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Abstract

Despite significant progress, tracking is still considered
to be a very challenging task. Recently, the increasing pop-
ularity of depth sensors has made it possible to obtain reli-
able depth easily. This may be a game changer for tracking,
since depth can be used to prevent model drift and han-
dle occlusion. We also observe that current tracking al-
gorithms are mostly evaluated on a very small number of
videos collected and annotated by different groups. The lack
of a reasonable size and consistently constructed bench-
mark has prevented a persuasive comparison among dif-
ferent algorithms. In this paper, we construct a unified
benchmark dataset of 100 RGBD videos with high diver-
sity, propose different kinds of RGBD tracking algorithms
using 2D or 3D model, and present a quantitative com-
parison of various algorithms with RGB or RGBD input.
We aim to lay the foundation for further research in both
RGB and RGBD tracking, and our benchmark is available
at http://tracking.cs.princeton.edu.

1. Introduction

Visual object tracking is an important but challenging

task. For example, in the standard tracking-by-detection

pipeline [2], a slight offset in one frame may be rein-

forced after an online learning step, resulting in the so-

called model drift problem. Besides, occlusion of target

objects occurs quite often in real world scenarios. To ad-

dress these issues, over the last decade, object tracking al-

gorithms have evolved significantly in both their sophistica-

tion and quality of results. In particular, many new learning

theories are introduced into tracking1. However, all these

approaches are evaluated on a very small number of videos

collected and annotated by different groups over the years

(e.g. 8 videos used for evaluating [3, 12]). A consistent col-

lection and annotation protocol is hard to guarantee, and the

small size of the dataset induces significant bias [23]. There

1e.g. Multiple Instance Learning [3], Compressive Sensing [30], Ker-

nelized Structured Support Vector Machine [12], Semi-supervised Boost-

ing [11], Eigenbasis and Adaptive Particle Filter [18], Sparse Principal

Component Analysis and Interactive Markov Chain Monte Carlo [16] etc.

Figure 1. Examples from our Princeton Tracking Benchmark.

is no consistent evaluation metric, especially when occlu-

sion happens. Furthermore, all ground truth annotation is

publicly available, which makes it even worse in terms of

parameter overfitting. Many practitioners in the field find

that it is hard to generalize some of these approaches to

other videos because of parameter sensitivity. The lack of a

reasonable size and consistently constructed benchmark for

tracking has been preventing persuasive comparisons.

Meanwhile, great popularity of affordable depth sen-

sors, such as Microsoft Kinect, Asus Xtion and PrimeSense,

make depth acquisition very easy. Reliable depth maps can

provide valuable additional information to significantly im-

prove tracking results with robust occlusion and model drift

handling. How much does depth information help in track-

ing? Will the availability of depth significantly change the

design of the standard tracking pipeline? What is a rea-

sonable baseline algorithm for tracking with RGBD data?

And how do the state-of-the-art RGB tracking algorithms

perform compared with these new RGBD algorithms?

This paper seeks to answer these questions by conduct-

ing a quantitative benchmark evaluation, and proposing var-

ious simple but powerful baseline algorithms. To establish

a unified benchmark, we construct a RGBD dataset of 100

videos, named as Princeton Tracking Benchmark (PTB),

which includes deformable objects, various occlusion con-
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Figure 2. Statistics of our RGBD tracking benchmark dataset.

ditions, moving camera, and different scenes (Figure 1). To

build a set of diverse baseline algorithms, we design sev-

eral tracking algorithms incorporating depth information to

reduce model drift, and propose a simple scheme for occlu-

sion handling.

The goal of this paper is four-fold: 1. To construct one

unified benchmark dataset with analysis of bias statistics;

2. To standardize uniform evaluation criteria for comparing

different kinds of algorithms, including the protocol for oc-

clusion evaluation; 3. To carefully design various kinds of

baseline algorithms, including traditional 2D image patch

based tracker, new 3D point cloud based tracker, low-level

flow based tracker, and trivial algorithms without even us-

ing the video; 4. To open up new research direction for

RGBD tracking, and provide basic insights by quantifying

the importance of depth and 3D information.

In our PTB, We withhold ground truth for 95 videos,

open source all baseline algorithms, and host an online eval-

uation server to allow new result submissions for compari-

son.

1.1. Related works

Many noteworthy tracking algorithms have been pro-

posed in the last decade. Here we briefly summarize only

a partial list of them, due to space constraints. [3] pro-

poses a very robust system with online multiple instance

learning. [15] designs a framework to integrate tracking,

learning, and detection using P-N loops. [11] uses semi-

supervised online boosting to increase tracking robustness,

while [1] handles it using a fragments-based model. To ad-

dress target appearance and motion changes, [16] uses vi-

sual tracking decomposition scheme to integrate multiple

observation and motion trackers, and [18] presents an in-

cremental subspace learning algorithm. More recently, [30]

proposes using compressive sensing for real-time tracking,

and [12] adopts structured output prediction to avoid inter-

mediate classification.

In comparison, dataset as well as benchmarks for RGBD

tracking evaluation are less comprehensive. The publicly

available RGBD People Dataset [22, 17] contains only one

sequence with 1,132 frames captured with static cameras
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Figure 3. Bounding box distribution over all sequences.
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Figure 4. Bounding box variation over time.

with only people moving, which is obviously not enough

to evaluate tracking algorithms for general objects. In con-

current work, Wu et al. [26] evaluate 29 2D tracking algo-

rithms on 50 RGB videos combining from different sources

captured and annotated in different settings. In contrast, our

benchmark evaluates both RGB and RGBD tracking algo-

rithms, together with our proposed 3D tracking algorithms,

on 100 RGBD videos consistently captured and annotated

by us. Furthermore, to separate the effect of various as-

sumptions, we calculate upper bounds and lower bounds

for the algorithms, and categorize error into three different

types to analyze occlusion handling.

There have been several great benchmarks for various

computer vision tasks that help to advance the field and

shape computer vision as a rigorous experimental science,

e.g. two-view stereo matching [19], multi-view stereo re-

construction [20], optical flow [4], image segmentation [8],

and object classification, detection, and segmentation [9],

scene classification [27] and our PTB is an addition to the

list to provide a benchmark for tracking algorithms using

either RGB or RGBD data.

Apart from tracking, various efforts have been made

on constructing RGBD datasets for other computer vision

tasks. In particular, the NYU dataset [21] is comprised

of 1449 fully labeled RGBD images with unlabeled short

videos. The SUN3D dataset [28] has a large collection of

big spaces in 3D reconstructed from long RGBD videos, us-

ing structure from motion and object annotations. [13, 29]

contain 3D bounding box annotations for cuboid-like ob-

jects in RGBD images.
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RGB→ HOG→ iHOG[25] Depth → HOG→ iHOG[25] Cloud → 3D

Figure 5. Visualization of features in the baseline algorithms.

iHOG[25] is just to visualize the HOG feature and not used in

the actual algorithms. Column 7 shows the cell division of point

cloud. Column 8 visualizes the 3D feature, in which color of the

ellipsoids is the average color of points in each cell, and the axes

of the ellipsoids are the principal components of those points.

2. Unified tracking benchmark

2.1. Dataset construction

To construct one unified benchmark dataset for differ-

ent kinds of tracking algorithms, we recorded 100 video

clips with both RGB and depth data, and manually anno-

tated ground truth bounding boxes.

Hardware setup Our dataset is captured using a standard

Microsoft Kinect 1.0. It uses a paired infrared projector

and camera to calculate depth value, thus its performance

is severely impaired in outdoor environment under direct

sunlight. Also, Kinect requires a minimum and a maximum

distance from objects to the cameras in order to obtain accu-

rate depth values. Due to the above constraints, our videos

are captured indoors, with object depth values ranging from

0.5 to 10 meters.

Annotation We manually annotate the ground truth (the

target location) of the dataset by drawing a bounding box

on each frame as follows: A minimum bounding box cov-

ering the target is initialized on the first frame. In the next

frame, if the target moves or its shape changes, the bound-

ing box will be adjusted accordingly; otherwise, it remains

the same. All frames are manually annotated by an author

to ensure high consistency. Because we manually annotate

each frame, there is no interpolation or key frames. When

occlusion occurs, the ground truth is defined as the mini-

mum bounding box covering only the visible portion of the

target. When the target is completely occluded there will be

no bounding box for this frame. We annotate all following

frames in this way.

2.2. Dataset statistics

As a benchmark dataset, high diversity and low bias are

important. Figure 2, 3, 4 summarize the statistics of our

dataset, which presents varieties in the following aspects:
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Figure 6. RGBD tracking algorithm based on 2D image patch. The

2D confidence map shows the combined confidence from detector

and optical flow tracker. The 1D depth distribution is a Gaussian

estimated from target depth histogram. The 3D confidence map

is computed by applying a threshold from the 1D Gaussian on the

2D confidence map. In the output, the target location (the green

bounding boxes) is the position of the highest confidence. Oc-

cluder (the blue bounding box) is recognized from its depth value.

Target type We divide targets into three types: human,

animal and relatively rigid object. Rigid objects, such as

toys and human faces, can only translate or rotate. An-

imals include dogs, rabbits and turtles, whose movement

usually consists of out-of-plane rotation and some deforma-

tion. The degree of freedom for human body motion is very

high, which may increase the difficulty in tracking.

Scene type Each scene type in our dataset has a different

level of background clutter. The living room, for example,

has a simple and mostly static background, while the back-

ground of a cafe is complex, with many people passing by.

Presence of occlusion Our videos cover several aspects

of occlusion, e.g. how long the target is occluded, whether

the target moves or undergoes appearance change during

occlusion, and similarity between the occluder and target.

Bounding box distribution over all sequences Figure

3 shows the location and size distribution of ground truth

boxes across all sequences. The location distribution is

computed as a normalized histogram in 640 × 480 image

space, where value on each pixel represents the possibility

for a bounding box to cover that pixel. The box size distri-

bution is also over all sequences, which shows our dataset

covers long and short, wide and narrow objects.

Bounding box variation over time Apart from overall

statistics, we also provide average bounding box statistics

within a single video sequence. For each sequence, we

compute a histogram of relative area and aspect ratio of the

ground truth bounding boxes to the one in the first frame,

as well as box center distance between consecutive frames.

Afterwards, the histogram is normalized and averaged over

all sequences. The resultant average histogram is shown in

Figure 4, which illustrates how much bounding boxes may

deform or shift in a single video.

2.3. Evaluation metric

We use two metrics to evaluate the performance. The

first one is center position error (CPE), which is the Eu-

clidean distance between centers of output bounding boxes

and the ground truth. This metric shows how close the

235



-2                    -1                   0                  -1                    2             meters

-1.5

-1

-0.5

0

0.5

1

6

4

2

Figure 7. 3D point cloud with 3D sliding window detection.

tracking results are to the ground truth in each frame. How-

ever, the overall performance of trackers cannot be mea-

sured by averaging this distance, especially when trackers

are misled by background clutter and produce faraway out-

liers. Besides, this distance is undefined when trackers fail

to output a bounding box or there is no ground truth bound-

ing box (the target is totally occluded).

To evaluate the overall performance, we employ the cri-

terion used in the PASCAL VOC challenge [9], the ratio of

overlap ri between the outputs and true bounding boxes:

ri =

⎧⎪⎨
⎪⎩

area(ROITi
∩ROIGi

)

area(ROITi
∪ROIGi

) if both ROITi
and ROIGi

exist

1 if neither ROITi and ROIGi exist

−1 otherwise

(1)
where ROITi

is the target bounding box in the i-th frame

and ROIGi
is the ground truth bounding box. By setting a

minimum overlapping area rt, we can calculate the average
success rate R of each tracker as follows:

R =
1

N

N∑
i=1

ui, where ui =

{
1 if ri > rt

0 otherwise
, (2)

where ui is an indicator denoting whether the output bound-
ing box of the i-th frame is acceptable, N is the number

of frames, and rt is the minimum overlap ratio deciding

whether an output is correct. Since some trackers may pro-

duce outputs that have small overlap ratio over all frames

while others give large overlap on some frames and fail

completely on the rest, rt must be treated as a variable to
conduct a fair comparison. Furthermore, we can divide

tracking failures into three types:

Type I :ROITi
�= null and ROIGi

�= null and ri < rt

Type II :ROITi
�= null and ROIGi

= null

Type III :ROITi
= null and ROIGi

�= null

Type I error occurs when the target is visible, but the

tracker’s output is far away from the target. Type II er-

ror occurs when the target is invisible but tracker outputs

Figure 8. Depth distribution inside target bounding box. Left: dis-

tribution in normal state. Right: distribution when occlusion oc-

curs. The red Gaussians denote the target model, and the green

Gaussian denotes the occluder model.

a bounding box. Type III error occurs when the target is

visible but the tracker fails to give any output.

3. Baseline algorithms
Now that depth data is available, we design two types

of approaches to utilize it. The first one adopts traditional

2D image patch tracking with additional depth features; the

second one is based on 3D point cloud and outputs 3D tar-

get bounding box in space, which is a more natural way

of handling 3D data. An occlusion handling mechanism is

also added to both of the systems. Overview of the two al-

gorithms is shown in Figure 6 and 7 respectively. Here are

basic building blocks of the two types of approaches.

3.1. Detection based tracking

Tracking by detection is done by building a discrimina-

tive model of the tracking target, and using it to classify po-

tential targets in subsequent frames. Candidate with high-

est confidence is regarded as the tracking result. Following

paragraphs describe two features we used to build the dis-

criminative model, and the procedure of classification using

support vector machine (SVM [6])

RGBD HOG feature RGBD HOG feature is the his-

togram of oriented gradients (HOG[7, 10]) computed from

both RGB and depth images (Figure 5 columns 1 to 6).

HOG for depth is obtained by treating depth data as a

grayscale image. This RGBD HOG feature describes lo-

cal color textures as well as 3D shapes, improving robust-

ness against target illumination variation, lack of texture

and similarity in color to the background.

Point cloud feature Point cloud feature is designed to

capture the color and shape of cells of 3D points. We first

divide 3D space into cubic cells, then for each cell we com-

pute three features: (1) a color histogram in color names

space [24], (2) the number of points in the cell and (3) 3D

shape feature [14]. Color name is a linguistic label assigned

to color spectrum space. The color name feature is com-

puted by first mapping the RGB value of each point to one

of the 11 basic color names and then building a histogram

of these color names within each cell. The 3D shape fea-

ture is composed of scatter-ness, linear-ness and surface-

ness of the point distribution inside each cell, obtained from

its principal components: Denote the eigenvalues of the co-

variance matrix of point coordinates as λ1 > λ2 > λ3, then
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scatter-ness is λ1, linear-ness is λ1 − λ2, surface-ness is

λ2−λ3. Figure 5 column 7 and 8 visualize the cell division

of point cloud and its corresponding 3D feature.

SVM training and detection Both RGBD HOG and

point cloud detectors train a linear SVM classifier. In

the first frame, the SVM is trained by using user’s input

bounding box as the positive example and randomly picked

bounding boxes that do not overlap with the target as nega-

tive examples. In the subsequent frame, computed features

are convolved with SVM weights, and several possible tar-

get locations whose confidence is high are returned. Point

cloud detector preforms 3D convolution for each feature di-

mension and then sums them up. Afterwards, the SVM

is retrained during non-occlusion state using the resulting

bounding box and the positive support vectors in the previ-

ous frames with hard negative mining.

3.2. Point tracking
2D optical flow tracking The 2D optical flow tracker

adopts large displacement optical flow [5] on RGB data

from consecutive frames, then generates the bounding box

of points validated by forward-backward checking.

3D iterative closest point tracking For 3D tracking, we

adopt Iterative Closest Point (ICP) algorithm [31], which it-

eratively computes a rigid transformation that minimize the

sum of mean square error between two set of points in real

time. The rigidity assumption holds in most cases, but it

might fail when the target deforms and produces a large er-

ror E(R, t, s). In this case, according to the small motion
assumption, our tracker looks for the target near its previ-

ous position. We treat the biggest connected component in

the neighborhood of the previous position as the new target

position, and return a 3D bounding box that encompasses it.

3.3. Integration of detection and point tracking

Both detection and point tracking are initialized by the

input bounding box in the first frame and updated online. In

each frame, they run independently, and after their results

are available, the confidence of detection result is adjusted

as: c = cd + αr(t,d), where cd is the confidence of the de-
tection, and r(t,d) is the overlap ratio between the detection
and point tracker’s resulting bounding boxes, i.e. an indica-
tion of their consistency. α denotes the weight of the over-

lap ratio (α = 0.5 in our experiment). After thresholding

on the adjusted confidence, the bounding box with highest

confidence, if exists, is passed to occlusion checking, then

output as the final result when occlusion is not detected. Un-

der occlusion, the tracker outputs the best valid detection or

segmentation result, as described in the section below.

3.4. Occlusion handling

To handle occlusion, some traditional RGB trackers like

[15] use forward-backward error to indicate tracking failure,

and some like [1, 3] use a fragment-based model to reduce

sensitivity to partial occlusion. However, with depth infor-

mation the solution becomes more straight-forward. Here

we propose a simple yet effective occlusion handling mech-

anism which actively detects occlusion and recovery.

Occlusion detection Occlusion handling is based on 2D

bounding boxes (3D bounding boxes are projected back to

2D space). To detect the occlusion, we assume that the tar-

get is the closest object that dominates the bounding box

when not occluded. A new object in front of the target in-

side the bounding box indicates the beginning of occlusion

state. Therefore, depth histogram inside bounding box is

expected to have a newly rising peak with a smaller depth

value than target, and/or a reduction in the size of bins

around the target depth, as illustrated in Figure 8.

In the i-th frame, the depth histogram hi of all pixels
inside a bounding box can be approximated as a Gaussian

distribution: hi ∼ N (μi, σ
2
i ). We define the likelihood of

occlusion in this frame as: Oi =
∑μi−σi

d=0 hi(d)/
∑

d hi(d),
where hi(d) is the value of the d-th bin in the i-th frame,

and d = 0 is the depth of the camera. μi − σi is a threshold
for a point to be considered as occluder. The number of pix-

els in the bounding box that have smaller depth value than

target depth are considered the area of the occluder. Hence,

a larger Oi indicates that an occlusion is more likely. The

search also includes the neighborhood of the target bound-

ing box, which has a size of 0.1 times of the bounding box

size. The target depth value is updated online, so a target

moving towards the camera will not be treated as an occlu-

sion.

Recovery from occlusion The occluder’s model, i.e. its
depth and color distribution, is initialized when entering the

occlusion state, and its position is updated by an optical

flow tracker. A list of possible target candidates are iden-

tified either by the detection or a local search around the oc-
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Figure 10. Average success rate vs. threshold of overlap ratio (rt) evaluated on different categories of test cases.

cluder. With depth and color distributions of target and oc-

cluder, the local search is done by performing segmentation

on RGB and depth data respectively and combining their re-

sults. The combined segmentation produces a list of target

candidates, whose validity is then judged by the SVM clas-

sifier. By examining the list of possible target candidates,

the tracker interprets target recovery when at least one can-

didate’s score evaluated by the SVM classifier is high, and

its visible area is large enough compared to the target area

before entering occlusion. The occlusion subroutine ends if

the target is recovered from occlusion.

4. Evaluation
In our evaluation system, 5 videos out of 100 are used for

parameter tuning, and the remaining 95 are used for evalua-

tion. 3D bounding boxes are projected back to 2D for evalu-

ation. To understand howmuch depth information improves

the performance and evaluate the contribution of each build-

ing blocks, we tested nine variations of our proposed RGBD

tracker listed in Table 1. We also evaluated six state-of-the-

art RGB trackers: TLD[15], CT[30], MIL[3], semi-B[11],

Struck[12] and VTD[16], since currently there is no other

public available RGBD tracking algorithms for general ob-

jects. To understand the impact of model assumptions, we

use the ground truth to design several performance upper

bounds under different model assumptions, such as fixed

box size, aspect ratio, or target being always visible (Table

2). To understand the impact of dataset bias to the eval-

uation, we also obtained performance lower bounds from

several trivial image-independent algorithms (Table 3).

The performance measured by CPE and the correspond-

ing snapshots are shown in Figure 11. The success rates

measured by overlap ratio are shown in Figure 10. Error

decomposition of each tracker is shown in Figure 9. Fur-

thermore, in Table 4 we compute an average ranking of al-

gorithms by averaging the individual rankings under differ-

ent categorizations.

The effect of using depth data can be seen by compar-

ing the tracker with depth input (RGBD+OF) and without

(RGB+OF). With depth data, error is reduced by 14.9%.

After enabling the occlusion handler, the tracker (RGB-

Table 1. Strong RGBD baseline algorithms
OF Uses only optical flow tracking.

Ddet Uses Depth HOG detection tracking.

RGBdet Uses RGB HOG detection tracking.

RGB +OF Uses RGB HOG detection with optical flow.

RGBD +OF Uses RGBD HOG detection with optical flow.

RGBDOcc

+OF

Uses RGBD HOG detection and optical flow with occlusion

handling.

PCflow Uses 3D point tracker.

PCdet Uses point cloud detection.

PC(det+flow) Uses point cloud detection and 3D point tracking with oc-

clusion handling.

Table 2. Performance upper-bounds (GT:ground truth)
GTfirstSize Uses the GT location and first frame box size.

GTbestsize Uses the GT location and fixed box size that optimize the

successful rate.

GTfirstRatio Uses the GT location and first frame box aspect ratio.

GTbestRatio Uses the GT location and fixed box aspect ratio that opti-

mize the successful rate.

GTnoOcc Outputs the GT box, if exists, and a random box otherwise.

Table 3. Performance lower-bound algorithms
IIDfirstBB Always outputs the first frame bounding box for all frames.

IIDcenterBB Always outputs the box locate at center of image, with first

frame box size.

IIDrandSize Outputs bounding boxes with the first frame box location

and a random size based on dataset statistics.

IIDrandLoc Outputs bounding boxes with the first frame box size and a

random location based on dataset statistics

IIDrandLoc

Size

Outputs bounding boxes with random location and size

based on dataset statistics

IIDrand

WithoutPrior

Outputs bounding boxes with random location and size

without any prior knowledge of dataset

DOcc+OF) error rate further decreases by 5.2%. The point

cloud based tracker (PC) also achieves at least a 5.7% reduc-

tion in error rate when compared with other RGB trackers.

Figure 10 measures the success rate R while varying the

threshold rt in equation 2. A reasonable algorithm should

have a curve lying between the lower bound and the upper

bound under the same assumption. Figure 9 distinguishes

sources of error to achieve a fair comparison and analysis

between different algorithms. For some algorithms, perfor-

mance difference may be partially attributed to the assump-

tions they are based on, which disagree with our dataset.

For example, MIL, CT, Struck, and TVD do not have an

occlusion handling mechanism which naturally lead to high
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Table 4. Evaluation results: successful rate (SR) % and corresponding rankings (in parentheses) under different categorizations.

algorithm
avg.

rank

all

SR

target type target size movement occlussion motion type

human animal rigid large small slow fast yes no active passive

GTbestRatio - 99.665 99.9(1) 100.0(1) 99.3(1) 99.8(1) 99.6(1) 99.5(1) 99.7(1) 99.6(1) 99.7(2) 99.7(1) 99.5(1)

GTfirstRatio - 99.3 99.6(2) 99.8(2) 98.6(2) 99.4(2) 99.2(2) 99.0(2) 99.4(2) 99.2(2) 99.5(3) 99.4(2) 99.0(2)

GTbestSize - 97 95.0(3) 99.3(3) 98.1(3) 96.2(3) 97.6(3) 98.4(3) 96.5(3) 96.4(3) 97.8(4) 96.3(3) 98.8(3)

GTonOcc - 93.05 91.0(4) 94.3(4) 94.8(5) 92.6(4) 93.4(4) 94.3(4) 92.5(4) 88.0(5) 100.0(1) 93.2(4) 92.5(5)

GTfirstSize - 91.03 86.7(5) 90.3(5) 96.5(4) 88.7(5) 92.8(5) 93.2(5) 90.1(5) 90.8(4) 91.3(5) 88.6(5) 97.5(4)

RGBDOcc+OF 1.18 73.3 74.0(1) 62.6(2) 78.4(1) 78.1(1) 69.7(1) 76.3(1) 72.2(1) 72.0(1) 75.2(2) 70.0(1) 82.3(1)
RGBD+OF 1.91 68.1 63.9(2) 65.3(1) 74.5(2) 71.5(2) 65.5(2) 73.4(2) 65.9(2) 60.1(2) 79.0(1) 65.8(2) 74.0(3)

PC(det+flow) 3.09 58.9 50.5(3) 51.6(3) 72.7(3) 63.4(3) 55.5(4) 73.9(2) 53.0(3) 55.0(3) 64.4(5) 75.5(2) 52.7(3)

RGB+OF 4.82 53.2 47.1(4) 47.0(6) 63.6(4) 47.4(6) 57.5(3) 56.7(6) 51.8(4) 46.9(4) 61.9(7) 63.4(5) 49.3(4)

Ddet 5.73 49 43.3(5) 48.3(5) 55.9(6) 47.2(5) 50.3(5) 52.7(8) 47.5(5) 38.4(6) 63.5(4) 54.3(9) 46.9(5)

PCdet 6 48.7 40.6(6) 42.1(9) 61.7(5) 55.4(4) 43.6(8) 58.5(4) 44.8(6) 46.3(5) 52.0(9) 64.9(4) 42.6(6)

Struck[12] 7.18 44.4 35.4(7) 47.0(7) 53.4(9) 45.0(7) 43.9(9) 58.0(5) 39.0(7) 30.4(10) 63.5(3) 54.4(8) 40.6(7)

VTD[16] 7.64 43 30.9(10) 48.8(4) 53.9(8) 38.6(9) 46.2(6) 57.3(7) 37.2(8) 28.3(11) 63.1(6) 54.9(7) 38.5(8)

RGBdet 9.36 39.9 26.7(13) 40.9(10) 54.7(7) 31.9(12) 46.0(7) 50.5(10) 35.7(9) 34.8(7) 46.8(11) 56.2(6) 33.7(11)

PCflow 10.82 37.1 35.2(8) 29.1(14) 43.6(11) 42.2(8) 33.2(13) 47.2(12) 33.1(10) 32.4(9) 43.5(12) 41.3(13) 35.5(9)

CT[30] 10.91 36.4 31.1(11) 46.7(8) 36.9(13) 39.0(10) 34.4(12) 48.6(11) 31.5(11) 23.3(14) 54.3(8) 42.1(12) 34.2(10)

MIL[3] 11.18 35.5 29.0(12) 35.1(12) 44.4(10) 32.5(13) 38.5(10) 51.6(9) 29.7(13) 33.8(8) 38.7(13) 50.2(10) 30.5(13)

TLD[15] 11.55 35.9 32.2(9) 37.2(11) 38.3(12) 36.6(11) 34.6(11) 45.5(13) 31.5(12) 25.6(12) 49.0(10) 40.4(14) 33.6(12)

SemiB[11] 13.55 32.3 22.5(14) 33.0(13) 32.7(14) 24.0(14) 31.6(14) 38.2(14) 24.4(14) 25.1(13) 32.7(14) 41.9(11) 23.2(14)

OF 15.27 18.6 17.9(15) 11.4(16) 23.4(15) 20.1(15) 17.5(16) 18.1(16) 18.8(15) 15.9(15) 22.3(15) 23.4(15) 16.8(15)

IIDfirstBB 15.27 15.1 9.7(16) 20.9(14) 18.3(15) 13.3(16) 16.5(14) 31.2(14) 8.7(16) 15.0(16) 15.3(16) 13.6(16) 19.2(15)

IIDrandSize 17.18 5.1 2.8(17) 7.0(18) 6.8(17) 4.0(18) 6.0(17) 10.9(17) 2.8(17) 5.0(17) 5.2(17) 5.1(17) 5.2(17)

IIDcenterBB 17.91 4.6 0.7(19) 9.4(17) 6.5(18) 4.6(17) 4.6(18) 10.0(18) 2.4(18) 4.8(18) 4.3(18) 5.1(18) 3.3(18)

IIDrandLoc 19 2 2.3(18) 1.2(19) 2.1(19) 3.0(19) 1.2(20) 2.0(19) 2.0(19) 2.0(19) 2.0(19) 2.0(19) 2.2(19)

IIDrandLocSize 20 0.7 0.6(20) 0.4(21) 0.8(20) 0.8(20) 0.6(19) 0.9(20) 0.6(20) 0.7(20) 0.7(20) 0.7(20) 0.6(20)

IIDrandWithoutPoir 20.91 0.1 0.1(21) 0.0(20) 0.1(21) 0.1(21) 0.0(21) 0.1(21) 0.1(21) 0.1(21) 0.1(21) 0.1(21) 0.1(21)

Type II error. For those algorithms, GTnoOcc is the appro-

priate performance upper bound they should be compared

to, which includes the total amount of Type II error caused

by this assumption. For algorithms that assume size fixed

bounding boxes, GTfirstSize is the upper bound they should

be compared with. Error decomposition also reveals where

performance difference come from. TLD and SemiB have

a relatively high Type III error, suggesting that their models

are sensitive to target appearance change or partial occlu-

sion.

Our proposed baseline algorithms use very powerful but

computationally expensive features, classifiers, and a state-

of-the-art optical flow algorithm, while some other trackers

mainly focus on real-time performance. Thus our tracker is

expected to have higher accuracy at the cost of longer run-

ning time. The current median frame rate is 0.26 FPS for

RGBDOcc+OF, implemented in Matlab without optimiza-

tion on speed.

5. Discussion
Advantage from depth From the evaluation results,

trackers that utilize depth have advantages especially when

the target rotates, deforms or is under occlusion. Target ap-

pearance can change significantly after rotation or defor-

mation, making recognition difficult, which are the main

causes of model drifting for traditional RGB trackers. How-

ever, the depth or 3D features are still distinguishable when

the similarity in RGB vanishes. When the target is partially

occluded (video “face”, Figure 11 Row 3), fragment based

trackers (e.g. [3, 11]) can locate the target but sometimes

mistake background clutter for the target. Conservative ap-

proaches, which do not produce output with low confidence,

often lose track of the target at this point. However, from

depth data, trackers are able to identify the occluder and

raise the confidence in its neighboring 3D region, compen-

sating for the confidence loss due to partial occlusion, and

thus identifies the target more accurately. When the oc-

cluder gradually grows inside the target bounding box, if not

excluded, will finally dominates the bounding box (video

“sign” “walking people”, Figure 11 Row 2, 4). Traditional

trackers are often misled to track or detect the occluder. It is

difficult to make corrections afterwards because their mod-

els are already updated incorrectly. With a reliable occlu-

sion detection mechanism, the occluder can be recognized

and hence will not be output as the result or used to update

models.

2D image patch and 3D point cloud The results above

show that between the two methods that utilize depth data,

the 2D image patch based tracker slightly outperforms the

one based on 3D point cloud. Considering that image-patch

based tracker, such as detection with HOG feature and point

tracking with optical flow, are very well studied while our

approach in 3D point cloud tracking are relatively new, we

believe that the small performance gap indicates the great

potential for future development in 3D trackers, such as 3D

HOG and 3D optical flow.

6. Conclusions
We propose a unified tracking benchmark for both RGB

and RGBD tracking, and present the evaluation of sev-
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Figure 11. Output bounding boxes and their center position error (CPE). For the sake of clarity we only show results of RGBDOcc+OF,

RGB+OF, PC(det+flow), TLD, CT, MIL, Semi-B, Struck, VTD. The CPE is undefined when trackers fail to output a bounding box or there

is no ground truth bounding box (the target is totally occluded).

eral baseline algorithms using 2D detector, 3D detector,

optical flow and ICP. We design a simple occlusion han-

dling algorithm based on the depth map, and also evaluate

several state-of-the-art RGB tracking algorithms. The re-

sults demonstrate that by incorporating depth data, trackers

can achieve better performance and handle occlusion much

more reliably. We hope that our unified benchmark provides

new insights to the field, by making experimental evaluation

more standardized and easily accessible.
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