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Abstract

Estimating dense 3D scene flow from stereo sequences
remains a challenging task, despite much progress in both
classical disparity and 2D optical flow estimation. To over-
come the limitations of existing techniques, we introduce
a novel model that represents the dynamic 3D scene by a
collection of planar, rigidly moving, local segments. Scene
flow estimation then amounts to jointly estimating the pixel-
to-segment assignment, and the 3D position, normal vector,
and rigid motion parameters of a plane for each segment.
The proposed energy combines an occlusion-sensitive data
term with appropriate shape, motion, and segmentation reg-
ularizers. Optimization proceeds in two stages: Starting
from an initial superpixelization, we estimate the shape and
motion parameters of all segments by assigning a proposal
from a set of moving planes. Then the pixel-to-segment as-
signment is updated, while holding the shape and motion
parameters of the moving planes fixed. We demonstrate the
benefits of our model on different real-world image sets,
including the challenging KITTI benchmark. We achieve
leading performance levels, exceeding competing 3D scene
flow methods, and even yielding better 2D motion estimates
than all tested dedicated optical flow techniques.

1. Introduction
Scene flow estimation is the task of estimating dense 3D

surface shape as well as a dense 3D motion field from two

(or more) views of a scene taken at two (or more) time

steps [20]. Applications include motion analysis and mo-

tion capture, driver assistance and autonomous navigation,

and virtual or augmented reality. The 3D scene flow gen-

eralizes two classical problems of computer vision, dense

stereo matching and dense optical flow estimation. Yet, de-

spite significant progress in both stereo [4, 9, 26] and 2D

optical flow estimation [5, 16, 17], existing 3D scene flow

techniques [e.g., 3, 10, 24] have remained quite limited in

comparison. Perhaps surprisingly, the additional informa-

tion available in stereo motion sequences has not been lever-

aged to the extent that 3D scene flow outperforms dedicated

stereo or 2D optical flow techniques at their respective task.

Much like stereo or 2D motion estimation, scene flow

estimation is ill-posed due to the 3D equivalent of the aper-

ture problem, and thus requires prior assumptions on geom-

etry and motion. Shortcomings of general-purpose regular-

ization have prompted the development of stronger priors,

e.g., encouraging locally rigid motion [22] as is common

to many scenes. This mirrors a general trend toward more

expressive priors in stereo [e.g., 4] and optical flow [12, 16].

We posit that existing 3D scene flow techniques have

been limited by the underlying representation, and propose

to model the scene as a collection of planar regions, each

undergoing a rigid motion. Following prior work in stereo

[4], we argue that most scenes of interest consist of regions

with a consistent motion pattern, into which they can be seg-

mented – at least implicitly – during scene flow estimation.

Since a larger support is required to fit a plane and its rigid

motion (9 unknowns) reliably, we base the initial estimation

not on individual pixels, but on a superpixel segmentation

of the reference image. From these segments we generate a

large number of candidate planes in 3D object space, each

with an associated rigid motion. Scene flow estimation is

then cast as a labeling problem, which assigns each pixel to

a segment and each segment to a rigidly moving 3D plane.

Although the superpixels significantly simplify and sta-

bilize the inference, they lead to inaccuracies at flow bound-

aries, since the initial segmentation does not take into ac-

count depth or motion discontinuities. We address this by

going back to the pixel level and updating the assignment of

pixels to segments, thus removing artifacts due to the super-

pixel discretization. We also show how to explicitly include

occlusion reasoning both at the segment and pixel level.

We make the following contributions: (i) We propose a

novel 3D scene flow approach based on piecewise planar,

rigidly moving regions, including regularization between

these regions as well as explicit occlusion reasoning; (ii) we

formulate an appropriate (discrete, non-submodular) energy

toward inference in this model; and (iii) report scene flow

estimates of hitherto unmatched accuracy. In experiments

on challenging, realistic data the proposed approach sub-

stantially outperforms three state-of-the-art 3D scene flow

methods. To the best of our knowledge, our method is more-

over the first to realize the theoretical advantage afforded

by the additional information from stereo sequences, and
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Figure 1. Example scene from [19]: (left) Jointly estimated 3D geometry, 3D motion vectors, and superpixel boundaries, rendered from a

slightly different viewpoint. (right) Processing steps and final result of piecewise rigid scene flow estimation. Estimated depth, the lateral

3D motion component, and the re-projected 2D flow are shown. Occlusion areas are highlighted in white.

outperforms recent dedicated stereo and optical flow algo-

rithms in challenging settings on their respective task.

2. Related Work
The term “scene flow” was coined by Vedula et al. [20],

who were among the first, if not the first, to estimate both

dense 3D geometry and a dense 3D motion field from multi-

view image data. Estimation proceeds in two independent

steps: First, 2D optical flow fields are estimated for all

views (without requiring that they must be projections of

the same 3D flow). Then a 3D flow field is fitted to them.

Wedel et al. [24] proceed the other way around. Stereo dis-

parity is precomputed for each time step; then the optical

flow for a reference view and the disparity differences for

the other view are estimated. Rabe et al. [13] integrate a

Kalman filter into this approach to yield smooth flow fields

over multiple frames. One of the limitations of these ap-

proaches is that a 2D regularizer is used, which encourages

smooth projections, and not smooth 3D scene flow.

Huguet and Devernay [10] were possibly the first to es-

timate geometry and flow in an integrated manner with a

variational formulation. Basha et al. [3] parameterize the

scene flow by depth and a 3D motion vector w.r.t. a ref-

erence view, and estimate all parameters jointly with a 3D

extension of the widely used optical flow method of Brox

et al. [5]. This approach was modified by Vogel et al. [22],

who argue that the total variation prior on the 3D motion

field is biased for realistic baselines, and instead encourage

locally rigid motion. The local rigidity assumption, which

for sparse motion estimation dates back to at least Adiv [1],

has also been used in 3D motion capture with explicit sur-

face models [e.g., 6]. Also related is the optical flow ap-

proach of Nir et al. [12], in which the flow field is (over-)

parameterized by explicitly searching for rigid motion pa-

rameters, and then encouraging their smoothness.

Valgaerts et al. [18] generalize the problem by assuming

that only the camera intrinsics, but not the relative pose are

known. In the presence of a dominant rigid motion (“back-

ground motion”) they alternatingly estimate both the rela-

tive camera pose and the scene flow.

Common to these previous approaches to 3D scene flow

is that they penalize deviations from spatial smoothness,

typically in a robust way. In the context of stereo dispar-

ity and optical flow, explicit modeling of discontinuities by

means of segmentation or layer-based formulations has a

long history [23] and has recently gained renewed atten-

tion: Bleyer et al. [4] estimate disparity by assuming the

scene to be segmented into planar superpixels and parame-

terizing their geometry. Segment-based stereo is also advo-

cated by Yamaguchi et al. [26], who additionally penalize

deviations from the (not segment-based) initialization. This

method was further extended to epipolar flow, i.e. optical

flow that enforces epipolar motion as hard constraint [27].

Sun et al. [16] estimate general 2D motion by decomposi-

tion into several layers, which enables occlusion reasoning.

Unger et al. [17] compute optical flow by parameterizing

the motion per segment with 2D affine transformations, and

also perform occlusion handling. A key difference, aside

from estimating 2D and not 3D motion, is that they do not

consider any inter-patch regularization, such that the mo-

tion fields assigned to different segments are independent

of each other. Discrete optimization based on fusion of pro-

posals has been applied before to 2D optical flow estima-

tion by Lempitsky et al. [11]. Here, such an optimization

scheme is employed for 3D scene flow.

3. Piecewise Rigid Model for 3D Scene Flow
In contrast to typical approaches to 3D scene flow, our

novel model parameterizes the scene as a collection of

piecewise planar regions, each of which moves rigidly over

time. As we show below, each region can be described using

nine parameters, which are estimated by means of energy

minimization. To that end we define an energy function that

assigns each pixel to a segment and each segment to the 3D

geometry and motion of a plane. This allows us to estimate

the 3D scene flow and depth for every pixel of a reference

view. The segmentation of the scene is only part of the in-

ternal representation and is not returned as an output.

We formulate our model for the classical case of two

consecutive image pairs acquired with a calibrated stereo
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Figure 2. (left) Data terms in the two-view case; green: homogra-

phies. (right) Illustration of the regularization scheme.

rig: Irrespective of their true configuration the two views

will be referred to as “left” and “right”, denoted with sub-

scripts l, r, while the two time steps will be denoted with

superscripts 0, 1. The scene is parameterized w.r.t. a ref-

erence frame I0l (the “left” camera at time 0). For conve-

nience of notation we assume w.o.l.g. that all (perspective)

cameras have identical intrinsics K. The reference camera

hence has the projection matrix (K|0); the projection ma-

trix of the “right” image at time 0 is written as (M|m).
Each moving 3D plane π = π(R, t,n) in the scene is

described by nine parameters: A scaled normal vector n, a

rotation matrix R, and a translation vector t. Note that since

any plane visible in the reference image cannot contain the

origin (camera center), we can denote a plane ntx = d with

normal n and distance d to the origin by the scaled normal

n := n/d. Also note that we do not (need to) assume that

the pixels belonging to each moving plane form a connected

component. Parameterizing the scene with moving planes

also conveniently allows the pixel locations assigned to each

plane to be transformed easily between images or mapped

into 3D space using the corresponding homographies.

The energy we define below is minimized in two steps:

Starting from a set of superpixels, each segment is first la-

beled as belonging to one out of a large set of rigidly moving

proposal planes, while keeping the pixel-to-segment assign-

ment fixed; then, pixels are re-assigned to the best-fitting

segment, while keeping the planar geometry and motion of

each segment fixed. Note that while the model is based on

segments, the aim here is not segmentation into semantic

objects. Rather, the segments support accurate scene flow

estimation. Over-segmentation is deliberately accepted,

both to ensure correct depth and flow estimation for non-

planar and articulated objects, and to maximize boundary

recall, even at the cost of spurious segment boundaries that

do not correspond to depth or motion discontinuities.

3.1. Model overview

Our aim is to estimate depth and a 3D scene flow vector

for each pixel of the reference frame I0l . For now we assume

that we have a finite set of possible rigidly moving proposal

planes Π = {πj} in 3D. We then search for two mappings:

A mapping S : I0l → S, which assigns each pixel p ∈ I0l
to a segment s ∈ S; and a mapping P : S → Π to assign

each segment to a rigidly moving 3D plane π ∈ Π.

We thus formulate scene flow estimation as minimizing

E(P,S) = ED(P,S) + λER(P,S) + μES(S). (1)

As is common in correspondence problems, a data termED

ensures consistency of the corresponding appearance be-

tween the four views. The regularization term ER encour-

ages piecewise smooth geometry and motion, and a bound-

ary termES additionally assesses the quality of the segmen-

tation. We now define each of the three terms in detail.

3.2. Data term

The data term models the assumption that correspond-

ing points across the four images should be similar in ap-

pearance. This amounts to a total of 4 constraints per pixel

(two stereo constraints at time steps 0 and 1, and two optical

flow constraints for the two left, respectively right images;

see Fig. 2, left). Our representation with rigidly moving 3D

planes induces homographies, which map pixels from the

reference view I0l to the remaining views:

H0
r(π) = (M−mnt)K−1 (2a)

H1
l (π) = K(R− tnt)K−1 (2b)

H1
r(π) = (MR− (

Mt+m)nt
)
K−1 (2c)

For convenience, we define H0
l (π) to be the identity that

maps the reference view onto itself, and denote the moving

3D plane of a pixel p as πp = P (S(p)). We can thus define

optical flow-induced appearance constraints across time as

Df
i =

∑
p∈I0

l

ρ
(
H0

i (πp)p,H
1
i (πp)p

)
, i ∈ {l, r} , (3)

and stereo constraints between the simultaneous views as

Ds
t =

∑
p∈I0

l

ρ
(
Ht

l(πp)p,H
t
r(πp)p

)
, t ∈ {0, 1} . (4)

The function ρ(·, ·) may simply encourage brightness con-

stancy by penalizing brightness changes, e.g. through a ro-

bust, truncated penalty. Alternative choices include the

more robust census transform [28]. The complete data term

is given as the sum of the four terms in Eqs. (3) and (4):

ED(P,S) = Ds
0 +Ds

1 +Df
l +Df

r. (5)

3.3. Shape and motion regularization

The regularization terms shall encourage piecewise

smooth 3D shape, as well as a piecewise smooth 3D motion

field. Since each segment is assigned to one rigidly moving

plane, smoothness within a segment is always satisfied; we

thus only need to consider the segment boundaries. Assume

that p and q are two adjacent pixels that are assigned to dif-

ferent moving planes πp = P(S(p)) and πq = P(S(q)).
Let us begin with the shape. To assess the regularity of

the boundary between two pixels, we consider them to be
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tiny square patches of equal area. We further assume that

the boundary shared by the two pixels in image space has

the (2D) endpoints c1 and c2. If we now project each end-

point onto each of the two 3D planes, we obtain the 3D end-

points c1p, c1q, c2p and c2q (see Fig. 2, right). Since we have

chosen p and q to lie on different planes, the pixel bound-

aries will in general not coincide in 3D space, and our goal

is to penalize the boundary distances. To that end we first

denote the vectors between the 3D endpoints as d1=c1p−c1q
and d2= c2p−c2q. Since we are using planes as primitives,

the 3D distance along the boundary is a convex combina-

tion of the endpoint distances α||d1|| + (1 − α)||d2||. In

order to take into account surface curvature as well, we not

only evaluate the distance of the endpoints themselves, but

also the distance after shifting the endpoints along the re-

spective normals np,nq. Denoting the difference of the

normals as dn = np − nq, we define a distance function

fγ(α, β) = ||α(d1 + γβdn) + (1− α)(d2 + γβdn)|| (see

Fig. 2). The weight γ balances plain boundary distance vs.

curvature. The shape regularizer is then defined as the in-

tegral of (fγ)
2 along the boundary (w.r.t. α) and along the

normal direction (w.r.t. β), which yields a closed form:

E1
R(P,S)=

∑
(p,q)∈N

wp,qψ

(
3

∫ 1

0

∫ 1

−1

fγ(α, β)
2dβdα

)
(6)

=
∑

(p,q)∈N
wp,qψ

(||d1||2+||d2||2+〈d1,d2〉+γ2||dn||2
)
.

Here, N are all neighboring pixels of the reference image

(8-neighborhood), the length of the edge between the pix-

els is given by wp,q, and ψ(·) denotes a penalty function.

Note that we can sum over all neighboring pixels, since for

adjacent pixels on the same segment fγ ≡ 0. The arbitrary

scaling factor 3 is used for mathematical convenience.

The motion field is regularized in a similar manner, by

integrating over the distances between adjacent motion vec-

tors using dm
i = Rpc

i
p + tp − cip − (Rqc

i
q + tq − ciq),

as well as the differences between the (rotated) normals

dm
n = (Rpnp − np)− (Rqnq − nq), which leads to

E2
R(P,S) = (7)∑

(p,q)∈N
wp,qψ

(||dm
1 ||2+||dm

2 ||2+〈dm
1 ,d

m
2 〉+γ2||dm

n ||2
)
.

The regularizer ER(P,S) is given as the sum of the shape

and motion regularizers. To yield the necessary robustness

against occasional discontinuities, we use truncated penal-

ties ψ(y) = min(
√
y, η) (with thresholds η1, η2).

Note that the proposed regularizer is not restricted to 3D,

since one is free to replace the distances. If 2D regulariza-

tion in the image plane is desired instead, one can mimic

the regularizer of [18] by replacing the 3D distances with

disparity differences, differences between 2D optical flow

vectors, and changes of the disparity difference over time.

3.4. Segmentation regularization

As the data term and the previous regularization term

consider not only the motion and geometry of the moving

plane assigned to each segment, but also which segment

each pixel is being assigned to, it is necessary to regular-

ize the segmentation further to encourage spatially coherent

(though not necessarily compact) segments. We employ a

segment regularization term similar in spirit to the approach

of [21], which encourages smooth segments whose bound-

aries coincide with image edges. The energy is defined as

ES(S) =
∑

(p,q)∈N ,
S(p)�=S(q)

exp
(−a|I0

l (p)−I0
l (q)|

σI(p,q)+ε

)
(8)

+
∑
p∈I0

l

{
0, ∃ e ∈ E(si) : ||e− p||∞ < NS

∞, else.

The first term is a contrast-sensitive pairwise Potts model,

which penalizes segment transitions such that transitions

that coincide with large image gradients are penalized less.

The standard deviation σI(p,q) is estimated from a 50×50
window around p,q; we set a = 10, ε = 0.01. As above,N
denotes the 8-neighborhood of each pixel. The second term

ensures that each pixel can only be assigned to those seg-

ments si, for which a seed point e ∈ E(si) is less than NS

pixels away (w.r.t. the �∞ distance); we set NS = 25. The

motivation is twofold: First, this prevents segments from

getting too large, such that the scene is not overly simpli-

fied by the assumed piecewise planarity and piecewise rigid

motion. Second, since only a subset of possible segment

assignments needs to be considered at each pixel during op-

timization, a significant speedup is achieved. The set of

seed points E(si) for a segment contains the center pixel of

the segment si in the initial superpixelization, as well as all

pixels from a regularly-spaced grid (with spacing NS) that

fell into the respective initial superpixel.

3.5. Approximate inference

We perform inference in our model by approximately

minimizing the energy from Eq. (1) w.r.t. the segmentation

S and the rigid motion of each segment, represented as the

mapping P . To bootstrap this process, we obtain an initial

segmentation S through a superpixelization of the reference

image. To that end we first minimize the segmentation en-

ergy ES from Eq. (8) alone, which amounts to the super-

pixelization approach of [21]. Seed points E on a regular

grid ensure a sufficiently fine tiling. Strongly non-convex

segments are split into (near-)convex pieces.

Next, we update depth and motion by approximately

minimizing the energy w.r.t. the segment-to-plane map P ,

assuming for now that the segmentation S is fixed to the su-

perpixelization. Since the segmentation regularization ES

does not depend on P , we only need to consider the data
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term ED and the shape and motion regularization E1,2
R . Re-

call that these regularizers can only incur penalties at seg-

ment boundaries, since neighboring pixels within a segment

will be assigned to the same moving plane, thus incur no

regularization penalty. For efficiency, we simplify the en-

ergy by computing the penalty ψ(·) in Eqs. (6) and (7) from

the endpoints of a segment boundary. Since the length of the

actual boundary can be precomputed, this is much more ef-

ficient than computing the penalty for each boundary pixel.

This approximation is reasonable, since the superpixel seg-

ments are near-convex. The optimization is performed over

a set of proposal planes with their associated motion (see

Sec. 3.6) using fusion moves [11] and QPBO [15].

Finally, we update the segmentation S assuming a fixed

P . Note that the preceding simplification cannot be applied

in this case, since the segmentation itself is updated. We

thus minimize Eq. (1) directly. This is still reasonably ef-

ficient, because the region constraint from Eq. (8) ensures

that pixels can only be assigned to a certain segment if they

lie within NS pixels from one of its seed points. Conse-

quently, optimization involves α-expansion (with QPBO)

in a local graph of at most (2NS − 1)2 nodes. Although the

energy is not submodular, unlabeled nodes rarely occur.

3.6. Proposal generation

To perform inference over the depth and motion of each

segment, we require a comprehensive proposal set of 3D

planes along with their rigid motions. We can generate

these from the output of other scene flow algorithms or by

combining the results of stereo and optical flow algorithms

(see Sec. 4.2). To that end we fit a 3D plane to each super-

pixel segment, and estimate its rigid motion from the flow

field(s). In either case, fitting must be robust to a poten-

tially large amount of outliers, caused both by inaccurate

depth and motion estimates and by superpixels not being

aligned with surface or motion boundaries. We address this

by robustly minimizing the transfer error: We first generate

an initial solution by minimizing the quadratic transfer error

using efficient algebraic methods, and then refine the rigidly

moving proposal planes by gradient descent on the robust

transfer error (Lorentzian penalty). Each locally fitted pro-

posal is considered valid for the closest ≈ 100 segments in

its spatial vicinity. Thus, fusion moves can be made effi-

cient using a partial (local) instantiation of the graph.

3.7. Occlusion handling

The data term as defined in Eq. (5) does not contain any

form of occlusion handling; every pixel is always assumed

visible. Since our scene representation is defined in 3D, it

allows for explicit occlusion reasoning. This is particularly

interesting in case of scene flow, since we have four views

of the scene (2 cameras at 2 time steps). Hence, even if a

pixel is occluded in a subset of the views, there may still be

a view pair where no occlusion takes place.

We apply occlusion handling to all view pairs for which

we formulate a data term (c.f . Eq. (5)); for the remainder we

assume that we consider one of the view pairs with its data

term,D. We apply the well-known principle of using a fixed

occlusion penalty θ, if a certain pixel p (in the reference

view) is occluded in at least one view of a pair. Since in

case of an occlusion, the corresponding pixel locations are

not related in their appearance, we do not apply the usual

data penalty from Eqs. (3) or (4). Note that we only have

to consider occlusions between pixels in different segments,

since a visible 3D plane cannot occlude itself.

To ease understanding, we describe occlusion reason-

ing directly during a fusion/expansion move of the infer-

ence procedure (Sec. 3.5), i.e. we solve a binary optimiza-

tion problem. Assume for now that the segment-to-plane

mapping P is fixed, and we update the per-pixel segmenta-

tion S. We address updating the segment-to-plane mapping

later. Let xp=0 denote that a pixel p remains in its current

segment, and xp=1 indicate that p will be switched to the

candidate segment. We can thus rewrite the data term with-

out occlusion reasoning (Sec. 3.2) as the Boolean function

D(x) =
∑

p∈I0
l

(
u0p(1− xp) + u1pxp

)
, (9)

where x is the binary vector of all pixel assignments, u0p is

the data penalty for p being in its current segment, and u1p
the data penalty for switching p to the candidate segment.

We now consider whether a pixel p is occluded or not,

which depends both on its binary segment assignment xp,

and on whether there is any other pixel q (or possibly multi-

ple pixels) that occludes p. Determining whether q leads to

an occlusion in turn depends on its segment assignment xq.

We call Oi
p the set of all pixel-assignment pairs (q, j) for

which pixel q occludes pixel p if xp = i and xq = j. Then

we replace Eq. (9) with the occlusion-sensitive data term

DO(x) =
∑
p∈I0

l

(
θ +

1∑
i=0

ûip[xp = i]
∏

(q,j)∈Oi
p

[xq �= j]
)

(10)

Here, ûip = uip − θ is the difference of the (unoccluded)

data penalty and the occlusion cost θ, and [·] denotes the

Iverson bracket. To understand this, let us consider a single

pixel p. The summand becomes û0p, if xp = 0 and the

product equals 1, which is the case if there is no pixel that

could possibly occlude p, or if all possibly occluding pixels

q are assigned a segment xq in which they do not lead to an

occlusion. The data cost for a pixel p thus equals θ in case

of an occlusion, and otherwise the standard data penalty uip.

We detect potential occlusions using z-buffering. The

per-pixel penalty may be a higher-order pseudo-Boolean

function (|Oi
p| > 1), depending on the number of possibly

occluding pixels. To facilitate applying QPBO, we reduce
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these higher-order terms to quadratic ones by introducing

auxiliary variables [2].

To update the segment-to-plane mapping P given a fixed

segmentation S , we perform inference at the segment level

for efficiency (see Sec. 3.5), i.e. by computing penalties for

entire segments. The Boolean functions for this case are the

same as in Eq. (10), but with the variables xp, xq represent-

ing segments rather than pixels. A segment is considered

occluded if its center is occluded.

4. Experiments
To give an impression of what the proposed model is ca-

pable of on realistic data, we first report qualitative results

on a street scene from [19], which is recorded from a vehicle

as it approaches a roundabout with multiple moving traffic

participants. Both the independent object motion, but also

complex occlusion patterns pose difficult challenges. Fig. 1

shows the estimated 3D scene flow (left), and the results

after various processing stages (right). The segment-based

scene reconstruction (Segment) without occlusion handling

already gives fairly plausible results in unoccluded areas,

but assigns incorrect depth and motion to regions not visi-

ble in the reference image (best seen immediately left of the

pedestrian). By adding the segment-based occlusion model

(Segment & Occlusion), the occlusion regions are properly

detected and their motion is extrapolated in a more realistic

manner. Finally, the per-pixel refinement (Per-Pixel & Oc-
clusion) visibly improves object and occlusion boundaries.

To ensure the necessary robustness, we use aggressive trun-

cation values η1 = η2 = 1 for the robust penalty, assuming

that depth and motion changes exceeding 1 world unit are

due to discontinuities. We use ρ(a, b)=min(|a−b|, ζ), i.e.

brightness constancy truncated at ζ = 10% of the intensity

range, and set λ=0.1, μ=0.1, θ=0.03, γ = 1.

4.1. Comparison with 2D scene flow

For comparison with other scene flow methods from the

literature [10, 18, 24] we consider the synthetic scene of

[10], which consists of two independently rotating hemi-

spheres in front of a plane. Our method performs slightly

better than competing ones (Table 1), even though the

dataset does not conform to our assumptions: The spheres

are not well approximated well by planar segments, and the

texture gradients do not coincide with depth/motion bound-

aries, so the initial over-segmentation is rather arbitrary.

4.2. KITTI dataset

For quantitative evaluation we test our method on two-

frame stereo pairs from the KITTI dataset [8]. The dataset

provides images (1240 × 376 pixels) recorded with a cali-

brated stereo rig on a car, for benchmarking of optical flow

and stereo algorithms in the context of automotive applica-

tions. Semi-dense ground truth data was acquired by a laser

[18] [10] [24] Ours

RMSE 2D Flow 0.63 0.69 0.77 0.63
RMSE Disparity 3.8 3.8 10.9 2.84
RMSE Scene Flow 1.76 2.51 2.55 1.73

Table 1. 2D errors for the “sphere” sequence [10].

scanner attached to the car. Having stereo pairs from con-

secutive video frames, the dataset also fulfills the require-

ments for scene flow estimation (see Fig. 3 for examples).

We use the training portion of the dataset for detailed quan-

titative analysis, and the test portion (non-public ground

truth) to compare to the state of the art.

The KITTI dataset provides a very challenging testbed

for today’s stereo, optical flow and scene flow algorithms:

First, pixel displacements in the data set are large in general,

exceeding 150 pixels for stereo and 250 pixels for optical

flow. Second, the images exhibit strongly varying lighting

conditions and many non-Lambertian surfaces, especially

translucent windows and specular glass and metal surfaces.

Third, the high speed of the forward motion creates large

regions on the image boundaries that move out of the field

of view between frames, such that no correspondence can

be established. To identify these areas one might use the

vehicles’ ego-motion, which is not available, however.

Appearance modeling. We address the challenging light-

ing conditions using the census transform [28] over a 7×7
neighborhood to measure the data fidelity ρ, which has been

shown to cope well with complex outdoor lighting [14]. In

detail, we scale the Hamming distances by 1/24 for the cen-

sus data term, see [28], and set λ = 10μ, γ = 1, κ = 1.05.

The parameters are fixed for all image sets.

Visibility. To cope with areas that are out of bounds, i.e.

not visible in all four images, we let the stereo and 2D flow

algorithms from the proposal generator predict which pix-

els are out-of-bounds and encourage the scene flow estimate

to stay near that prediction. Let V 1
l , V 0

r and V 1
r be the pre-

dicted binary visibility masks for all but the reference image

(out-of-bounds: 0, pixel visible: 1), and further let Γj
i [·] be

a binary function that determines whether its argument lies

within the boundaries of image Iji . To penalize deviations

from the predicted visibility, we add an energy term

EV(P,S) = κ
∑
p∈I0

l

∣∣V 0
r (p)− Γ0

r

[
H0

r(πp)p
]∣∣+ (11)

∣∣V 1
l (p)− Γ1

l

[
H1

l (πp)p
]∣∣+ ∣∣V 1

r (p)− Γ1
r

[
H1

r(πp)p
]∣∣ .

Evaluation. In Table 2 we compare the average errors on

the KITTI training set. Because of the uncertainty in the

LiDAR data, the ground truth is not directly suited to assess

sub-pixel accuracy. Therefore, the recommended error met-

ric is to threshold the deviations from ground truth with a

range of inlier/outlier thresholds, Z, and count the fraction

of outliers for each Z. Note that the benchmark is biased to-

wards methods that focus on the dominant background, be-
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Figure 3. Example results from the KITTI benchmark. (left) input images; (middle) disparity w.r.t. reference frame; (right) flow reprojected

to the reference image. We use the color scheme of the benchmark. See text for details.

cause independently moving objects usually have no ground

truth points. Nonetheless, we believe that this dataset is bet-

ter suited for scene flow evaluation than the very limited,

synthetic datasets used before [e.g., 10, 22]. Following the

KITTI protocol, we distinguish between an evaluation on

all pixels (All) and only on unoccluded pixels (Noc), and

report results for error thresholds of 2, 3, 4 and 5 pixels.

As baselines we use our implementations of three meth-

ods: L1-regularized 3D scene flow (LSF, [3]); locally rigid

3D scene flow (Rig, [22]); and independently derived 2D

stereo (semi-global matching [9]) and optical flow (census

data term, total generalized variation [25] regularization),

indicated by (S+F). At time of writing the results of the 2D

baseline rank 13th in both stereo and optical flow among

published methods in the official KITTI ranking. Our base-

line implementations are on par with the published bench-

mark results, suggesting that they match the state of the art.

We quantitatively evaluate the individual steps of our ap-

proach, as well as different variants: First, we report results

only based on superpixels (PRSSeg) and after per-pixel re-

finement (PRSPix). Second, we compare regularization in

the image (-2D, with η1 = η2 = 20 and μ= 1/30) and 3D

regularization (-3D, with η1=η2=2.5 and μ=0.2). We use

less aggressive truncation thresholds here, since the lighting

conditions are more challenging than in Fig. 1. Third, we

include results with occlusion modeling (-O) and without.

Finally, we distinguish the use of various proposal sets: All

experiments default to proposals from the stereo and flow-

derived 2D baseline technique (S+F). The suffix (+R) de-

notes that a proposal set composed from locally rigid scene

flow (Rig, [22]) is additionally used. Finally, we optionally

make use of egomotion proposals (+E), by estimating the

dominant 3D motion using our proposal fitting technique on

the 2D baseline output. In contrast to [27] we do not make

any hard assumptions about the scene, or prefer epipolar

motion in the energy. Rather, epipolar motion is one of sev-

eral proposal solutions, which are used to minimize an en-

ergy that can cope with general, non-epipolar motion.

From the results in Table 2 we first observe that the per-

pixel refinement (PRSPix) improves results significantly in

all measures, on average by 9% to 15%. 2D and 3D regular-

ization lead to rather similar results, possibly explained by

the fact that the evaluation does not have ground truth for

3D scene flow, but only for disparity and 2D optical flow.

We thus mostly rely on the 2D regularizer, and note that

better 3D benchmarks are needed for quantitative evalua-

tion of 3D scene flow methods. Additional occlusion rea-

soning (-O) improves the results, especially for motion esti-

mates in occluded areas, but performance in the stereo case

slightly decreases. While occlusion reasoning has a posi-

tive overall effect on the accuracy, the effect is somewhat

limited here (unlike Fig. 1) due to the limited amount of

independent motion in KITTI. Like any proposal-based op-

timization technique [e.g., 4, 11], the quality of the propos-

als is of some importance. Still, already the 2D proposal

set from S+F alone is sufficient to surpass all our base-

lines by a large margin, including two recent 3D scene flow

techniques [3, 22], on average by 33%. Incorporating ad-

ditional proposals, the average improvement becomes 38%

(PRSPix-2D+R) and 44% (PRSPix-2D+R+E).

We have evaluated our model on the official KITTI

benchmark. On a dual-core Intel i7 machine and for one

KITTI scene, our current implementation takes ≈ 12s for

fitting 2 proposal sets and 2000 segments, ≈ 32s for per-

segment optimization and≈ 18s for per-pixel optimization.

The data term is the bottleneck. At time of writing our

method (PRSPix-2D+R+E) ranks 1st out of 28 published

approaches for optical flow in all measures, and 3rd out of 25

published methods in stereo, while (PRSPix-2D) ranked 3th

and 5th respectively. Similar performance is only achieved

by [27], which can only handle epipolar motion. Our ap-

proach, in contrast, can cope with independent object mo-

tion (see Fig. 1). Moreover, it strongly outperforms another

3D scene flow technique [7], even on its semi-dense output.

Finally, even the best general 2D optical flow method is sur-

passed. To the best of our knowledge, this is the first scene

flow method to outperform optical flow algorithms w.r.t. re-

projection error on a benchmark set, and thus realize the ad-

vantage stemming from the additional stereo information.

5. Conclusion
We have shown that modeling a dynamic scene with lo-

cal regions corresponding to rigidly moving planes can lead

to compelling results for the task of joint geometry and 3D
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FLOW (All) FLOW (Noc) STEREO(All) STEREO (Noc)

Error threshold Z 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

LSF [3] 21.6 16.9 14.3 12.7 16.0 12.0 10.0 8.8 17.6 12.0 9.0 7.2 16.4 10.8 8.0 6.3

Rig [22] 16.1 12.1 10.1 8.8 10.6 7.3 5.7 4.8 15.0 10.6 8.3 6.8 13.7 9.5 7.2 5.8

2D [9, 25] 18.9 15.0 12.8 11.3 11.0 7.9 6.5 5.7 13.5 9.9 8.0 6.7 12.3 8.9 7.0 5.8

PRSSeg-3D 13.8 10.1 8.2 7.1 8.4 5.6 4.5 3.9 9.4 6.8 5.4 4.6 8.4 6.0 4.8 4.0

PRSPix-3D 12.8 9.3 7.6 6.6 7.2 4.7 3.7 3.2 8.1 5.8 4.6 3.9 7.1 5.0 4.0 3.3

PRSSeg-2D 12.4 9.0 7.3 6.4 7.4 5.0 3.9 3.4 8.9 6.4 5.1 4.3 7.9 5.6 4.4 3.7

PRSPix-2D 11.8 8.5 6.9 6.0 6.9 4.5 3.5 3.0 8.3 5.9 4.7 3.9 7.3 5.1 4.0 3.3

PRSPix-O-2D 11.2 7.7 5.9 5.1 6.8 4.4 3.3 2.8 8.3 5.9 4.7 4.0 7.4 5.2 4.1 3.4

PRSPix-2D+R 10.9 7.6 6.0 5.1 6.3 4.1 3.1 2.7 7.9 5.7 4.5 3.8 6.9 4.8 3.8 3.2

PRSPix-2D+R+E 10.0 6.7 5.0 4.1 5.8 3.6 2.7 2.2 7.4 5.3 4.2 3.5 6.4 4.5 3.6 3.0

Table 2. Average error rates for the KITTI training set. Error given as the percentage of erroneous pixels (deviation to ground truth above

threshold of Z pixels) in non-occluded areas (Noc) and over the full image (All).

motion estimation. The proposed model achieves accurate

geometry and motion boundaries by refining an initial over-

segmentation of the scene, and allows for occlusion reason-

ing. We show that our method substantially outperforms

previous dense scene flow approaches on a challenging data

set, and even surpasses dedicated state-of-the-art stereo and

optical flow techniques at their respective task. Its main lim-

itation are scenes with strongly non-rigid motion or extreme

curvature, where the piecewise planar and rigid approxima-

tion does not hold. In practice such scenes are quite rare.

In future work we plan to extend our method to se-

quences of more than two frames, which we believe our

formulation is well-suited for. Another interesting avenue

would be to embed object-level semantic image understand-

ing into the segmentation scheme.
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