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Abstract

Recognizing the events and objects in the video sequence
are two challenging tasks due to the complex temporal
structures and the large appearance variations. In this
paper, we propose a 4D human-object interaction mod-
el, where the two tasks jointly boost each other. Our
human-object interaction is defined in 4D space: i) the co-
occurrence and geometric constraints of human pose and
object in 3D space; ii) the sub-events transition and object-
s coherence in 1D temporal dimension. We represent the
structure of events, sub-events and objects in a hierarchi-
cal graph. For an input RGB-depth video, we design a dy-
namic programming beam search algorithm to: i) segment
the video, ii) recognize the events, and iii) detect the ob-
Jects simultaneously. For evaluation, we built a large-scale
multiview 3D event dataset which contains 3815 video se-
quences and 383,036 RGBD frames captured by the Kinect
cameras. The experiment results on this dataset show the
effectiveness of our method.

1. Introduction

The past decade has seen remarkable progress in even-

s complex temporal structures. It can be decomposed into
several sequential sub-events or atomic events in the tempo-
ral domain [12]. In addition to recognizing the entire event,
modeling and recognizing these atomic events are also im-
portant, especially in the real applications, like predicting
agent’s goal and intention in actions [12].

The man-made indoor objects are always involved in the
human action. It is usually hard to recognize and local-
ize them by appearance, due to the motion and occlusion
caused by human action. Actually, the man-made indoor
objects are mainly defined by function rather than appear-
ance, like the cellphone for making a call. A cellphone is a
cellphone because of its ability to allow the agent to perform
the action make a call. This ability is known as affordance
[B] 4. 25]. When someone is making a call, it is hard to de-
tect the occluded cellphone in the hand. But we can reason-
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ably predict that there is a cellphone in the hand according
to the action. This is like a ‘pantomime’. When someone
is performing actions in a scene, even if without seeing the
objects themselves, we can guess and predict the classes,
locations, and even the sizes of the objects, according to the
actions. Furthermore, in the progress of an event, the loca-
tion of an object is coherent. For example, in the event fetch
water from dispenser, the dispenser almost stays still, and
the mug smoothly moves with the hand.

An event is a sequence of time-varying interactions be-
tween human and objects with hierarchical structures in 3D
spatial domain and 1D temporal domain.

In this paper, we propose a 4D human-object interaction
model (4DHOI) for event recognition and object detection.
The framework is shown in Figufd 1. The human-object in-
teraction relation is embedded in 4D space: i) the semantic
co-occurrence and geometric compatibility of human pose
and object in 3D spatial domain; ii) the atomic event tran-
sition and object coherence in 1D temporal domain. We
model the 4D human-object interaction with a hierarchical
graph, as Figufe] 2 shows. An event is decomposed into
several sequential atomic events. The atomic event is de-
composed into human pose and objects.

Given the RGBD video and the human pose from the
Kinect camera [18], we design an online dynamic pro-
gramming beam search algorithm to segment the video,
recognize the events, and detect the objects in each video
frame. In each frame, the human pose predicts possible ob-
ject classes and their 3D locations where the objects are
searched. The possible interpretations to this frame are
jointly proposed according to the human pose, the object-
s, and the 3D spatial relations between them. The temporal
relations between frames are incorporated to optimize those
proposals for each frame. In this way, the algorithm gener-
ates the hierarchical event interpretation and correspondent
object labeling. This framework is illustrated by Figufd 1.

Dataset. To evaluate our method, we built a large-
scale 3D event dataset with human-object interactions. It is
captured by three stationary Kinect cameras from differen-
t viewpoints simultaneously. It includes 8 event categories
and 11 interacting object classes. It has totally 3815 even-
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Figure 1. The framework of our 4DHOI model.

t video sequences and 383,036 RGBD frames. Each event
category includes about 477 video sequence instances. We
test our model on this dataset and the experiment result
demonstrates the strength of our model.

1.1. Related Work

Human-object Context. In recent years, many work ap-
plied the human-object mutual context to event and object
recognition [2) 5] 7! 9, I, 14,15, 28, 24]. Gupta et al.|[5)]
combined the spatial and functional constraint between hu-
man and objects to recognize action and object. Yao and
Fei-Féi[24] modeled the relations between actions, objects,
and poses in still image for detecting objects. These work
define the human-object interaction in 2D image. Such con-
textual cues are often compromised due to their sensitivity
to viewpoint changes and temporal variations.

Koppula er al 7] used Markov random field to model
the relations between human activity and object affordance,
as well as their changes over time. This method needs the
video to be pre-segmented, and all the relations are defined
between these small segments. Such strategy makes it hard
to understand the contents of object and human action in
each frame. And it detects and tracks objects independen-
t of the contextual feedback from human action. Different
from it, our model defines the relations within each frame
or between frames. And our model incorporates the object
detection, tracking, and human action modeling into a uni-
fied framework, under which these tasks mutually facilitate
each other.

Event Recognition. Event is usually recognized by
combining the human body features and the temporal re-
lation$ [8. 10, 12. 17.719. 22]. Some work [10, 22] took
the event recognition as a classification problem. They rep-
resented the pre-segmented video as a feature vector, and
classified it to an event category. Such methods are advan-
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tageous in the computation efficiency. But they can not in-
terpret the inner structure of the video, like the actions and
objects in each frame. Also, they are ineffective in real ap-
plications like video surveillance. In addition to event clas-
sification, our model can segment the video, recognize the
atomic events and objects in each frame.

Temporal Structure of Event. The hidden Markov
model [16] is usually used to model the transition between
video frame state5[8]. Tang et al. [20] introduced duration
variables to the HMM and modeled them with multinomial
distribution. Sung et all T19] decomposed the human ac-
tivity into sub-activities and model the hierarchical struc-
ture with maximum entropy Markov model. They solved
this model by graph structure selection in the dynamic pro-
gramming framework. However, this work do not consider
the object interactions and the duration of the sub-activity.
Pei et al. [12] represented an action with several atomic ac-
tions and employed a temporal filter embedded in an And-or
graph for video parsing. Inspired by these work, our mod-
el integrates human action, object, and their 4D interaction
relations into a unified framework.

2. Hierarchical Graph Model of Event

In the 1D temporal domain, an event is decomposed in-
to multiple ordered smaller atomic events. For example,
the event fetch water from dispenser in Figufd 2 is decom-
posed into three sequential atomic events - approach the
dispenser, fetch water, and leave the dispenser.

In the 3D spatial domain, each atomic event is decom-
posed into human pose, interacting objects, and the geo-
metric relations between them. An atomic event integrates
a specific type of human pose and one or more objects. The
semantic relation between the object class and a specific
atomic event is a hard constraint. For example, the atomic
event fetch water consists of the pose fetch and the objects
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dispenser, mug, as is shown in Figufd 2.

Suppose V' = (I, ..., I,.) is an event video sequence in
the time interval [1, 7], where I; is the RGBD frame at time
t. The sequence V is interpreted by a hierarchical graph
G=<E,L>:

) E e A={eli=1,..,|A|}is the event category like
fetch water from dispenser. A is the set of event categories.

i) L = (ly,...,1;) is a sequence of frame labels. [, =
(h¢, 04, at) is the interpretation to the frame I;. h; is the
human pose. o; = (o}, ...,0}'") are the objects interacting
with human, where n; is the number of objects. Each object
includes the attributes of class label and 3D location.

a; € Qp = {w;li =1, ..., Kg} is the atomic event class
like fetch water. Qg is the atomic event set of E. Each
event category e; has its own distinct atomic event set 2.,
i.e. the relations between an event and its atomic events are
hard constraints.

The energy that the video V is interpreted by graph G is
defined as

En(GIV) = > (L 1) + > W(le-1,l) (1)
t=1 t=2

®(+) is the spatial energy term of single frame. It encodes
the human-object interactions in 3D spatial domain.

U(-) is the temporal energy term of multiple frames. It
encodes the temporal relations between frames in 1D tem-
poral domain. l;.;_; are the labels of all the frames from the
time 1 to t — 1. Here, [; is not only related to the neighbor
l;—1, but also related to all the previous frame labels, which
is different from the traditional hidden Markov model. Be-
cause each event has its own distinct atomic event set, we
omit the variable E in the right side of Ef] 1.

2.1. Human-object Interactions in 3D Space

®(1;,1;) describes the human-object interactions in 3D
spatial domain, which includes the semantic co-occurrence
and geometric compatibility. = Semantic co-occurrence
means a specific type of human pose and some object class-
es appear together in an atomic event. Geometric compati-
bility describes the spatial constraint between human body
and objects in 3D space.

D O atomic event
8
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We define ®(I;,1;) as:

O(I,1y) = ¢1(as, he) + pa(a, 01, It) + p3(az, hy, 04)
()

Pose Model. ¢;(a¢, h;) is the human pose model. The
human pose with 20 3D joints are estimated by the Kinect
[18]. To normalize the data, we align all the skeletons to
a reference pose so that the torso and shoulder of all poses
have the same location, size, and direction.

The feature of each joint is defined as the 3D coordinate
concatenating the motion vector which is the difference of
joint coordinates in two successive frames. We extract a
feature vector containing the features of joints on arms and
apply the PCA to the feature vector to reduce the correla-
tion and noise. h; is the vector of the PC parameters. We
assume that h; follows a Gaussian distribution, and then
o1(at, he) = —In N(he; pa, , Xa, )» Where pi,, is the mean
and ,, is the covariance.

Object Model. ¢ (ay, 04, 1;) is the object detection
model. Suppose 2} is the 3D bounding box center of the
object 0! in the 3D space. The 3D box is projected into
the RGB and depth images to form 2D bounding box, in
which the RGB and depth HOG features [l 6] are extract-
ed. The probability of object o} at z{ is obtained by nor-
malizing the SVM detector with Platt scaling p(o%|z})
1/{1 + exp{us(z}) + v} F1b.13], where s(z}) is the score
of linear SVM object detector with the RGBD HOG fea-
tures at location z¢. ¢2(ay¢, oy, I) is formulated as

bafaron ) == 3 ploils)  O)
where n, is the number of objects. Dividing the energy by
n; is to offset the influence of different object number.

We use a sliding window detection strategy to search the
objects. But different from [[L] 6] where the sliding window
is defined on the 2D image plane, we slide the 3D window
box in the 3D space where the point cloud is not empty. We
then project the 3D window into the 2D image to extract the
appearance feature, as Figyrp1l shows. Since the instances
of the same object class usually have similar sizes in 3D
space, we define a prior 3D size for each object class.

Our model defines object location and scale in the 3D
space, and appearance in the 2D image, which are more
robust to the viewpoint and scale changes. It also provides
a natural way to define human-object relations in 3D space.

3D Geometric Compatibility. ¢s(ay, b, 0;) measures
the human-object geometric relations. As Figufg 3 shows,
the geometric relation in 2D image is not applicable in dif-
ferent viewpoints. We model this relation in 3D space.

In an atomic event, the location of an object is closely
related to the locations and directions of some body parts,
which we call the key parts, as the arm to the dispenser in
Figu@ 3. Suppose y,; is the difference vector from the key
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Figure 3. Human-object geometric relation in 3D space.

parts center to the object bounding box center. z,; is the d-
ifference vector between the end points of the key parts. yoi
is closely related to ;. We define 7,; = y,;i — W“-‘x ;

where W‘” is a 51m11ar1ty transformation matrix. We as-

sume 1) follows the Gaussian distribution. The 3D geo-
metric relation is modeled as:

-3

is the mean and ER

¢ (atvhtaot lnN not7ﬂ’o ,ag) Ot af) (4)

where /J ar is the covariance. The

superscrlpt Risa sign which is used to differentiate the
3D relation Gaussian parameters from others. The subscript
(o}, a;) indicates that the human-object geometric relation
varies in different atomic events and objects.

The key body parts vector x,; is like a local reference
system, by which we can estimate y,;, and therefore predict
the locations of related objects.

2.2. Temporal Relation

The temporal relation ¥ (l1.;—1, ;) is decomposed as

U(lig—1,l) = Y1(are—1,a) + Y2(0i—1,0:)  (5)

where a1.;_1 are the atomic event labels of the frames from
the time 1 to ¢ — 1 . The first term encodes the atomic event
transition, and the second term encodes the object tracking.

Atomic Event Transition. In an event, the transition
probability from the current atomic event to the next atom-
ic event is related to the duration of current atomic event.
We propose to model the time-varying transition probabili-
ty with the logistic sigmoid function.

Suppose wy,—1 and wy, are two neighboring atomic events
of event £. Given F and a;_1 = wp_1, the next frame’s
atomic event a; can be w1 (repeat the same atomic event)
or wy, (start a new atomic event). dj_1 is the continuous du-
ration of wy_1 up to time ¢ — 1 . The time-varying transition
probability p(a; = wglai—1 = wg_1,dk—1) is modeled as:

plas = wilag—1 = wi—1,di—1) = o(Bdr—1+7) (6)
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o(v) = 1/(1 + e™") is the logistic sigmoid function. 3
and ~ are the function parameters. We simplify p(a;
wk|at_1 = wk_l,dk_l) as p(wk|wk_1,dk_1). The tran-
sition probability to wi_1 is p(wg—_1|wk—1,dk—1) = 1 —
p(wg|wk—1,dk—1). Then 1(aj.t—1,as) is modeled as
—Inp(wg|wr—1,dr—1) or —Inp(wi_1|wr—1,dx—1), up to
the value of a;.

Figufe| 4 shows two kinds of transition probability. To

the duration-dependent transition, at the preliminary stage
of approach the dispenser when the hand is still far from
the dispenser, the probability of transition from approach
the dispenser to approach the dispenser is much larger than
the possibility to the next atomic event fetch water, as the
interval 1 in Figufe| 4 (a). If approach the dispenser has
been lasting a long time, as in the interval 3, then the prob-
ability of transition to approach the dispenser will be much
smaller than the probability to fetch water. In interval 2,
the transition choice is indeterminate. The interval 1 and
3 describe the common duration distribution of the atom-
ic event, and the interval 2 reflects the variance. To the
duration-independent transition, the probability is constant
regardless of the duration, as Figufd 4 (b) shows.
Object tracking. ,(0;—1,0;) describes the object loca-
tion tracking. In an event, the locations of some objects like
dispenser are rare to be changed. Some objects like mug
can move when human action is applied. To the moveable
objects, we assume the location follows a Gaussian distri-
bution p(zi|zf_,) = N(z — Zﬁﬂﬂf@ya“ 2% ). To the
non-movable objects, we set a hard threshold. If the differ-
ence of proposed location in the current frame and the last
frame is smaller than the threshold, p(z¢|zi_,) is 1, other-
wise 0. The tracking energy is

1 il
a(04—1,0¢) = _Tlit lenp(ztptfl) @)

2.3. Learning Atomic Events

We use the manually labeled video sequences (detailed
in section 4.1) of event category F to learn its atomic events.
Each sequence contains one instance of the event £ from
the beginning to the end. First, we use EM algorithm to
cluster the pose feature and time order in all video frames
of E so that each sequence is grouped into Kz segments.



mug bOOK\/

moni%hair
@nous {
b

@

phone?
© @
monitor chair
@ j mug
fl
keyboaro) ) dispenser|
desk @ @

@ drink with mug
® type on keyboard (§) fetch water

desk

kettle

button

@
@ call with cellphone (3) read book (4) use mouse
@ pour water press button

Figure 5. Some samples of the learned atomic events.

Based on the Kp segments, we can obtain Kg atomic
events for . The pose model of the kth atomic event is the
kth component of the mixture Gaussian. The co-occurrence
object categories in all the frames of the k-th segment are
set as the interacting object classes for the kth atomic even-
t. The parameters of the 3D geometric compatibility model
(EE](4)) are learned using maximum-likelihood estimation
with samples of the kth segment. Figufd 5 shows some sam-
ples of the learned atomic events.

3. Inference

Given a video V in the time interval A = [1,T] which
contains multiple events, the goal of inference is to inter-
pret it with a graph list G = (G1,Ga,...,Gg). G, is
the graph interpretation of video clip V,, in the time inter-
val A,4, which satisfies UqQ:1 Ag = A and ﬂqul Ny = 2.
With graph list G, V is segmented into multiple video
clips V. = (V4, V3, ..., V). The posterior probability is
p(G|V) = Hqul p(G4|Vy). The energy that the video V is
interpreted by the graph list G is

EGIV) = 37 En(GylV,) ®

g=1 qlVq
En(G,|V,) is the energy of each video clip, as defined in
Eq.|(1). The most likely interpretation to V is computed as

G* = argmin £(G|V) )

3.1. Dynamic Programming Beam Search

The general framework to solve EqJ9) includes three
procedures: i) in each frame, detect objects by sliding the
window in 3D space and produce multiple hypothesized ob-
ject detections; ii) propose multiple possible interpretations
to this frame according to the human pose feature, the object
detection, and the 3D spatial relations between them; iii) the
temporal relations between frames are applied to optimize
these proposals, and finally output the hierarchical interpre-
tations to the video sequence. However, it is impossible to
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search the entire solution space of optimization because it
has an exponential complexity of the video length.

We use a dynamic programming beam search algorithm
(DPBS) to solve Eq[9). The DPBS was previously used
in the machine language translation [21]. We extend it to
the video interpretation and exploit the characteristic of the
event graph structure to accelerate the computation. The
general idea is that based on the interpretations to the past
video frames, we compute all the interpretations to the cur-
rent frame. Then we keep part of all the current interpre-
tations with the highest probabilities. This process iterates
forward frame by frame until the video sequence ends. The
DPBS is illustrated in Figufd 6.

Suppose G} ;,...,G/ ; are J possible interpretation
graph lists to the video sequence in the time interval [1,¢ —
1], with the energy &} 1, ...,/ ;. They are shown as the
paths from time 1 to ¢ — 1 in Figufe] 6. We now want to
compute an interpretation to the current frame at ¢, based
on one of the J paths, like the jth path (the green path in
Figufd 6). Suppose a;_1 and a; are the atomic event labels
of frame I;_; and I, respectively. Given the jth path Gifl,
there are three types of interpretation to the current frame I,
(shown in the right side of Figufd 6):

1) a; repeats the same atomic event with a;_1;
2) a; is the next atomic event of a;_ in the same event;
3) a; is the atomic event of a new event.

In the third case, a; can be any atomic event in the given
set, which makes our model able to handle the cases of event
insertion, interruption, and repetition.

‘We append all the possible values of the node a; to
G7_, according to the three types of interpretations, which
generates m; new graph lists G} (G7_,), ..., G{" (G7_,).
Their energy is 5g71 + ®(I4, 1) + V(l1.4—1,1;). For all
G;_,,...,G/ |, we obtain m; +...+m possible solution-
s. We keep J solutions G, ..., G/ with the lowest energies
EL,...,&/ as the interpretations to the video in the interval
[1,¢]. Figufe| 6 illustrates the algorithm with a simplified
example.

Our DPBS algorithm is an online algorithm. It interprets
each frame from the beginning of the video to the end. Ad-
ditional to recognize the event and the atomic event, it also
detect and label the objects in each frame.

4. Experiment
4.1. Multiview 3D Event Dataset

To evaluate our algorithm, we collect a large-scale mul-
tiview 3D event dataset. The dataset is captured using three
stationary Kinect cameras simultaneously at different view-
points around the human, which records the RGB, depth,
and 3D human pose for each video frame. The events are
performed by about 8 subjects in the natural indoor scenes,
like hallway and library. Each subject repeats an event for
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Subject MV | 3D SN | ASN | AVL
CMUHOI[5] 54 9 110
MSRA3DI[22] v 567 28 42
Our Dataset v v | 3815 | 477 100

Table 1. Dataset comparison. MV: multiview; SN: the number
of total video sequences; ASN: the average number of sequences
for each event category; AVL: the average length (frames) of each

video sequence.

Event MT | HMM | 4DH | 4DHOI
drink with mug 0.51 | 0.62 | 0.72 | 0.83
call with cellphone 032 | 041 | 043 | 046
read book 0.83 | 0.73 | 0.93 0.95
use mouse 0.84 | 0.87 | 0.96 0.88
type on keyboard 0.77 | 0.89 | 096 | 0.97
fetch water from dispenser | .82 0.76 0.90 0.93
pour water from kettle 0.68 | 0.67 | 0.89 1.00
press button 0.73 | 099 | 097 | 090
Overall 0.69 | 0.74 | 0.85 0.87

Table 2. Event recognition accuracy comparison.

about 20 times independently with different object instances
and various styles. Our dataset includes 8 event categories:
drink with mug, call with cellphone, read book, use mouse,
type on keyboard, fetch water from dispenser, pour water
from kettle, and press button, which involve 11 object class-
es: mug, cellphone, book, mouse, keyboard, dispenser; ket-
tle, button, monitor, chair, and desk.

To label the video, we manually cut the original long
videos into short sequences that each sequence contains one
event from the beginning to the end. Totally, our labeled
dataset contains 3815 event video sequences and 383,036
RGBD frames. Each event category has about 477 sequence
instances on the average.

Our dataset has several characteristics which make it
challenging. First, our data is multiview. We use three cam-
eras to capture the video. But due to the various styles of
actor’s action, the viewpoint of each event is much larger
than three. Second, our event involves various objects and
has complex temporal structures. Finally, our dataset has
large variety due to the various styles of each actor to per-
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Figure 7. Confusion matrix of 4DH and 4DHOI.

form an event. Tab[d 1 gives the comparison of our dataset
with two typical human-object interaction event datasets.

4.2. Event Recognition

Event recognition is to predict an event label for each
video sequence which contains one event from the begin-
ning to the end. To label the sequence, in the inference, we
set ) = 1 and use the dynamic programming beam search
algorithm to compute its graph interpretation. The root of
the graph is its event label.

We use two classical event recognition method as base-
lines - motion template (MT)_[10] and traditional hidden
Markov model (HMM) [16]. Similar to our pose model in
Section 2, we use the 3D joint points on the arms as the in-
put frame feature for the MT and HMM methods. All the
original data is aligned with the same method as our mod-
el. We also compute the recognition accuracy of the 4DH
method, which is the same algorithm as the 4DHOI except
that it only uses the human pose information as input and
omits the information of object interaction.

Tabgl 2 shows that the performance of our model is bet-
ter than other three methods. It outperform other methods
in 6 categories of all 8 event categories, and improves the
overall accuracy greatly, which demonstrates the strength
of our method.
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Figufe| 7 shows the confusion matrix of 4DH and 4D-
HOI. The comparison between 4DH and 4DHOI demon-
strates the effect of human-object interaction on even-
t recognition. For example, the human body movement in
the event drink with mug and call with cellphone are highly
similar. It is hard to distinguish them only by the human
pose information. Incorporating the object information of
mug and cellphone, the two events are better distinguished.
Consider another event - pour water from kettle, it is com-
plex in the temporal structure and human body movement
because it involves the movement of both two arms and the
coordination between the two arms. The object kettle has
distinct appearance and only exists in the event pour water
from kettle, which makes it provide strong support to this
event. So when incorporating the information of kettle, the
performance is significantly improved.

4.3. Sequence Segmentation

Sequence segmentation is to segment a long video se-
quence into coherent clips that each clip contains one event.
Simultaneously segmenting a sequence and recognizing the
events is a challenging problem. Our inference algorith-
m can interpret the current frame as a new event. The new
event interpretation segments the video into clips which cor-
respond to different events.

We use 10 unsegmented long event sequences to test the
segmentation. Each sequence contains multiple events. Our
segmentation data is challenging because many of the high-
ly similar events successively occur in one sequence, and
some events occur many times in one sequence.

We compare our 4DH model with the nearest neighbor
classification (NN), which recognizes each frame indepen-
dently without temporal context. We evaluate the accuracy
in terms of frames compared to the ground truth. The accu-
racy of our 4DH is 0.783, and the accuracy of NN is 0.641.
Figufd 8 visualizes some segmentation results. Recognizing
each frame independently produces many small incoherent
clips, as the NN method shown in the Figufd 8. Our 4DH in-
corporates the prior temporal structures of the events, which

cellphone|
use
keyboard

Object g

RDH 65 23 24 | 51 92 81 39 | 77

2 3| 2| chair
©
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)
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HOG 59 | 21 18 | 25 | 44 | 89 | 84 | 41 82
48
61

4DHOI | 72 | 47 41 75 | 93 85 69 | 86

Table 3. Object localization accuracy (%).
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Figure 9. Object recognition and localization. (a) Ground truth.
(b) HOG. (c) RDH. (d) Our 4DHOL. The results of RDH are vi-
sualized by projecting the areas on the depth images into the 3D
point cloud.

provide the contextual and duration information among suc-
cessive frames. So it produces coherent segmentation and
achieves better performance than NN.

4.4. Object Recognition and Localization

In video, object recognition is to determine the objec-
t class, which is related to the event recognition since the
connection between object class and event category is hard
constraint. So in this section, we mainly focus on the object
localization. Different from the previous work which only
localized objects in one video frame, or just recognized the
pre-detected object motion, we localize the object in each
video frame of the 3D point cloud (with it, the 2D location
on image is available by projection). In each RGB frame,
an object localization box is considered correct if it overlaps
more than 0.5 with ground truth bounding box. The local-
ization accuracy is defined as the ratio between the number
of frames with correct object localization and the number of
frames where the object appears in ground truth. We com-
pare our method with method HOG[1] and RDH which us-
es the RGBD HOG featur€][6] in a sliding window way to
detect objects. We choose the detection with the maximum
score as the final detection. The HOG and RDH detectors
are trained for each object class. Tab[g 3 shows the local-
ization accuracy. Figufd 9 shows some examples of object



localization.

The objects involved in the event present large appear-
ance variance. Some objects have non-rigid structures,
like book. Some objects move with the human action and
present different directions, scales, and views in the motion,
like mug. Some small objects are always occluded by the
human body in the action, like cellphone and mouse. The
HOG and RDH methods localize objects with appearance
information in each frame. However, non-rigid structure,
movement, occlusion, and low resolution make it hard to
localize these objects by appearance. The human action in-
formation can facilitate the localization by using the tempo-
ral and human body context. So for those objects, our mod-
el significantly improves the accuracy. For those big and
still objects which have regular appearance, like dispenser,
though the improvement is not remarkable, our method still
outperforms the baseline methods.

5. Conclusion

We proposed a 4D human-object interaction model for
event and object recognition. The human-object interac-
tions defined in 3D spatial domain boost the reliability on
atomic event recognition. Ambiguities in interpreting the
video frames are resolved by integrating temporal relation
between frames. Through the dynamic programming beam
search algorithm, we can efficiently segment the video, rec-
ognize events, and localize objects simultaneously. The
experiment on our large scale multiview 3D event dataset
proves the effectiveness of our method. The future work
will focus on using the 4D human-object relations to esti-
mate human pose in regular surveillance video.
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