
Distributed Low-rank Subspace Segmentation

Ameet Talwalkara Lester Mackeyb Yadong Muc Shih-Fu Changc Michael I. Jordana

aUniversity of California, Berkeley bStanford University cColumbia University
{ameet, jordan}@cs.berkeley.edu, lmackey@stanford.edu, {muyadong, sfchang}@ee.columbia.edu

Abstract

Vision problems ranging from image clustering to mo-
tion segmentation to semi-supervised learning can naturally
be framed as subspace segmentation problems, in which
one aims to recover multiple low-dimensional subspaces
from noisy and corrupted input data. Low-Rank Repre-
sentation (LRR), a convex formulation of the subspace seg-
mentation problem, is provably and empirically accurate
on small problems but does not scale to the massive sizes
of modern vision datasets. Moreover, past work aimed at
scaling up low-rank matrix factorization is not applicable
to LRR given its non-decomposable constraints. In this
work, we propose a novel divide-and-conquer algorithm
for large-scale subspace segmentation that can cope with
LRR’s non-decomposable constraints and maintains LRR’s
strong recovery guarantees. This has immediate implica-
tions for the scalability of subspace segmentation, which
we demonstrate on a benchmark face recognition dataset
and in simulations. We then introduce novel applications
of LRR-based subspace segmentation to large-scale semi-
supervised learning for multimedia event detection, concept
detection, and image tagging. In each case, we obtain state-
of-the-art results and order-of-magnitude speed ups.

1. Introduction
Visual data, though innately high dimensional, often re-

side in or lie close to a union of low-dimensional subspaces.

These subspaces might reflect physical constraints on the

objects comprising images and video (e.g., faces under

varying illumination [2] or trajectories of rigid objects [24])

or naturally occurring variations in production (e.g., digits

hand-written by different individuals [12]). Subspace seg-
mentation techniques model these classes of data by recov-

ering bases for the multiple underlying subspaces [10, 7].

Applications include image clustering [7], segmentation of

images, video, and motion [30, 6, 26], and affinity graph

construction for semi-supervised learning [32].

One promising, convex formulation of the subspace seg-

mentation problem is the low-rank representation (LRR)

program of Liu et al. [17, 18]:

(Ẑ, Ŝ) = argmin
Z,S

‖Z‖∗ + λ‖S‖2,1 (1)

subject to M = MZ+ S .

Here, M is an input matrix of datapoints drawn from mul-

tiple subspaces, ‖·‖∗ is the nuclear norm, ‖·‖2,1 is the sum

of the column �2 norms, and λ is a parameter that trades

off between these penalties. LRR segments the columns

of M into subspaces using the solution Ẑ, and, along with

its extensions (e.g., LatLRR [19] and NNLRS [32]), admits

strong guarantees of correctness and strong empirical per-

formance in clustering and graph construction applications.

However, the standard algorithms for solving Eq. (1) are un-

suitable for large-scale problems, due to their sequential na-

ture and their reliance on the repeated computation of costly

truncated SVDs.

Much of the computational burden in solving LRR stems

from the nuclear norm penalty, which is known to encour-

age low-rank solutions, so one might hope to leverage the

large body of past work on parallel and distributed matrix

factorization [11, 23, 8, 31, 21] to improve the scalabil-

ity of LRR. Unfortunately, these techniques are tailored to

optimization problems with losses and constraints that de-

couple across the entries of the input matrix. This decou-

pling requirement is violated in the LRR problem due to

the M = MZ + S constraint of Eq. (1), and this non-

decomposable constraint introduces new algorithmic and

analytic challenges that do not arise in decomposable ma-

trix factorization problems.

To address these challenges, we develop, analyze, and

evaluate a provably accurate divide-and-conquer approach

to large-scale subspace segmentation that specifically ac-

counts for the non-decomposable structure of the LRR

problem. Our contributions are three-fold:

Algorithm: We introduce a parallel, divide-and-conquer

approximation algorithm for LRR that is suitable for large-

scale subspace segmentation problems. Scalability is

achieved by dividing the original LRR problem into compu-

tationally tractable and communication-free subproblems,

solving the subproblems in parallel, and combining the re-
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sults using a technique from randomized matrix approxima-

tion. Our algorithm, which we call DFC-LRR, is based on

the principles of the Divide-Factor-Combine (DFC) frame-

work [21] for decomposable matrix factorization but can

cope with the non-decomposable constraints of LRR.

Analysis: We characterize the segmentation behavior of

our new algorithm, showing that DFC-LRR maintains the

segmentation guarantees of the original LRR algorithm with

high probability, even while enjoying substantial speed-ups

over its namesake. Our new analysis features a significant

broadening of the original LRR theory to treat the richer

class of LRR-type subproblems that arise in DFC-LRR.

Moreover, since our ultimate goal is subspace segmentation

and not matrix recovery, our theory guarantees correctness

under a more substantial reduction of problem complexity

than the work of [21] (see Sec. 3.2 for more details).

Applications: We first present results on face clustering

and synthetic subspace segmentation to demonstrate that

DFC-LRR achieves accuracy comparable to LRR in a frac-

tion of the time. We then propose and validate a novel

application of the LRR methodology to large-scale graph-

based semi-supervised learning. While LRR has been used

to construct affinity graphs for semi-supervised learning in

the past [4, 32], prior attempts have failed to scale to the

sizes of real-world datasets. Leveraging the favorable com-

putational properties of DFC-LRR, we propose a scalable

strategy for constructing such subspace affinity graphs. We

apply our methodology to a variety of computer vision tasks

– multimedia event detection, concept detection, and image

tagging – demonstrating an order of magnitude improve-

ment in speed and accuracy that exceeds the state of the art.

The remainder of the paper is organized as follows. In

Section 2 we first review the low-rank representation ap-

proach to subspace segmentation and then introduce our

novel DFC-LRR algorithm. Next, we present our theoreti-

cal analysis of DFC-LRR in Section 3. Section 4 highlights

the accuracy and efficiency of DFC-LRR on a variety of

computer vision tasks. We present subspace segmentation

results on simulated and real-world data in Section 4.1. In

Section 4.2 we present our novel application of DFC-LRR

to graph-based semi-supervised learning problems, and we

conclude in Section 5.

Notation Given a matrix M ∈ R
m×n, we define

UMΣMV�M as the compact singular value decomposition

(SVD) of M, where rank(M) = r, ΣM is a diagonal ma-

trix of the r non-zero singular values and UM ∈ R
m×r and

VM ∈ R
n×r are the associated left and right singular vec-

tors of M. We denote the orthogonal projection onto the

column space of M as PM .

2. Divide-and-Conquer Segmentation
In this section, we review the LRR approach to subspace

segmentation and present our novel algorithm, DFC-LRR.

2.1. Subspace Segmentation via LRR

In the robust subspace segmentation problem, we ob-

serve a matrix M = L0 + S0 ∈ R
m×n, where the columns

of L0 are datapoints drawn from multiple independent sub-

spaces,1 and S0 is a column-sparse outlier matrix. Our goal

is to identify the subspace associated with each column of

L0, despite the potentially gross corruption introduced by

S0. An important observation for this task is that the pro-

jection matrix VL0V
�
L0

for the row space of L0, sometimes

termed the shape iteration matrix, is block diagonal when-

ever the columns of L0 lie in multiple independent sub-

spaces [10]. Hence, we can achieve accurate segmentation

by first recovering the row space of L0.

The LRR approach of [17] seeks to recover the row space

of L0 by solving the convex optimization problem presented

in Eq. (1). Importantly, the LRR solution comes with a

guarantee of correctness: the column space of Ẑ is exactly

equal to the row space of L0 whenever certain technical

conditions are met [18] (see Sec. 3 for more details).

Moreover, as we will show in this work, LRR is also

well-suited to the construction of affinity graphs for semi-

supervised learning. In this setting, the goal is to define

an affinity graph in which nodes correspond to data points

and edge weights exist between nodes drawn from the same

subspace. LRR can thus be used to recover the block-sparse

structure of the graph’s affinity matrix, and these affinities

can be used for semi-supervised label propagation.

2.2. Divide-Factor-Combine LRR (DFC-LRR)

We now present our scalable divide-and-conquer

algorithm, called DFC-LRR, for LRR-based subspace seg-

mentation. DFC-LRR extends the principles of the DFC

framework of [21] to a new non-decomposable problem.

The DFC-LRR algorithm is summarized in Algorithm 1,

and we next describe each step in further detail.

D step - Divide input matrix into submatrices: DFC-

LRR randomly partitions the columns of M into t l-column

submatrices, {C1, . . . ,Ct}. For simplicity, we assume that

t divides n evenly.

F step - Factor submatrices in parallel: DFC-LRR

solves t subproblems in parallel. The ith LRR subproblem

is of the form

min
Zi,Si

‖Zi‖∗ + λ‖Si‖2,1 (2)

subject to Ci = MZi + Si ,

1Subspaces are independent if the dimension of their direct sum is the

sum of their dimensions.
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where the input matrix M is used as a dictionary but only

a subset of columns is used as the observations.2 A typical

LRR algorithm can be easily modified to solve Eq. (2) and

will return a low-rank estimate Ẑi in factored form.

C step - Combine submatrix estimates: DFC-LRR

generates a final approximation Ẑproj to the low-rank

LRR solution Ẑ by projecting [Ẑ1, . . . , Ẑt] onto the

column space of Ẑ1. This column projection technique is

commonly used to produce randomized low-rank matrix

factorizations [15] and was also employed by the DFC-

PROJ algorithm of [21].

Runtime: As noted in [21], many state-of-the-art

solvers for nuclear-norm regularized problems like Eq. (1)

have Ω(mnkM ) per-iteration time complexity due to the

rank-kM truncated SVD required on each iteration. DFC-

LRR reduces this per-iteration complexity significantly

and requires just O(mlkCi
) time for the ith subproblem.

Performing the subsequent column projection step is

relatively cheap computationally, since an LRR solver

can return its solution in factored form. Indeed, if we

define k′ � maxi kCi , then the column projection step of

DFC-LRR requires only O(mk′2 + lk′2) time.

Algorithm 1 DFC-LRR

Input: M, t
{Ci}1≤i≤t = SAMPLECOLS(M, t)
do in parallel

Ẑ1 = LRR(C1,M)
...

Ẑt = LRR(Ct,M)
end do
Ẑproj = COLPROJ([Ẑ1, . . . , Ẑt], Ẑ1)

3. Theoretical Analysis
Despite the significant reduction in computational com-

plexity, DFC-LRR provably maintains the strong theoreti-

cal guarantees of the LRR algorithm. To make this state-

ment precise, we first review the technical conditions for

accurate row space recovery required by LRR.

3.1. Conditions for LRR Correctness

The LRR analysis of Liu et al. [18] relies on two key

quantities, the rank of the clean data matrix L0 and the co-

2An alternative formulation involves replacing both instances of M
with Ci in Eq. (1). The resulting low-rank estimate Ẑi would have di-

mensions l × l, and the C step of DFC-LRR would compute a low-rank

approximation on the block-diagonal matrix diag(Ẑ1, Ẑ2, . . . , Ẑt).

herence [22] of the singular vectors VL0 . We combine these

properties into a single definition:

Definition 1 ((μ, r)-Coherence). A matrix L ∈ Rm×n is
(μ, r)-coherent if rank(L) = r and

n

r
‖V�L‖

2

2,∞ ≤ μ,

where ‖·‖2,∞ is the maximum column �2 norm.3

Intuitively, when the coherence μ is small, information is

well-distributed across the rows of a matrix, and the row

space is easier to recover from outlier corruption. Using

these properties, Liu et al. [18] established the following

recovery guarantee for LRR.

Theorem 2 ([18]). Suppose that M = L0 + S0 ∈ R
m×n

where S0 is supported on γn columns, L0 is ( μ
1−γ , r)-

coherent, and L0 and S0 have independent column support
with range(L0) ∩ range(S0) = {0}. Let Ẑ be a solution
returned by LRR. Then there exists a constant γ∗ (depend-
ing on μ and r) for which the column space of Ẑ exactly
equals the row space of L0 whenever λ = 3/(7‖M‖√γ∗l)
and γ ≤ γ∗.

In other words, LRR can exactly recover the row space

of L0 even when a constant fraction γ∗ of the columns has

been corrupted by outliers. As the rank r and coherence μ
shrink, γ∗ grows allowing greater outlier tolerance.

3.2. High Probability Subspace Segmentation

Our main theoretical result shows that, with high proba-

bility and under the same conditions that guarantee the ac-

curacy of LRR, DFC-LRR also exactly recovers the row

space of L0. Recall that in our independent subspace set-

ting accurate row space recovery is tantamount to correct

segmentation of the columns of L0. The proof of our re-

sult, which generalizes the LRR analysis of [18] to a broader

class of optimization problems and adapts the DFC analysis

of [21], can be found in the appendix.

Theorem 3. Fix any failure probability δ > 0. Under the
conditions of Thm, 2, let Ẑproj be a solution returned by
DFC-LRR. Then there exists a constant γ∗ (depending on μ
and r) for which the column space of Ẑproj exactly equals
the row space of L0 whenever λ = 3/(7‖M‖√γ∗l) for
each DFC-LRR subproblem, γ ≤ γ∗, and t = n/l for

l ≥ crμ log(4n/δ)/(γ∗ − γ)2

and c a fixed constant larger than 1.
3Although [18] uses the notion of column coherence to analyze LRR,

we work with the closely related notion of (μ, r)-coherence for ease of

notation in our proofs. Moreover, we note that if a rank-r matrix L ∈
R
m×n is supported on (1 − γ)n columns then the column coherence of

VL is μ if and only if VL is (μ/(1− γ), r)-coherent.
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Figure 1: Results on synthetic data (reported results are averages over 10 trials). (a) Phase transition of LRR and DFC-LRR.

(b,c) Timing results of LRR and DFC-LRR as functions of γ and n respectively.

Thm. 3 establishes that, like LRR, DFC-LRR can tol-

erate a constant fraction of its data points being corrupted

and still recover the correct subspace segmentation of the

clean data points with high probability. When the num-

ber of datapoints n is large, solving LRR directly may be

prohibitive, but DFC-LRR need only solve a collection of

small, tractable subproblems. Indeed, Thm. 3 guarantees

high probability recovery for DFC-LRR even when the sub-

problem size l is logarithmic in n. The corresponding re-

duction in computational complexity allows DFC-LRR to

scale to large problems with little sacrifice in accuracy.

Notably, this column sampling complexity is better than

that established by [21] in the matrix factorization setting:

we require O(r log n) columns sampled, while [21] requires

in the worst case Ω(n) columns for matrix completion and

Ω((r log n)2) for robust matrix factorization.

4. Experiments
We now explore the empirical performance of DFC-

LRR on a variety of simulated and real-world datasets,

first for the traditional task of robust subspace segmenta-

tion and next for the more complex task of graph-based

semi-supervised learning. Our experiments are designed to

show the effectiveness of DFC-LRR both when the theory

of Section 3 holds and when it is violated. Our synthetic

datasets satisfy the theoretical assumptions of low rank, in-

coherence, and a small fraction of corrupted columns, while

our real-world datasets violate these criteria.

For all of our experiments we use the inexact Aug-

mented Lagrange Multiplier (ALM) algorithm of [17] as

our base LRR algorithm. For the subspace segmenta-

tion experiments, we set the regularization parameter to

the values suggested in previous works [18, 17], while

in our semi-supervised learning experiments we set it to

1/
√
max (m,n) as suggested in prior work.4 In all ex-

periments we report parallel running times for DFC-LRR,

4http://perception.csl.illinois.edu/matrix-rank

i.e., the time of the longest running subproblem plus the

time required to combine submatrix estimates via column

projection. All experiments were implemented in Matlab.

The simulation studies were run on an x86-64 architecture

using a single 2.60 Ghz core and 30GB of main memory,

while the real data experiments were performed on an x86-

64 architecture equipped with a 2.67GHz 12-core CPU and

64GB of main memory.

4.1. Subspace Segmentation: LRR vs. DFC-LRR

We first aim to verify that DFC-LRR produces accuracy

comparable to LRR in significantly less time, both in syn-

thetic and real-world settings. We focus on the standard ro-

bust subspace segmentation task of identifying the subspace

associated with each input datapoint.

4.1.1 Simulations

To construct our synthetic robust subspace segmentation

datasets, we first generate ns datapoints from each of k
independent r-dimensional subspaces of Rm, in a manner

similar to [18]. For each subspace i, we independently se-

lect a basis Ui uniformly from all matrices in R
m×r with

orthonormal columns and a matrix Ti ∈ R
r×ns of inde-

pendent entries each distributed uniformly in [0, 1]. We

form the matrix Xi ∈ R
m×ns of samples from subspace i

via Xi = UiTi and let X0 ∈ R
m×kns = [X1 . . . Xk].

For a given outlier fraction γ we next generate an addi-

tional no = γ
1−γ kns independent outlier samples, denoted

by S ∈ R
m×no . Each outlier sample has independent

N (0, σ2) entries, where σ is the average absolute value of

the entries of the kns original samples. We create the input

matrix M ∈ R
m×n, where n = kns + no, as a random

permutation of the columns of [X0 S].
In our first experiments we fix k = 3, m = 1500, r = 5,

and ns = 200, set the regularizer to λ = 0.2, and vary the

fraction of outliers. We measure with what frequency LRR

and DFC-LRR are able to recover of the row space of X0
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(a) (b)

Figure 3: Trade-off between computation and segmentation accuracy on face recognition experiments. All results are ob-

tained by averaging across 100 independent runs. (a) Run time of LRR and DFC-LRR with varying number of subproblems.

(b) Segmentation accuracy for these same experiments.

Figure 2: Exemplar face images from Extended Yale

Database B. Each row shows randomly selected images for

a human subject.

and identify the outlier columns in S, using the same crite-

rion as defined in [18].5 Figure 1(a) shows average perfor-

mance over 10 trials. We see that DFC-LRR performs quite

well, as the gaps in the phase transitions between LRR and

DFC-LRR are small when sampling 10% of the columns

(i.e., t = 10) and are virtually non-existent when sampling

25% of the columns (i.e., t = 4).

Figure 1(b) shows corresponding timing results for the

accuracy results presented in Figure 1(a). These timing re-

sults show substantial speedups in DFC-LRR relative to

LRR with a modest tradeoff in accuracy as denoted in Fig-

ure 1(a). Note that we only report timing results for values

of γ for which DFC-LRR was successful in all 10 trials,

i.e., for which the success rate equaled 1.0 in Figure 1(a).

Moreover, Figure 1(c) shows timing results using the same

parameter values, except with a fixed fraction of outliers

(γ = 0.1) and a variable number of samples in each sub-

space, i.e., ns ranges from 75 to 1000. These timing results

also show speedups with minimal loss of accuracy, as in all

of these timing experiments, LRR and DFC-LRR were suc-

cessful in all trials using the same criterion defined in [18]

and used in our phase transition experiments of Figure 1(a).

5Success is determined by whether the oracle constraints of Eq. (8) in

the Appendix are satisfied within a tolerance of 10−4.

4.1.2 Face Clustering

We next demonstrate the comparable quality and increased

performance of DFC-LRR relative to LRR on real data,

namely, a subset of Extended Yale Database B,6 a stan-

dard face benchmarking dataset. Following the experimen-

tal setup in [17], 640 frontal face images of 10 human sub-

jects are chosen, each of which is resized to be 48×42 pixels

and forms a 2016-dimensional feature vector. As noted in

previous work [3], a low-dimensional subspace can be ef-

fectively used to model face images from one person, and

hence face clustering is a natural application of subspace

segmentation. Moreover, as illustrated in Figure 2, a sig-

nificant portion of the faces in this dataset are “corrupted”

by shadows, and hence this collection of images is an ideal

benchmark for robust subspace segmentation.

As in [17], we use the feature vector representation of

these images to create a 2016 × 640 dictionary matrix, M,

and run both LRR and DFC-LRR with the parameter λ set

to 0.15. Next, we use the resulting low-rank coefficient ma-

trix Ẑ to compute an affinity matrix UẐU
�
Ẑ

, where UẐ

contains the top left singular vectors of Ẑ. The affinity ma-

trix is used to cluster the data into k = 10 clusters (cor-

responding to the 10 human subjects) via spectral embed-

ding (to obtain a 10D feature representation) followed by

k-means. Following [17], the comparison of different clus-

tering methods relies on segmentation accuracy. Each of

the 10 clusters is assigned a label based on majority vote of

the ground truth labels of the points assigned to the cluster.

We evaluate clustering performance of both LRR and DFC-

LRR by computing segmentation accuracy as in [17], i.e.,

each cluster is assigned a label based on majority vote of

the ground truth labels of the points assigned to the cluster.

The segmentation accuracy is then computed by averaging

the percentage of correctly classified data over all classes.

Figures 3(a) and 3(b) show the computation time and the

6http://vision.ucsd.edu/˜leekc/ExtYaleDatabase
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segmentation accuracy, respectively, for LRR and for DFC-

LRR with varying numbers of subproblems (i.e., values of

t). On this relatively-small data set (n = 640 faces), LRR

requires over 10 minutes to converge. DFC-LRR demon-

strates a roughly linear computational speedup as a function

of t, comparable accuracies to LRR for smaller values of t
and a quite gradual decrease in accuracy for larger t.

4.2. Graph-based Semi-Supervised Learning

Graph representations, in which samples are vertices and

weighted edges express affinity relationships between sam-

ples, are crucial in various computer vision tasks. Classical

graph construction methods separately calculate the outgo-

ing edges for each sample. This local strategy makes the

graph vulnerable to contaminated data or outliers. Recent

work in computer vision has illustrated the utility of global

graph construction strategies using graph Laplacian [9] or

matrix low-rank [32] based regularizers. L1 regularization

has also been effectively used to encourage sparse graph

construction [5, 13]. Building upon the success of global

construction methods and noting the connection between

subspace segmentation and graph construction as described

in Section 2.1, we present a novel application of the low-

rank representation methodology, relying on our DFC-LRR

algorithm to scalably yield a sparse, low-rank graph (SLR-

graph). We present a variety of results on large-scale semi-

supervised learning visual classification tasks and provide a

detailed comparison with leading baseline algorithms.

4.2.1 Benchmarking Data

We adopt the following three large-scale benchmarks:

Columbia Consumer Video (CCV) Content Detection7:

Compiled to stimulate research on recognizing highly-

diverse visual content in unconstrained videos, this dataset

consists of 9317 YouTube videos over 20 semantic cate-

gories (e.g., baseball, beach, music performance). Three

popular audio/visual features (5000-D SIFT, 5000-D STIP,

and 4000-D MFCC) are extracted.

MED12 Multimedia Event Detection: The MED12 video

corpus consists of ∼150K multimedia videos, with an av-

erage duration of 2 minutes, and is used for detecting 20

specific semantic events. For each event, 130 to 367 videos

are provided as positive examples, and the remainder of

the videos are “null” videos that do not correspond to any

event. In this work, we keep all positive examples and

sample 10K null videos, resulting in a dataset of 13, 876
videos. We extract six features from each video, first

at sampled frames and then accumulated to obtain video-

level representations. The features are either visual (1000-

D sparse-SIFT, 1000-D dense-SIFT, 1500-D color-SIFT,

7http://www.ee.columbia.edu/ln/dvmm/CCV/

5000-D STIP), audio (2000-D MFCC), or semantic features

(2659-D CLASSEME [25]).

NUS-WIDE-Lite Image Tagging: NUS-WIDE is among

the largest available image tagging benchmarks, consisting

of over 269K crawled images from Flickr that are associated

with over 5K user-provided tags. Ground-truth images are

manually provided for 81 selected concept tags. We gener-

ate a lite version by sampling 20K images. For each image,

128-D wavelet texture, 225-D block-wise LAB-based color

moments and 500-D bag of visual words are extracted, nor-

malized and finally concatenated to form a single feature

representation for the image.

4.2.2 Graph Construction Algorithms

The three graph construction schemes we evaluate are de-

scribed below. Note that we exclude other baselines (e.g.,

NNLRS [32], LLE graph [28], L1-graph [5]) due to ei-

ther scalability concerns or because prior work has already

demonstrated inferior performance relative to the SPG al-

gorithm defined below [32].

kNN-graph: We construct a nearest neighbor graph by con-

necting (via undirected edges) each vertex to its k nearest

neighbors in terms of l2 distance in the specified feature

space. Exponential weights are associated with edges, i.e.,

wij = exp
(−d2ij/σ2

)
, where dij is the distance between xi

and xj and σ is an empirically-tuned parameter [27].

SPG: Cheng et al. [5] proposed a noise-resistant L1-graph

which encourages sparse vertex connectedness, motivated

by the work of sparse representation [29]. Subsequent work,

entitled sparse probability graph (SPG) [13] enforced pos-

itive graph weights. Following the approach of [32], we

implemented a variant of SPG by solving the following op-

timization problem for each sample:

min
wx

‖x−Dxwx‖22 + α‖wx‖1, s.t. wx ≥ 0, (3)

where x is a feature representation of a sample and Dx is

the basis matrix for x constructed from its nk nearest neigh-

bors. We use an open-source tool8 to solve this non-negative

Lasso problem.

SLR-graph: Our novel graph construction method con-

tains two-steps: first LRR or DFC-LRR is performed on

the entire data set to recover the intrinsic low-rank cluster-

ing structure. We then treat the resulting low-rank coeffi-

cient matrix Z as an affinity matrix, and for sample xi, the

nk samples with largest affinities to xi are selected to form

a basis matrix and used to solve the SPG optimization de-

scribed by Problem (3). The resulting non-negative coeffi-

cients (typically sparse owing to the �1 regularization term

on wx in (3)) are used to define the graph.

8http://sparselab.stanford.edu
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Figure 4: Trade-off between computation and accuracy for the SLR-graph on the CCV dataset. (a) Wall time of LRR and

DFC-LRR with varying numbers of subproblems. (b) mAP scores for these same experiments.

Table 1: Mean average precision (mAP) (0-1) scores for

various graph construction methods. DFC-LRR-10 is per-

formed for SLR-Graph. The best mAP score for each fea-

ture is highlighted in bold.

(a) CCV

kNN-GRAPH SPG SLR-GRAPH

SIFT .2631 .3863 .3946
STIP .2011 .3036 .3227
MFCC .1420 .2129 .2085

(b) MED12

kNN-GRAPH SPG SLR-GRAPH

COLOR-SIFT .0742 .1202 .1432
DENSE-SIFT .0928 .1350 .1525
SPARSE-SIFT .0780 .1258 .1464
MFCC .0962 .1371 .1371
CLASSEME .1302 .1872 .2120
STIP .0620 .0835 .0803

(c) NUS-WIDE-Lite

kNN-GRAPH SPG SLR-GRAPH

.1080 .1003 .1179

4.2.3 Experimental Design

For each benchmarking dataset, we first construct graphs

by treating sample images/videos as vertices and using the

three algorithms outlined in Section 4.2.2 to create (sparse)

weighted edges between vertices. For fair comparison, we

use the same parameter settings, namely α = 0.05 and

nk = 500 for both SPG and SLR-graph. Moreover, we set

k = 40 for kNN-graph after tuning over the range k = 10
through k = 60.

We then use a given graph structure to perform semi-

supervised label propagation using an efficient label prop-

agation algorithm [27] that enjoys a closed-form solution

and often achieves the state-of-the-art performance. We per-

form a separate label propagation for each category in our

benchmark, i.e., we run a series of 20 binary classification

label propagation experiments for CCV/MED12 and 81 ex-

periments for NUS-WIDE-Lite. For each category, we ran-

domly select half of the samples as training points (and use

their ground truth labels for label propagation) and use the

remaining half as a test set. We repeat this process 20 times

for each category with different random splits. Finally, we

compute Mean Average Precision (mAP) based on the re-

sults on the test sets across all runs of label propagation.

4.2.4 Experimental Results

We first performed experiments using the CCV benchmark,

the smallest of our datasets, to explore the tradeoff between

computation and accuracy when using DFC-LRR as part of

our proposed SLR-graph. Figure 4(a) presents the time re-

quired to run SLR-graph with LRR versus DFC-LRR with

three different numbers of subproblems (t = 5, 10, 15),

while Figure 4(b) presents the corresponding accuracy re-

sults. The figures show that DFC-LRR performs compara-

bly to LRR for smaller values of t, and performance grad-

ually degrades for larger t. Moreover, DFC-LRR is up

to two orders of magnitude faster and achieves superlinear

speedups relative to LRR.9 Given the scalability issues of

LRR on this modest-sized dataset, along with the compara-

ble accuracy of DFC-LRR, we ran SLR-graph exclusively

with DFC-LRR (t = 10) for our two larger datasets.

Table 1 summarizes the results of our semi-supervised

learning experiments using the three graph construction

techniques defined in Section 4.2.2. The results show that

our proposed SLR-graph approach leads to significant per-

formance gains in terms of mAP across all benchmarking

datasets for the vast majority of features. These results

demonstrate the benefit of enforcing both low-rankedness

and sparsity during graph construction. Moreover, conven-

tional low-rank oriented algorithms, e.g., [32, 16] would be

computationally infeasible on our benchmarking datasets,

9We restricted the maximum number of internal LRR iterations to 500
to ensure that LRR ran to completion in less than two days.
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thus highlighting the utility of employing DFC’s divide-

and-conquer approach to generate a scalable algorithm.

5. Conclusion
Our primary goal in this work was to introduce a

provably accurate algorithm suitable for large-scale low-

rank subspace segmentation. While some contemporane-

ous work [1] also aims at scalable subspace segmenta-

tion, this method offers no guarantee of correctness. In

contrast, DFC-LRR provably preserves the theoretical re-

covery guarantees of the LRR program. Moreover, our

divide-and-conquer approach achieves empirical accuracy

comparable to state-of-the-art methods while obtaining lin-

ear to superlinear computational gains, both on standard

subspace segmentation tasks and on novel applications to

semi-supervised learning. DFC-LRR also lays the ground-

work for scaling up LRR derivatives known to offer im-

proved performance, e.g., LatLRR in the setting of stan-

dard subspace segmentation and NNLRS in the graph-based

semi-supervised learning setting. The same techniques may

prove useful in developing scalable approximations to other

convex formulations for subspace segmentation, e.g., [20].
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