated as Gradient Boosting, there

are two main differences. First, while Boosting pools from

the same space of weak learners in all iterations, i.e ., the

number of splitting functions is the same, for ARFs, this

space increases over time as the number of split functions

to be optimized increases in each iteration. This property al-

lows ARFs to be easily trained in parallel. Second, Boosting

trains a weak learner from scratch in each iteration, e.g ., a

new regression tree. Contrary, in ARFs, a weak learner cor-

responds to the splitting functions in a single depth d. This

implies that for d > 0 the training samples are conditioned

on the structure of the trees up to depth d − 1, which eases

the task for the weak learner in the current iteration.

Finally, we also discuss the computational costs of

ARFs, Boosting, and RFs. In Boosting, the overall clas-

sifier corresponds to a flat additive combination of the weak

learners, e.g ., decision or regression stumps/trees. Thus,

each weak learner has to be trained consecutively, which

may take a long time to get a desired model complexity for

the task at hand. In contrast, ARFs regard each depth of the

forest as a single weak leaner, i.e ., several different splitting

functions φ(x), thus being able to parallelize them. Stan-

dard RFs can also be trained easily in parallel, which also

makes them fast during both training and testing, however,

without optimizing a global loss.
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4. Experiments

To assess the performance of the proposed Alternating

Regression Forests (ARFs), we performed several experi-

ments. We evaluate ARFs on 19 machine learning bench-

marks and give a comparison to Boosted Trees (BTs) and

standard Random Forests (RFs). Moreover, we present two

different computer vision applications, namely object detec-

tion and human head pose estimation, where we integrate

the ARF principle.

4.1. Results on Machine Learning Data

We conduct a standard regression experiment on a set

of 19 machine learning benchmarks from different sources

(UCI, StatLib, Delve)1 to evaluate the difference between

standard Random Regression Forests (RFs), Boosted Trees

(BTs), and Alternating Regression Forests (ARFs). For BTs

and ARFs, we evaluate the loss functions presented above

(Squared, Absolute, and Huber).

As most benchmarks do not provide specific train-test

splits, we split the given data into 60% training and 40%
testing data. To provide statistically fair results, we aver-

age them by repeating the following procedure 5 times. We

first build a random train-test split (unless an explicit split

is given) with the above defined ratio and then, for each

split, we train and test all methods 4 times in order to fur-

ther decrease statistical uncertainties due to the random tree

growing schemes. This procedure results in a total of 20
averaging runs per method and data set. We measure the

performance as the Root Mean Squared Error (RMSE).

The parameters of all trees for the different methods

(RFs, BTs, and ARFs) are set equally: we used 50 trees with

a maximum depth of 15, however, tree growing also stops if

the sample size in a node is below 10. We use
√
D random

tests [3] (D being the input feature dimensionality) and 20
randomly chosen thresholds. For BTs, the number of trees

always corresponds to the number of iterations/weak learn-

ers, thus having the same model complexity as the other

methods.

In Tab. 1, we present our results as mean and standard de-

viation of RMSE values. Bold faced values indicate the best

performing method for a single data set. We also highlight

statistically significantly better results compared to RFs ac-

cording to a Student t-test. As can be seen from the table,

ARF-based methods win in all but 2 data sets, in most cases

significantly. The performance difference between the loss

functions for both ARFs and BTs is rather minor. Through-

out all experiments we fix the parameter δ for the Huber

loss to 0.3.

While the goal in this first experiment was to evaluate all

methods with the same model complexity (i.e., same num-

1A collection of the data sets can be found at http://www.dcc.
fc.up.pt/˜ltorgo/Regression/DataSets.html
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Figure 2: Parameter evaluation of RFs, BTs and ARFs for

the experiment conducted on autompg. We vary the number

of trees for two choices of the maximum tree depth Dmax.

ber of trees and maximum depth), we further compare the

performance for different complexities in a second experi-

ment. We choose the autompg data set, fixed the loss for

BTs and ARFs to be the Squared loss, and varied the num-

ber of trees, i.e ., weak learners, between 10 and 500 for two

fixed maximum depth values, 5 and 15. Again, we aver-

aged the results for each parameter combination over sev-

eral train-test splits. The results are illustrated in Fig. 2.

We make three observations: First, a larger amount of weak

learners is important for BTs (both plots), which, however,

also implicates a longer training time compared to RFs and

ARFs, as no parallelization is possible. Second, BTs can

handle shallow trees as weak learners much better than RFs

or ARFs (see Fig. 2a). Finally, the performance of both BTs

and ARFs is similar with the appropriate parameter settings

(RMSE values of 2.85 and 2.82, respectively), while RFs,

which do not optimize a global loss function, lag behind

(RMSE = 2.98).

Finally, we also evaluate the overall training and testing

time. Averaged over all data sets, ARFs and RFs have more

or less the same computational costs, while BTs take ap-

proximately 5 times longer. Please note that these values

correspond to 50 weak learners and would even be more

distinctive if the number of weak learners is increased.

4.2. Application I: Object Detection

In this first vision experiment, we integrate the ARF prin-

ciple in the Hough Forests (HFs) framework [9] for object

detection. We first give a brief review of HFs and describe

our modifications to the regression nodes, before we present

our results on three popular object detection benchmarks.

Hough Forests [9] are a detection model based on RFs,

which uses small appearance patches Pi to describe the de-

sired object. Foreground patches store an offset vector di

to the object’s center, while background patches do not.

The appearance of each patch is encoded in several feature

channels that include the LAB color channels or gradient

information, among others. During training, a Random For-

est is built to disambiguate both the class uncertainty of all

patches and the regression variance of foreground patches.

421



Scale RF BTAbs BTSqr BTHub ARFAbs ARFSqr ARFHub

abalone 2.44± 0.02 2.87± 0.18 2.95± 0.15 2.84± 0.14 2.45± 0.02 2.44 ± 0.03 2.45± 0.02
ailerons 10−4 2.15± 0.02 1.97± 0.03 1.97± 0.02 1.97± 0.02 1.78 ± 0.01 1.78± 0.01 1.78± 0.01
autompg 3.03± 0.04 3.44± 0.21 3.40± 0.22 3.47± 0.17 2.89 ± 0.06 2.89± 0.05 2.90± 0.04
breastcancer 35.3 ± 0.1 38.9± 1.0 38.9± 1.6 38.9± 1.5 35.3± 0.1 35.3± 0.1 35.3± 0.2
cartdelve 1.12± 0.01 1.29± 0.01 1.29± 0.01 1.29± 0.01 1.02± 0.00 1.02 ± 0.00 1.02± 0.00
cpuact 2.89± 0.01 3.34± 0.43 3.20± 0.20 3.11± 0.15 2.63± 0.04 2.63± 0.03 2.62 ± 0.03
cpusmall 3.20± 0.01 3.42± 0.16 3.42± 0.11 3.41± 0.15 2.94± 0.03 2.94 ± 0.03 2.94± 0.02
deltaailerons 10−4 1.71± 0.00 1.91± 0.02 1.89± 0.04 1.90± 0.02 1.68± 0.00 1.68 ± 0.00 1.68± 0.00
deltaelevators 10−3 1.48± 0.00 1.57± 0.01 1.57± 0.01 1.57± 0.02 1.46 ± 0.00 1.46± 0.00 1.46± 0.00
diabetes .725± .018 .790± .065 .797± .057 .777± .083 .710± .011 .711± .010 .709 ± .008
elevators 10−3 3.64± 0.03 3.41± 0.09 3.37± 0.06 3.39± 0.07 2.98 ± 0.04 2.98± 0.02 2.98± 0.04
friedmandelve 1.66± 0.01 1.65± 0.04 1.64± 0.03 1.65± 0.04 1.10± 0.00 1.10 ± 0.01 1.11± 0.00
housing 3.46± 0.09 3.94± 0.28 3.94± 0.26 4.03± 0.29 3.19 ± 0.07 3.21± 0.08 3.22± 0.06
kinematics .166± .001 .174± .003 .173± .003 .172± .004 .125 ± .001 .126± .002 .125± .001
pol 17.7± 1.1 10.7± 0.6 10.6± 0.6 10.7± 0.5 9.72 ± 0.24 9.77± 0.22 9.86± 0.18
pyrimidines .086± .003 .094± .009 .098± .016 .097± .011 .074 ± .001 .075± .003 .075± .003
servo .698± .025 .669± .098 .672± .078 .657 ± .084 .667± .010 .659± .026 .670± .021
stockairplane 1.03± 0.02 1.11± 0.12 1.15± 0.09 1.09± 0.07 1.01± 0.03 1.01± 0.03 .996 ± .029
triazines .133± .002 .134± .014 .134± .008 .135± .009 .129 ± .002 .129± .001 .129± .003

Wins 1 0 0 1 9 5 3

Table 1: Machine learning results for the compared methods (RFs, BTs, ARFs) with different loss functions (Absolute,

Squared, Huber) for BTs and ARFs on standard regression benchmarks. The results are presented as RMSE values averaged

over several runs (mean and standard deviation is given). Bold values mark the best performing method for each data set and

highlighted results indicate a significant improvement over RFs.

Each split node is randomly assigned to be either a classifi-

cation or a regression node. Classification nodes are simi-

larly designed as in standard RFs and extended to optimize

a global loss in [19]. In the following, we further extend

HFs in the regression nodes.

Regression nodes in HFs follow the simple Reduction-

In-Variance approach [9], which measures the uncertainty

of the node predictions as

H(S) =
1

|S|

|S|∑
i=1

‖di − d̄‖22 , (7)

where S defines the set of positive patches with offset vec-

tors di, and d̄ is the mean offset vector of S. The ARF

principle is integrated in the Hough Forest framework as de-

scribed in Sec. 3.3 for regression split nodes. The trees are

grown depth by depth and after each iteration the “pseudo

targets” are calculated via the given loss and the current pre-

diction of the forest.

HFs stop growing trees if either a maximum depth is

reached or less than 20 samples are available in a node.

Then, leaf nodes are created that store a class probability,

i.e ., a fore- and background probability, and votes for ob-

ject centers. While standard HFs store all offset vectors di

reaching a leaf node, we follow a different approach [10],

where only modes of the distribution of offset vectors are

stored. Storing only modes instead of all offset vectors gives

similar voting accuracy, but reduces the computation time

during inference vastly. As we already calculate the mean of

the offset vectors for the residuals during tree growing, we

simply stick with these estimates for the final offset vectors

in the leaf nodes. We increase the maximum tree depth to

30, in order to handle occurring multi modal distributions.

During inference, each patch in a test image is scanned

and routed to the leaf nodes, which vote for tentative object

centers in a Hough space. All votes are accumulated and

the resulting maxima then indicate object detections.

Experimental Setup: We use three object detection data

sets commonly employed for evaluating HFs, namely the

TUD-pedestrian, TUD-crossing and TUD-campus bench-

marks [2]. Only the TUD-pedestrian data set provides train-

ing data in the form of 400 bounding-box annotated images.

The test data consists of 250, 201, and 72 images for the

three data sets, respectively. In this experiment, we directly

evaluate the influence of the global loss in the regression

nodes of HFs. We thus compare standard Hough Forests [9]

(HF) with our proposed modifications as described above

(ARFs). Further, we also include the influence of a global

loss for the classification nodes [19] (ADF). For a fair com-

parison, we endow all methods with 10 trees, each having

a maximum depth of 30, and 20000 random tests per node.

We use a training data set consisting of 16000 foreground

(randomly extracted within the bounding boxes) and 16000
background patches. To get statistically fair results (patch

extraction and tree growing is random), we repeat the train-

test procedure 10 times. During each round, we extract the

same set of patches for all methods. For ARFs, we use the

Squared loss throughout all experiments, as this loss con-

sistently gave the best results.
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Figure 3: Precision-Recall curves of HFs [9], ADFs [19] and our proposed ARF on (a) the TUD-pedestrian, (b) the TUD-

crossing and (c) the TUD-campus data sets.

Results: We present our results as precision recall curves in

Fig. 3. As can be seen in the plots, for this setup, Alternating

Decision Forests (ADFs) only improve on one data set over

HFs. However, optimizing a global regression loss during

the training procedure, i.e ., ARFs, boosts the performance

on all three data sets. We get a gain of 7.2%, 5.2% and

6.4% in terms of the area-under-curve (auc) score over HFs

(we also provide average precision (ap) scores). We also

note that the combination of ADFs and ARFs did not further

improve the results.

4.3. Application II: Head Pose Estimation

Our second computer vision application for ARFs is hu-

man head pose estimation from depth images, where we fol-

low the experimental setup of Fanelli et al . [8]. The goal is

to train a joint classification and regression forest on patches

from labeled depth images, in order to detect the head and

to estimate the pose from unseen depth images. All train-

ing patches store a class label (i.e., being a face or non-face

patch) and only positive patches store target regression val-

ues (i.e ., the head center position relative to the patch in 3D

coordinates and the pose in Euler angles).

Thus, the Random Forest is very similar to standard

HFs [9] with a few exceptions, like a different form of the

splitting functions φ(x) (Haar-like features), a larger patch

size of 100px, or a slightly different entropy measure H(·).
Due to lack of space, we refer the reader to [8] for more

details. Each leaf node stores a foreground probability pfg,

the target prediction p(y) (mean of all training sample tar-

gets), and the variance σ2 of those targets. We can extend

the training procedure of [8] with our proposed regressor in

the same way as for HFs in Sec. 4.2, as the differences be-

tween [8] and [9] do not directly affect our modified training

procedure.

During testing, patches from the depth image are ex-

tracted on a regular grid and routed to the corresponding

leaf nodes in all trees. Each leaf node having a foreground

probability pfg = 1 and a variance σ2 < σ2
max are selected

to vote for a head center and pose [8]. Using a meanshift

variant, a single mode is found from all votes for a single

depth image.

Experimental Setup: For all experiments, we use the data

set from [8], which is publicly available and contains more

than 15K frames of depth images capturing human faces.

It is split into several sequences, each showing one person.

As in [8], we split the data into 18 training sequences and 2
testing sequences. Groundtruth is given as the head center

position in 3D and the pose in Euler angles for each frame.

Like in the previous experiment, we compare HFs, modified

for this regression task [8], ADFs, and ARFs. In order to di-

rectly compare the different training procedures, we endow

all RFs with the same parameters from [8], i.e ., we use 7
trees, a maximum depth of 15 and 20000 random tests per

node.

Results: Following [8], we also present our results as the

percentage of correctly predicted frames over different suc-

cess thresholds for both, position and pose regression of

the head, see Fig. 4. For a fair comparison, we use our

own implementation of all competing methods on the same

code basis. However, as some details of the experimental

setup in [8] (train-test split, etc .) are not fully specified,

we get slightly different results compared to those reported

in [8]. Nevertheless, we can see from the plots that both

approaches optimizing a global loss (ADFs and ARFs) con-

sistently improve over the HFs baseline. Although this is

a regression task, we can observe that ADFs (classification

nodes) significantly improve over HFs. A reason for this

might be that ADFs produce cleaner leaf nodes (i.e., leafs

having pfg = 1), which leads to more effective voting nodes

that improve the overall result. Furthermore, in this experi-

ment we also evaluate the performance of the combination

of ADFs and ARFs, denoted ARF*. We can observe that

ARF* gives the best results for the more important tighter

success thresholds (i.e ., 10mm) in the head position regres-

sion (see Fig. 4a), and also gives good results for the pose

estimation (see Fig. 4b).
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Method X Y Z Position Yaw Pitch Roll Angle

HF [8] 6.03± 7.49 8.63± 13.45 4.39± 6.86 12.99± 15.80 3.79± 3.74 9.27± 13.22 6.62± 9.07 13.48± 15.37
ARF 5.84± 6.87 4.93± 5.34 4.28± 4.25 9.84± 8.72 3.67± 3.39 9.17± 11.95 4.83± 4.94 12.14± 12.39
ADF [19] 4.77± 5.50 5.88± 3.85 3.53± 3.69 9.50± 6.18 3.54± 3.33 7.87± 11.55 5.39± 4.79 11.48± 11.80
ARF* 4.64± 5.29 4.91± 5.88 4.00± 4.18 8.68± 8.21 3.52± 3.25 8.18± 11.01 4.77± 4.52 11.17± 11.38

Table 2: Raw regression errors (mean and standard deviation) of HF [8], ARF, ADF [19] and ARF* in mm for X, Y, Z, and

Position and in degree for Yaw, Pitch, Roll and Angle.
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Figure 4: Frame accuracy of the competing methods (HF,

ADF, ARF and ARF*) for different success thresholds of

(a) the head position in mm and (b) the head pose in degree.

To get a better insight in the accuracies of all methods,

we also give the raw errors for all 6 variables and the aggre-

gated head position and head pose (angle) errors in Tab. 2.

Again, we observe that all methods optimizing a global loss

consistently outperform the baseline [8] in this task.

5. Conclusion
We presented Alternating Regression Forests, a novel

Random Forest training procedure for regression tasks,

which, in contrast to standard Random Regression Forests,

optimizes any differentiable global loss function without

sacrificing the computational benefits of Random Forests.

ARFs are easy to implement and can be exchanged with

standard Random Regression Forests without great efforts.

This novel regressor gives better performance on machine

learning benchmarks compared to Random Forests and

Boosted Trees. Furthermore, we also integrated our ideas

into two computer vision applications (object detection with

Hough Forests and pose estimation from depth images). In

both cases, ARFs could beat the baselines, illustrating the

benefits of optimizing a global loss during training.
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